

HIGHLY EFFICIENT MULTI-GIGABIT COMMAND-

STATUS PACKET TUNNELING TECHNIQUE IN

INTER-FPGA PACKET STREAMING

ARCHITECTURE

LOH MUI SOON

UNIVERSITI SAINS MALAYSIA

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/199244133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

HIGHLY EFFICIENT MULTI-GIGABIT COMMAND-STATUS
PACKET TUNNELING TECHNIQUE IN INTER-FPGA PACKET

STREAMING ARCHITECTURE

By

LOH MUI SOON

A Dissertation submitted for partial fulfilment of the requirement
for the degree of Master of Science (Electronic Systems Design

Engineering)

August 2016

ii

Acknowledgment

First and foremost, I would like to take this opportunity to express my gratitude

and thanks to Dr Patrick Goh Kuan Lye from the School of Electrical and Electronics

Engineering, University Science of Malaysia, for his relentless guidance and courage

throughout the undertaking of this research project. Many constructive feedbacks and

advices are given, besides sacrificing his valuable time travelling to my company,

which helped to make this research run smoothly.

I also would like to thank Keysight Technologies for providing the computer

infrastructures including high performance computing workstation and engineering

design software licenses for all simulations demonstrated in this research and the

Ministry of Higher Education of Malaysia for financial sponsor in MYBRAIN15

program.

Last but not least, I also would like to express my gratitude to all my beloved

spouse, parents and fellow course mates who have supported or encouraged me

throughout the undertaking of this two-year master studies program in MSc in

Embedded System Design Engineering in University Science of Malaysia.

iii

Table of Contents

List of Tables .. vi

List of Figures and Illustrations .. vii

List of Abbreviations and Nomenclature .. x

Abstrak ... xi

Abstract ... xii

 .. 1

INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Problem Statements ... 3

1.3 Objectives .. 5

1.4 Project Scopes.. 5

1.5 Research Contribution .. 6

1.6 Thesis Organization ... 7

 .. 8

LITERATURE REVIEW .. 8

2.1 Overview ... 8

2.2 High-Speed Serial Interconnects in FPGA .. 9

2.3 SerialLite High-Speed Serial Protocol .. 13

2.4 Aurora High-Speed Serial Protocol .. 16

2.5 Interlaken High-Speed Serial Protocol ... 17

2.5.1 Altera 50G Interlaken IP Core Packet Mode Operation 21

2.6 Time Division Multiplexing Technique .. 24

2.7 State-of-the-art I2C Implementation ... 26

2.8 State-of-the-art SPI Implementation ... 27

2.9 Recent Works in Inter-Chip Communication and Control Links 29

2.10 Summary ... 33

 .. 35

METHODOLOGY .. 35

3.1 Overview ... 35

3.2 High Level view of FPGA-to-FPGA Communication 36

iv

3.3 RTL-based Design Flow .. 39

3.4 SPI-based Implementation Design Methodology .. 40

3.5 CMD-Status Packets Tunneling Architecture Design Methodology 41

3.6 State-of-the-art SPI Implementation with 25G Interlaken IP Core 42

3.6.1 SPI Master and SPI Slave Blocks Design... 43

3.6.1.1 Control and Status Registers on Master PLB Write Port 43

3.6.2 Streaming DMA Block Design .. 46

3.6.3 ITK-MAC Transmitter Block .. 49

3.6.4 ITK-MAC Receiver Block ... 49

3.6.5 Data Streamer Block Design .. 49

3.6.6 Interlaken Transceiver Block ... 50

3.7 SPI-enhanced: SPI Implementation with Enhancement 50

3.7.1 Read Write Burst Master ... 52

3.7.1.1 CMD-Status Packet Structure .. 53

3.7.1.2 Advanced Burst Read for Industrial Cases 54

3.7.1.3 Advanced Burst Write to Configure Streaming DMA 56

3.7.2 Loop-back Synchronizer .. 58

3.8 CMD-Status Packets Tunneling (CSPT) Architecture................................... 59

3.8.1 Control and Status Registers Accessible via Master Processor Local Bus
 .. 61

3.8.2 Control and Status Registers in Slave Processor Local Bus 64

3.8.3 Interlaken Transceivers for CMD-Status Insertion and Recovery Blocks 66

3.8.4 Block-A: CMD-Status Insertion .. 69

3.8.4.1 CMD-Status Manager ... 70

3.8.4.2 Preemptive Arbiter .. 73

3.8.5 Block-B: CMD-Status Recovery .. 76

3.8.5.1 CMD-DMA Separator ... 78

3.8.5.2 CMD-Status Retriever ... 79

3.9 Summary ... 82

 .. 84

RESULTS AND DISCUSSION... 84

4.1 Overview ... 84

4.2 High Level Simulation Setup ... 85

v

4.3 Flowcharts for Data Streaming with CMD-Status Tunneling 87

4.4 Simulation Setup and Models Used .. 90

4.5 Simulation 1: Read Latency Measurement using SPI-enhanced 90

4.6 Simulation 2: Write Latency Measurement using SPI-enhanced 93

4.7 Simulation 3: Insertion and Recovery of CMD-Status Packets 95

4.7.1 CMD-Status Packets .. 95

4.7.2 Streaming Data Packets ... 97

4.8 Simulation 4: CMD-Status Tunneling across Streaming Data 97

4.9 Read Write Latency Performance Results and Discussions 99

4.9.1 Read Latency Results in Clock Cycles and Discussion 99

4.9.2 Read Latency Results in nanoseconds and Discussion 102

4.9.3 Write Latency Results in Clock Cycles and Discussion........................ 106

4.9.4 Write Latency Results in nanoseconds and Discussion......................... 108

4.9.5 Results and Discussion for Industrial Cases ... 111

4.9.5.1 Results and Discussion for Industrial Cases in Clock Cycles 113

4.9.5.2 Results and Discussion for Industrial Cases in nanoseconds 114

4.10 Formula Derivation from Results Analysis ... 115

4.11 Summary ... 118

 .. 120

CONCLUSION ... 120

5.1 Overview ... 120

5.2 Future Recommendations ... 122

vi

List of Tables

Table 2.1. Xilinx multi-gigabit transceiver offerings [19]. 10

Table 2.2. SerialLite III performance and resource utilization comparison [34]...... 15

Table 2.3. Summary of I2C bus speeds [7] .. 27

Table 2.4. Characteristics of the synchronous registers [18]. 32

Table 2.5. Comparison of SerialLite III, Aurora v3.0 and Interlaken serial protocols.
 .. 33

Table 2.6. Comparison I2C and SPI. .. 34

Table 3.1. Artix-7 FPGA feature summary by device [28]. 39

Table 3.2. Control register for SPI master. ... 44

Table 3.3. Status register for SPI master interface. ... 45

Table 3.4. DMA control register. ... 48

Table 3.5. Industrial cases on 4 channel voltage measurements.............................. 52

Table 3.6. Control words for CMD-status packet header .. 53

Table 3.7. Definition of control bit for CMD. .. 54

Table 3.8 Description of control and status registers for Block A and B in FPGA 1.
 .. 62

Table 3.9. Master PLB control register. ... 63

Table 3.10. Status bit for status register in Block A and B. 64

Table 3.11. Status Register for Block A and B in FPGA 2. 66

Table 4.1. Comparison for read in clock cycles on CSPT vs other methods. 100

Table 4.2. Comparison for read (ns) on CSPT vs other methods. 103

Table 4.3. Comparison for write in clock cycles for CSPT vs other methods. 106

Table 4.4. Comparison for write (ns) on CSPT vs other methods. 109

Table 4.5. Industrial cases and sequence of hardware operations. 111

Table 4.6. Equivalent CMD-Status low level operation for each industrial cases.. 112

Table 4.7. Clock cycles for different implementations in various industrial cases. 113

Table 4.8. TAT in (ns) for different implementations in various industrial cases. . 114

vii

List of Figures and Illustrations

Figure 2.1. Simpli ed block diagram of a GTP transceiver. Half a tile is shown [15].
 .. 11

Figure 2.2. A high-speed serial link based on a GTP transceiver [15]. 12

Figure 2.3. MGT for high-speed Inter-FPGA communication [4]. 12

Figure 2.4. Typical system application using Altera SerialLite III [34]. 13

Figure 2.5. Aurora channel overview [29]. .. 17

Figure 2.6. The conventional XAUI versus SPI4.2 interfaces [24]. 18

Figure 2.7. Framer/MAC to NPU/L2 or L3 switch [24]. .. 19

Figure 2.8. Line Card to Switch Fabric interface [24]. ... 19

Figure 2.9. Altera Interlaken PHY IP Core [26]. .. 20

Figure 2.10. Altera 50G Interlaken block diagram [26]. ... 21

Figure 2.11. Interlaken packet transfer on transmit interface in packet mode 22

Figure 2.12. Interlaken packet transfer on transmit interface with back pressure. ... 23

Figure 2.13. Altera 50G Interlaken IP Core receiver side example with irx_err error.
 .. 24

Figure 2.14. ISERDES and OSERDES for time division multiplexing [4]. 25

Figure 2.15. Data transfer on the I2C bus [7] ... 26

Figure 2.16. SPI-Slave transceiver architecture [8] .. 28

Figure 2.17. SPI clock mode with POLARITY = 1 and PHASE = 0 29

Figure 2.18. Block diagram representation of multi-DSP and -FPGA based fully
digital control system for CMCs [35]... 30

Figure 2.19. Structure of a PCIe TLP and the protocol overhead on each layer [38].
 .. 31

Figure 3.1. FPGA-to-FPGA data streaming based upon multi-gigabit transceivers. 37

Figure 3.2. FPGA RTL-based design flow for: (a) block level (b) top level. 39

Figure 3.3. Top level design flow for state-of-the-art SPI and its enhanced version.
 .. 40

Figure 3.4. Design flow for CSPT architecture. ... 42

Figure 3.5. State-of-the-art implementation of SPI-based control link. 43

Figure 3.6. Control register and transmitter FIFO of SPI master. 44

viii

Figure 3.7. Write-then-clear register. ... 45

Figure 3.8. Status register of SPI master. ... 46

Figure 3.9. Streaming DMA configuration registers... 46

Figure 3.10 ASM for Streaming DMA. ... 47

Figure 3.11. Data Streamer for state-of-the-art SPI implementation. 49

Figure 3.12. User interfaces to 25 Gbps Interlaken transceivers block. 50

Figure 3.13. Enhanced SPI implementation. .. 51

Figure 3.14. CMD-Status packet structure ... 53

Figure 3.15. Burst read command 0x30003104. ... 55

Figure 3.16. Timing diagram seen at Read Burst Master for command 0x30003104
 .. 55

Figure 3.17. Burst write command 0x10021603 .. 56

Figure 3.18. Timing diagram seen at Write Burst Master for command 0x10021603
 .. 57

Figure 3.19. Schematic of Loop-back Synchronizer ... 58

Figure 3.20. Timing diagram of Loop-back Synchronizer. 59

Figure 3.21. The CMD-Status packets tunneling architecture. 60

Figure 3.22. Control registers for Block A and B in FPGA 1. 61

Figure 3.23. Status register attached to master PLB read port in FPGA 1. 63

Figure 3.24 Control register for Block A and B in FPGA 2. 65

Figure 3.25. Status register for Block A and B in FPGA 2. 65

Figure 3.26. Connection for 25Gbps Interlaken transceivers. 66

Figure 3.27. User interfaces to Interlaken TX and RX paths. 67

Figure 3.28. Expected behavior of the 25G Interlaken IP Core with CMD-Status
packets tunneling. .. 68

Figure 3.29 CMD-Status Insertion Block. .. 69

Figure 3.30. Result from 32-bit-to-128-bit formatter: (a) burst write (b) burst read. 71

Figure 3.31. Algorithmic state machine for CMD-Status Manager. 72

Figure 3.32 Flowchart for Preemptive Arbiter. .. 74

Figure 3.33. CMD-Status Recovery block. .. 76

Figure 3.34. Flowchart for CMD-DMA Separator. .. 78

ix

Figure 3.35 Flowchart for CMD-Status Retriever .. 80

Figure 3.36 3-bit pointer used to recover CMD-Status packet from 256-bit word. .. 81

Figure 4.1. Simulation setup for CMD-Status tunneling across MGT Link. 85

Figure 4.2. Block A and B involved in CMD-Status tunneling architecture............ 86

Figure 4.3. Flowchart of separate SPI CMD-Status and multi-gigabit streaming data.
 .. 87

Figure 4.4. Flowchart of CMD-Status tunneling across multi-gigabit streaming data.
 .. 88

Figure 4.5. Simulation conducted for burst read latency measurement. 91

Figure 4.6. Simulation conducted for burst write latency measurement. 94

Figure 4.7. Insertion and recovery of CMD-Status packets. 96

Figure 4.8. Simulation result for CMD-status tunneling across streaming data. 98

Figure 4.9. Read latency in clock cycles for various implementations. 101

Figure 4.10. Write latency in clock cycles for various implementations. 108

x

List of Abbreviations and Nomenclature

Abbreviation Meaning
ACK Acknowledge
ADC Analog-to-Digital Converter
ASIC Application Specific Integrated Circuit
ASM Algorithmic State Machine
CDR Clock and Data Recovery
CMD Command
CMD-Status Command and status
CSPT CMD-Status Packets Tunneling
DAC Digital-to-Analog Converter
DMA Direct Memory Access
EOP End-of-packet
FIFO First-In-First-Out
FPGA Field-Programmable Gate Array
Gbps Gigabit-per-second
GTP Gigabit-Transceiver P-series
HDL Hardware description language
I2C Inter-Integrated Circuit
ITK-MAC Interlaken-to-MAC
LSB Least Significant Bit
LVDS Low-voltage differential signaling
MAC Media Access Controller
MGT Multi-Gigabit Transceivers
MISO Master-In-Slave-Out
MOSI Master-Out-Slave-In
MSB Most Significant Bit
PCB Printed Circuit Board
PCS Physical Coding Sublayer
PISO Parallel Input to Serial Output
PLB Processor local bus
PLL Phase-Lock-Loop
PMA Physical Medium Attachment
RTL Register-Transfer-Level
SerDes Serializer-Deserializer
SIPO Serial-In-to-Parallel-Output
SNK Sink
SOP Start-of-packet
SRC Source
SPI Serial Peripheral Interface
SRC Source
TAT Turn-around time
TDM Time-Division-Multiplexing

xi

TEKNIK PENEROWONGAN PAKET PERINTAH DAN STATUS GIGABIT
BERGANDA YANG BERKECEKAPAN TINGGI DALAM SENI BINA PENGALIRAN

PAKET ANTARA FPGA

Abstrak

Protokol siri berkelajuan tinggi yang dibina dengan penghantar-terima gigabit

berganda dalam FPGA adalah tulang belakang untuk industri-industri komunikasi

data. Protokol ini kini merupakan satu keperluan asas untuk aplikasi hari ini dan juga

untuk keperluan sistem generasi akan datang. Walau bagaimanapun, pemindahan

paket perintah dan status dengan cekap dalam kawalan pautan antara FPGA melalui

penghantar-terima gigabit berganda tanpa pembaziran jalur lebar data telah menjadi

satu cabaran dalam reka bentuk sistem moden. Walaupun teknik pemultipleksian

pembahagian masa boleh digunakan untuk menangani isu ini, slot-masa khusus yang

tidak digunakan untuk kawalan pautan paket memberikan kesan negatif kepada

kecekapan jalur lebar dan seterusnya prestasi sistem. Satu lagi teknik penyelesaian

yang biasa digunakan adalah dengan permindahan paket perintah dan status dalam

pautan kawalan berasingan; biasanya dilaksanakan dengan protokol siri yang

berkelajuan rendah hingga sederhana seperti I2C dan SPI. Walaupun penyelesaian ini

boleh dilaksanakan dengan pemacu peranti yang sedia ada, pembaziran kependaman

akan berlaku, contohnya seperti dalam pemindahan 512-bait data penjodoh untuk

mengkonfigurasikan penapis-FIR yang mempunyai 128-tap. Dalam disertasi ini, satu

seni bina berkependaman rendah and cepat untuk penerowongan paket perintah and

status dalam protokol siri Interlaken berkelajuan 25 Gbps untuk penyaluran data

antara FPGA yang berkelajuan gigabit berganda telah dicadangkan. Hasil simulasi

menunjukkan bahawa seni bina yang dicadangkan beroperasi dengan kecekapan yang

tinggi, hanya mengunakan 13.21% dan 10.34% daripada kitar jam yang diperlukan

berbanding implementasi konvensional SPI dan I2C. Seni bina ini juga mengekalkan

keserasian dengan pautan kawalan yang dilaksanakan secara berasingan

menggunakan SPI atau I2C untuk mempermudahkan reka bentuk keseluruhan sistem,

mengurangkan risiko pembangunan produk dan kos sistem.

xii

HIGHLY EFFICIENT MULTI-GIGABIT COMMAND-STATUS PACKET TUNNELING
TECHNIQUE IN INTER-FPGA PACKET STREAMING ARCHITECTURE

Abstract

High speed serial protocols build upon multi-gigabit transceivers in the FPGA

are the backbone of data communication industries. These protocols are now a

fundamental requirement for today’s applications as well as addressing the needs of

next generation systems. However, transferring command and status packets

explicitly in inter-FPGA control links efficiently via multi-gigabit transceivers

without wasting data bandwidth become a challenge when architecting a modern

design. Though time-division-multiplexing techniques could be deployed to address

this issue, dedicated but unused time-slots for control link packets adversely affect the

bandwidth efficiency and thus the system performance. Another common solution

focuses on transferring the command and status packets in a separate control link;

typically implemented in low to medium bandwidth serial protocols such as I2C and

SPI. Though this solution is simple to implement in hardware with readily available

device drivers, an unnecessary high latency overhead is introduced such as when

transferring a 512-byte filter data coefficients to configure a 128-tap FIR filter. In this

dissertation, a highly efficient, low latency command-status packet tunneling

architecture built on top of the 25 Gbps Interlaken serial protocol for multi-gigabit

inter-FPGA data streaming is proposed. Simulation results show that the proposed

architecture works successfully with a high efficiency, utilizes only 13.21% and

10.34% of the clock cycles required in the conventional SPI and I2C implementations

respectively. The proposed architecture also maintains a backward compatibility with

control links implemented separately using SPI or I2C serial protocols to simplify the

overall system design, reduce product development risks and system costs.

1

INTRODUCTION

1.1 Overview

Today, with the establishment of advanced fabrication process technology at

much smaller process nodes, multi-gigabit high-speed transceiver becomes very

common in many modern application specific integrated circuits (ASIC) and high-end

field-programmable gate array (FPGA) devices. With increasing demand of very high

data transfer rate, high speed serial protocol today has been established to operate in

the multi-gigabit-per-second (Gbps) range to overcome many limitations faced in

using parallel bus architectures. High speed transceiver is the backbone of wireless,

wireline and data center industries. They are responsible for moving massive amount

of data from one point to another known as point-to-point technology. Transmitting

and receiving huge amount of data through a single package is now a fundamental

requirement for today’s applications as well as addressing the needs of next generation

systems. The multi-gigabit transceiver available in high-end FPGAs such as Altera

Aria-10 or Xilinx’s Kintex-7 FPGAs is uniquely position to address this need as a

single package solution providing up to eight terabits-per-second (8-Tbps) of total

aggregate bandwidth.

The design of high speed data packet transfer in modern systems such as

industrial data acquisition system (DAQ), software defined networking (SDN) [1] or

network function virtualization (NFV) architecture often involved multi-gigabit

transceiver links between target and initiator chips in the form of FPGA or ASIC. The

https://en.wikipedia.org/wiki/Network_architecture

2

importance and popularity of FPGA has increased nowadays due to the

programmability that FPGA devices could offer. Using FPGA device, system

designer can design and simulate their system using register-transfer level (RTL)

design entry and implement the synthesized RTL netlist into FPGA device using state-

of-the-art electronic design automation (EDA) tool provided by the FPGA vendors.

Any design bug found later after being implemented could be fixed by re-

programming the FPGA device, this in turn provide a short turn-around time (TAT)

for bug fixing compared to ASIC which require a wafer mask spin which could take

weeks to months. The short TAT for a product design using FPGA also provides other

benefits, such as fast time-to-market, flexibility to deal with last minute changes and

low product development risks as a system implemented within a FPGA device could

be thoroughly validated for correctness. Also product design using FPGA incurs low

non-recurring engineering (NRE) cost as wafer mask spin is not required since FPGA

devices are normally bought off-the-shelf.

Leveraging on the inter-FPGA multi-gigabit transceiver (MGT) [2] link, high-

speed data streaming at a transfer rate in the multiple of Gbps is practical [3] and often

become part of the requirement for modern product design. However, transferring

command and status packets used efficiently in modern system designs involving

multi-gigabit transceiver links, without causing data transfer bandwidth wastage, is

become a challenge when architecting a new system design. The state-of-the-art

technique for transferring command-status packets within the multi-gigabit high-

speed channel is based upon time-division-multiplexing (TDM) [4],[5],[6] where

certain percentage of the multi-gigabit channel bandwidth is allocated for command

and status (CMD-Status) packets as inter-chip control link. This specially allocated

3

time-slot for CMD-Status packets is typically fixed apart from the total available data

bandwidth for multi-gigabit data streaming across two different chips or FPGAs.

Another common industrial solution normally focuses on separating command

and status packets in a separate control link from high speed channels used for multi-

gigabit data streaming. The control links for inter-chip communication are typically

implemented using low to medium bandwidth serial protocol based upon state-of-the-

art Inter-Integrated Circuit (I2C or pronounced I-Squared-C) [7], [8] and Serial

Peripheral Interface (SPI) bus [8].

A highly efficient command and status packets tunneling architecture for inter-

FPGA packet streaming to address the problem of idling time, bandwidth wastage is

desirable. Designing this novel command and status packets tunneling architecture is

highly desirable and this will be the main focus of this research.

1.2 Problem Statements

The conventional state-of-the-art technique for transferring command-status

packets for inter-FPGA communication using the multi-gigabit transceivers is based

upon the time-division-multiplexing (TDM) technique, where a fixed percentage of

the multi-gigabit channel bandwidth is allocated for CMD-Status packets in inter-

FPGA control link. This specially allocated time-slot for CMD-Status packets is

typically fixed apart from the total available channel bandwidth and results in a

limitation to the total number of CMD-Status packets to be transferred at any one time.

This technique also degrades the total payload efficiency of the multi-gigabit channel

where the unused bandwidth specially allocated for CMD-Status slot become a total

https://en.wikipedia.org/wiki/Bus_(computing)

4

wastage. Furthermore, the turnaround latency involved to tunnel CMD-Status across

the multi-gigabit channels using TDM technique is long, un-deterministic and is

highly dependent upon the queue of time-slot allocated for CMD-Status packets;

which is time-multiplexed with the high-speed streaming data packets.

Typical industrial solution focuses on separating CMD-Status packets used as

control link from the high-speed multi-gigabit-per-second data streaming channel and

implemented separately in the state-of-the-art I2C or SPI serial interfaces. This

solution, though is simple to implement using both hardware and readily available

standard device drivers for SPI and I2C in the firmware development, it increases

complexity for synchronization in user applications development. Increased in

complexity will become obvious when a continuous configuration data stream from

the control link is required to fine tune a Finite Impulse Response (FIR) filter used as

equalizer, sweeping across a wide range of frequencies for an analog-to-digital

converter (ADC) feeding digital data to a high-end FPGA at data rate of 600MB/s.

Separating CMD-Status packets used in control link implemented using I2C or

SPI serial interfaces also increases idling time for the target and initiator functions

implemented in two individual high-end FPGAs. These FPGAs waiting for control

command or status from each other in order to make important decision while

performing high-speed data streaming. Furthermore, in a modern system design,

high-end FPGAs are capable of transferring data in the rate between 3.125-Gbps to

150-Gbps. Idling time incurred in waiting for slow or medium bandwidth I2C or SPI

serial interfaces used for CMD-Status communication to make critical decision before

5

next operation could continue will become a final system bottleneck to be experienced

by the end user.

A highly efficient CMD-Status packets tunneling architecture for inter-FPGA

control link leveraging on multi-gigabit serial protocol for packet streaming to address

the problems of bandwidth wastage and inter-FPGA idling time is highly desirable

and this will be the main focus of this research.

1.3 Objectives

The objectives of this research are:

i. To design a command-status (CMD-Status) packet tunneling architecture to

tunnel CMD-Status packets across streaming data for a system involving inter-

FPGA high-speed data transfer utilizing multi-gigabit transceiver links.

ii. To significantly improve overall turn-around time in terms of read and write

latency measured in clock cycles, for CMD-Status packets used in control link

with a highly efficient burst read-write method.

1.4 Project Scopes

There are many ways to design a highly efficient command-status (CMD-

Status) tunneling architecture depending on the serial protocol used to pair with the

multi-gigabit transceivers within a high end FPGA. This research project focuses on

the design of the proposed CMD-Status tunneling architecture build on top of Altera

6

25G Interlaken IP Core [9] with a 4-lane configuration, each lane with speed of 6.25

Gbps resulting in a 25 Gbps inter-FPGA high-speed link.

The design on the CSPT architecture will be done in Verilog hardware

description language (HDL). Functional simulation will be performed to validate the

design using Altera Quartus II [10] FPGA design and simulation tool with Altera 25G

Interlaken IP Core behavioral model.

The efficiency in terms of read-write latency measured in the number of clock

cycles for CMD-Status packet tunneling will be measured and benchmarked against

conventional SPI and I2C implementations. Backward compatibility in the design of

this proposed CMD-status tunneling architecture with conventional SPI-based CMD-

Status control link will be maintained.

1.5 Research Contribution

This proposal for developing a CMD-Status packet tunneling architecture for

inter-FPGA control link leveraging on multi-gigabit serial protocol for high-speed

data streaming could address the problems of bandwidth wastage in the multi-gigabit

channel and minimizing inter-FPGA idling time. It will also simplify the overall

system architecture design by eliminating the SPI and I2C serial interfaces. This will

eventually lead to minimizing system cost and reduce product development risks

involving control link built on top of the multi-gigabit inter-FPGA communication.

7

1.6 Thesis Organization

The remainder of this dissertation is organized as follows:

Chapter 2 reviews the suitable high-speed serial protocols for point-to-point

data transfer and various low to medium bandwidth serial interfaces including I2C,

SPI and time-division-multiplexing method used in control links.

Chapter 3 describes the overall design methodology of this research starting

with high-level view of FPGA-to-FPGA data streaming with CMD-Status packet

tunneling architecture, RTL-based design flow, design methodology for the SPI-based

implementations and the CSPT architecture. It then goes into details of design for all

critical blocks used in SPI implementations and the CSPT architecture. This chapter

ends with a chapter summary outlining the leveraging on reusable blocks from various

stages, simplifying the design and simulation efforts by half.

Chapter 4 begins with a high level simulation setup, followed by flowcharts to

summarize the operations of various implementations. Then, simulation results

showing read and write latency for SPI-enhanced implementation and CMD-Status

tunneling operation of the CSPT architecture will be presented. This chapter ends with

an analysis and discussion on the performance comparisons across four different

implementations.

Chapter 5 summarizes and concludes the results from the performance

comparisons across four different implementations described in Chapter 3 and

outlines future recommendations for improvement related to this research.

8

LITERATURE REVIEW

2.1 Overview

This chapter starts with some in depth study on high-speed serial interconnects

widely adopted in design based upon multi-gigabit transceiver (MGT) technologies

from Altera or Xilinx; the two leading Field-Programmable Gate Array (FPGA)

device vendors. Reasoning on using serial interconnects versus wide parallel bus is

explained. Example applications using MGT in inter-FPGA system design are

illustrated with important considerations for state-of-the-art implementations. It is

followed by exploring suitable high-speed serial protocols for inter-FPGA point-to-

point data transfer. The three main serial protocols, SerialLite III from Altera, Aurora

v3.0 from Xilinx and lastly the vendor-independent Interlaken protocol are explored

with particular interests on Interlaken due to the highly scalability, high payload

efficiency and back pressure support this protocol could offer. Time-division-

multiplexing (TDM) architecture is being explained with main focus on feasibility

study and the efficiency for command-status tunneling. Thereafter, three low to

medium bandwidth serial interfaces: I2C and SPI are discussed briefly, with focuses

on their performance and suitability to be used to send command and retrieve status

in control link between two FPGAs. Before chapter summary, a section to discuss

about recent researches on inter-chip communication or control links is presented.

This chapter ends with a chapter summary comparing all three main multi-gigabit

serial protocols and comparison of I2C and SPI for control link applications and

reason to choose them for this research.

9

2.2 High-Speed Serial Interconnects in FPGA

The traditional interconnects between FPGA devices are normally realized in

the form of parallel bus. To increase data rate for the parallel bus, it requires higher

clock rate and wider bus. However, using higher clock rates or wider parallel bus

compromises the parallel bus performance as it increases the skew (different signals

arriving at different times) and reduces the timing budget [11]. Furthermore, a wider

parallel bus is more difficult to layout and route in printed circuit board (PCB). The

ever-increasing data transfer throughput requirements have resulted in multi-load

parallel, single ended IO bussing schemes converting into point-to-point serial low-

voltage differential buses [12].

High-speed serial interconnects benefit from low-voltage differential signaling

(LVDS) up to gigabit-per-second or the pseudo current-mode logic (PCML) IO

standard for multi-gigabit data rate. These interconnects use embedded clocking

technologies to overcome clock and data skews problems usually faced by wide

parallel buses. This makes it possible to easily achieve signaling rate in the range of a

few gigabit-per-second (Gbps) to over 10s’ of Gbps of bandwidth. In addition, high-

speed serial interconnects also lead to reduction in terms of the total number of IO

pins required for a chip and this leads to simpler PCB wiring and contribute to overall

system cost savings [13] for a product designed using these interconnects.

Increasingly common in ASIC and FPGA designs are the ultra-fast serial

communication channels known as multi-gigabit transceivers (MGT), used for high-

speed data streaming over a backplane between FPGA-to-FPGA, or over longer

10

distances. The popular MGT is the GTP transceiver [14] from Xilinx’s Virtex 5 FPGA

family which is compatible with the GTX transceivers embedded in Xilinx’s Spartan-

6 FPGA devices as illustrated in Table 2.1. There are six types of MGTs in Xilinx’s

FPGA: GTR, GTP, GTX, GTH, GTY and GTZ. The GTH and GTY transceivers

provide low jitter required for optical interconnects and auto-adaptive equalization

features, the rest are just the names with different speeds in different device families.

Table 2.1. Xilinx multi-gigabit transceiver offerings [19].

Xilinx's FPGA
Devices

MGT
Type

Max
Performance1

Max
Transceiver

Peak
Bandwidth2

Virtex UltraScale+ GTY 32.75 128 8,384 Gb/s
Kintex UltraScale+ GTH/GTY 16.3/32.75 44/32 3,268 Gb/s
Virtex UltraScale GTH/GTY 16.3/30.5 60/60 5,616 Gb/s
Kintex UltraScale GTH 16.3 64 2,086 Gb/s

Virtex-7 GTX/GTH/
GTZ

12.5/13.1/
28.05 56/96/16 2,784 Gb/s

Kintex-7 GTX 12.5 32 800 Gb/s
Artix-7 GTP 6.6 16 211 Gb/s

Zynq UltraScale+ GTR/GTH/
GTY

6.0/16.3/
32.75 4/44/28 3,268 Gb/s

Zynq-7000 GTX 12.5 16 400 Gb/s

Note: 1: Gbps 2: Combined transmit and receive

Figure 2.1 shows the transmitter and receiver units embedded in each GTP

transceiver inside the Xilinx’s FPGA. GTPs are represented as con gurable hard-

macros or more commonly referred to as a tile. Each tile includes a pair of transceivers,

which share the reset logic and also a phase lock loop (PLL) as basic components to

this block. The main components of this GTP transceiver are the physical medium

attachment (PMA) sublayer, which is serializing the data for the transmitter and de-

serializing the data for the receiver unit, and a physical coding sublayer (PCS), which

11

processes the data before serialization and after de-serialization. The shared PLL will

be used to lock to a reference clock (CLKIN) and generates the high-speed serial clock

for the transmitter. Also, the same PLL is used to generate the parallel clock (XCLK)

for the parallel input to serial output (PISO) and a seed clock for the clock and data

recovery (CDR) circuit.

Figure 2.1. Simpli ed block diagram of a GTP transceiver. Half a tile is shown [15].

Figure 2.2 below shows an example implementation for a high-speed multi-

gigabit serial link based on a GTP transceiver running at 2.5 Gbps utilizing the GTP

SerDes with 8b10b coding because it is the most widely adopted coding standard for

serial data in applications such as Gb-Ethernet and FibreChannel [16]. Similarly, the

2.5 Gbps data-rate is commonly used in optical transmissions standard such as OC-

48/STM-16x/2.5 G SONET [16].

12

Figure 2.2. A high-speed serial link based on a GTP transceiver [15].

Figure 2.3 shows a MGT from Xilinx’s Virtex 5 FPGA family known as GTP

used for FPGA-to-FPGA high-speed data transfer.

Figure 2.3. MGT for high-speed Inter-FPGA communication [4].

Synchronization of the system clock and the fast clock is achieved based on the self-

synchronous [17] method where the data stream contains both the data and the clock.

13

Both TXOUTCLK and RXOUTCLK are fed by the same reference clock so that they

are constantly remain synchronous with the same frequency.

The multi-gigabit high-speed serial interconnects commonly used for inter-

FPGA point-to-point data transfer are SerialLite, Aurora and Interlaken [24] links,

these multi-gigabit serial protocols are lightweight in which these interconnects use

minimal FPGA area thus permits use of smaller and cheaper FPGAs. These multi-

gigabit serial protocols also do not require complex user software drivers at hardware

abstraction layer where applications can connect to the FIFO-like user interface to

simplify modern system design.

2.3 SerialLite High-Speed Serial Protocol

The Altera SeriaLite III streaming IP core is for high speed serial

communication protocol for chip-to-chip, board-to-board and backplane applications

for data streaming. This IP core consists of a physical coding sublayer (PCS), a

physical media attachment (PMA) and a media access control (MAC) block. The

interfacing with FPGA fabric is through the Avalon-ST interface. The SerialLite III

protocol as shown in Figure 2.4 offers high-bandwidth, low overhead frames, low I/O

count, and supports scalability in both number of lanes and lane speed.

Figure 2.4. Typical system application using Altera SerialLite III [34].

14

The protocol features supported by the SerialLite III for the transfer of high

bandwidth streaming data over unidirectional or bidirectional high-speed serial link

are simplex and duplex operations. This serial protocol supports single or multiple

lanes, 64B/67B physical layer encoding, payload and idle scrambling, error detection

and low latency for point-to-point data transfer.

The SerialLite III supports continuous and burst mode according to application

needs. In the continuous mode, user data is transmitted over the link and received at

the receiving link at the same rate without gaps in the stream on the user interface, as

if a data pipe is transparently forward all data presented on the user interface to the far

end of the link.

Continuous mode is used commonly for applications which require a simple

interface to transmit a single, high bandwidth data stream. Example of application is

the sensor data links for radar and wireless infrastructure, where data converters can

connect to either end of the links with minimal interface logic, and both ends of the

link operates from a same transceiver reference clock.

When operating in burst mode, the SerialLite III streaming link accepts bursts

of data across the user interface and transmits each burst across the link as a discrete

data burst. This operating mode is suitable for applications where the data stream is

divided into bursts of data such as the uncompressed digital video, where the data

stream is divided into lines of display raster. The key advantage for burst mode is it

supports multiplexing of multiple data streams across the link and more flexibility to

the clocking.

15

Table 2.2. SerialLite III performance and resource utilization comparison [34].

In standard clock mode, the SerialLite III Streaming IP core operates in a pure

streaming mode, copying the sink input data and forward to the source output directly.

User clocks to drive the user interface for both the source and sink are generated by

Altera Quartus Prime software automatically. In advanced clocking mode, Quartus

Prime allows user to specify clock to interface with the source core. This clocking

mode will be very useful when part-per-million (PPM) differences between the user

clock generated by the IO PLL or fractional Phase-Lock-Loop (fPLL) and the user

clock are beyond tolerable range.

Table 2.2 above compares the typical resources and expected performance for

different SerialLite III Streaming IP core variations for Arria 10 and Strtix V GX

FPGA devices operating in standard and advanced clocking modes. The resource

16

usage in terms of adaptive logic modules (ALMs) on advanced clocking mode is about

20% less as compared to standard clocking mode. This gives high-level user

flexibility to design their system using advanced clocking mode in order to minimize

resource usage.

2.4 Aurora High-Speed Serial Protocol

The Aurora protocol [29] developed by Xilinx is an open link-layer protocol

based on 8B/10B coding for point-to-point communications between FPGAs. This

protocol also de nes control words for framing separation or idle periods and

implements the control of the MGT inside the FPGA. It also supports initialization of

the link, error handling, ow control, etc, which are transparent to the higher-level

users.

Figure 2.5 illustrates the Aurora protocol, Xilinx’s IP core introduced on

Virtex®-II Pro and Virtex-4 FX FPGAs, serial communications protocol for multi-

gigabit links used to transfer data between devices using one or many MGTs running

at any supported line rate to provide a low cost, general purpose, data channel with

throughput from 622 Mbps to over 100 Gbps. The connections between devices can

be full-duplex (data in both directions) or simplex.

17

Figure 2.5. Aurora channel overview [29].

The Aurora core applications include chip-to-chip links, board-to-board and

backplane links, one-way connections and ASIC connections. The usage of Aurora

core for chip-to-chip links reduces the number of traces and layers required on a PCB

and hence minimizing the cost. In addition, the Aurora core is scalable both in line

data rate and channel width, to allow inexpensive legacy hardware to be used in new,

high-performance systems. While for one-way connections, when a back channel is

not available, the Aurora core applies a simplex protocol that provides several ways

to perform unidirectional channel initialization, reducing costs due to unused full-

duplex resources. Recent research has successfully made Aurora core to operate in

Altera Aria II FPGA with modification with details works in [42].

2.5 Interlaken High-Speed Serial Protocol

Figure 2.6 shows two dominant high-speed chip-to-chip interface protocols for

networking applications: System Packet Interface Level 4 Phase 2 (SPI4.2) [21] and

XGMII (10 Gigabit Media Independent Interface) Attachment Unit Interface (XAUI)

18

[31]. While SPI4.2 offers important features such as channelization, programmable

burst sizes, and per-channel backpressure. However, the excessive width of the

interface limits its scalability, and the source-synchronous nature of the protocol

reduces its effective reach. Conversely, XAUI is a narrow 4-lane interface, offers long

reach, and suits various implementations including FR4 on PCB, backplanes, and

cable. Yet as a packet-based interface it lacks channelization and flow control,

restricting it from several applications.

The weakness for both SPI4.2 [19] and XAUI [31] protocols is only fixed

configurations are available, limiting the interface capacity for huge data transfer

applications. To resolve the limitations on both SPI4.2 and XAUI, a new chip-to-chip

interface protocol, namely Interlaken is defined to allow the design of a narrow, high-

speed and channelized packet interface.

Figure 2.6. The conventional XAUI versus SPI4.2 interfaces [24].

19

Interlaken are commonly used in applications such as Framer/MAC (Media

Access Controller) to Network Processor Unit (NPU) or Layer-2 or Layer-3 (L2/L3)

switch interface as shown in Figure 2.7.

Figure 2.7. Framer/MAC to NPU/L2 or L3 switch [24].

Figure 2.8. Line Card to Switch Fabric interface [24].

Figure 2.8 shows Line Card to Switch Fabric interface. In addition, this protocol also

well-suited for multi-gigabit high-speed point-to-point inter-FPGA data transfer.

Two fundamentals structures that define the Interlaken Protocol are Meta Frame

and the data transmission format leveraging from the SPI4.2. Interlaken protocol

support bursts, error detection and retransmission on error. Data transmission across

20

the Interlaken interface took place on configurable number of SerDes lanes, from one

to inherently no maximum.

Interlaken serial interface uses modified 64B/66B known as 64B/67B encoding

with 4.5% overhead and uses the IEEE 802.3ae 10 Gigabit Ethernet specification [31].

This 64B/67B encoding is used to delineate word boundaries, to provide randomness

to the Electromagnetic Interference (EMI) generated by the electrical transitions, and

to allow for clock recovery besides maintaining DC balance [17]. The modified

64B/66B encoding scheme fixes DC imbalance or more specifically known as

unbounded baseline wander resulted from the accumulated excess of 1’s or 0’s

transmitted from an individual SerDes lane.

Figure 2.9 shows Altera Interlaken PHY IP Core [27], it is a high speed serial

communication protocol for chip-to-chip packet transfers which supports 1 to 24 lanes

running at 6.5536 Gbps or greater in Altera Arria V GZ and Stratix V devices. The

key advantages of Interlaken are scalability and its low IO pin count compared to

earlier protocols such as SPI 4.2 [19]. Other important features include flow control,

low overhead framing, and extensive data integrity and error checking.

Figure 2.9. Altera Interlaken PHY IP Core [26].

21

The Interlaken transmits and receives high speed differential serial data using

the pseudo current-mode logic (PCML) I/O standard. The protocol accepts packets on

256 logical channels and is expandable to accommodate up to 65,536 logical channels.

Packets are split into small bursts and can be interleaved when necessary. Per channel

flow control and integrity checking are available in the burst semantics.

Figure 2.10. Altera 50G Interlaken block diagram [26].

Figure 2.10 shows the Altera 50G Interlaken MegaCore function which consists of

two paths: an Interlaken transmit (TX) path and an Interlaken receive (RX) path.

2.5.1 Altera 50G Interlaken IP Core Packet Mode Operation

Figure 2.11 illustrates a packet mode data transfer of 83 bytes on the transmit

interface into the Altera 50G Interlaken IP core. To start a data transfer, ‘itx_sop’ is

asserted high when ‘itx_din_words’ is ready as shown within time t0 and t1. At the

following rising edge of the clock at time t1, the IP core detected ‘itx_sop’ at logic

22

high, indicating that the value on ‘itx_din_words’ in the current cycle is the start of

an incoming data packet. ‘itx_chan’ carries value 8’h2 indicates to the IP core that the

data originates from channel number two.

Figure 2.11. Interlaken packet transfer on transmit interface in packet mode

During the start-of-packet (SOP) cycle between time t0 and t1 with data value

d1 and the cycle that follows the SOP cycle with data value d2 within time t1 and t2,

‘itx_num_valid[2:0]’ with values 3'b100 shows these two cycles each carries 32 bytes

(4-lane x 8-byte) of data in d1 and d2 respectively. In the following clock cycle with

time t2 and t3, data d3 is presented with ‘itx_num_valid[2:0]’ with value of 3'b011

indicates the current data symbol contains three 64-bit words (or 3-lane x 8-byte) of

valid data. Within time t2 and t3, ‘itx_eopbits[3]’ set high indicates the current cycle

is an end-of-packet (EOP) cycle and the other three bits ‘itx_eopbits[2:0]’ at value of

3'b011 indicates that only last three bytes of the final valid data word are valid data

bytes. In the EOP cycle within time t2 and t3, the IP core receives two full words (2 x

8 = 16 bytes) and three bytes of valid data (indicated by ‘itx_eopbits[2:0]’ at value of

3'b011 showing only last three bytes of the final valid data word from d3 are valid

23

data bytes) for a total of 19 valid bytes. The total packet length received at the receiver

user interface is 32-byte of d1 within time t0 and t1, added with 32-byte of d2 within

time t0 and t1, added with 19 valid bytes of d3 within time t2 and t3 totaling 83-byte

(32 + 32 + 19 bytes).

Back pressure is supported in Interlaken protocol, signal ‘itx_ready’ set high

is used to indicate to the transmitter user interface that the TX Transmit Buffer as

shown in Figure 2.10 is almost full and can only receive another four 256-bit word in

the following four clock cycles.

Example in Figure 2.12 shows the Altera 50G Interlaken IP Core accepts the

first four data symbols: d1, d2, d3 and d4 totaling 128 bytes (32-byte x 4) of a data

stream from time t0 to t3 and time within t5 and t6. The clock cycles from time t1 to t3

in which the application transfers the data values d2 and d3 to the IP Core are grace-

period cycles following the de-assertion of ‘itx_ready’ setting this signal to a logic

low. In general, the Altera 50G Interlaken IP Core supports up to four cycles of grace

period before TX Transmit Buffer is full and stop receiving any incoming data stream.

Figure 2.12. Interlaken packet transfer on transmit interface with back pressure.

24

Figure 2.13. Altera 50G Interlaken IP Core receiver side example with irx_err error.

 Example in Figure 2.13 illustrates the attempt of a 83-byte data packet transfer

received on the receiver user interface to channel-2 detected as packet corruption after

receiving an active ‘itx_error’ signal during a packet transfer with CRC or other errors

within time t2 and t3. The errored packet transfer is followed by two idle cycles from

time t3 to t5. Following the errored packet, the IP core retransfers an uncorrupted

packet to channel-3 from time t5 to t8.

2.6 Time Division Multiplexing Technique

Figure 2.14 below shows input serial-to-parallel converters (ISERDES) and

output parallel-to-serial converters (OSERDES) blocks connected to Low-Voltage

Differential Signaling (LVDS) differential IO buffer to support data rate more than 1

Gbps [39] for time division multiplexing (TDM) in inter-FPGA communication. A 4-

bit wide SERDES is used in this TDM architecture, in case the number of signals

passing through one OSERDES to ISERDES is not in a multiple of 4, some

OSERDES inputs will be unutilized and left unconnected.

