FELDSPAR REINFORCED POLYPROPYLENE COMPOSITES: THE EFFECT OF COMPATIBILIZERS, SILANE COUPLING AGENT AND MULTI-WALLED CARBON NANOTUBE ON MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES

by

MOHAMED ANSARI MOHAMED NAINAR

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

JULY 2009

ACKNOWLEDGEMENT

I would like to address my deepest wholehearted gratitude to my supervisor, Professor Dr.Hanafi Ismail, School of Materials, Minerals Resources Engineering, Universiti Sains Malaysia for his continuous support and mentorship in completing this research and thesis work. I would like to thank him for his concern and understanding that was shown throughout the period. I am also thankful to my co-supervisor, Assoc.Prof. Dr.Sharif Hussein Sharif Zein, School of Chemical Engineering for his support and guidance.

The assistance and technical support provided by Mr.Gnanasegaram is greatly appreciated. Also, I thank Mr. Abdul Rashid, Mr. Rokman, Mr.Faisal, Mr.Abdul Razak, Mr.Zaini, Mr.Azam, Mr.Fitri, Mr.Hasnor, Mr.Shahid, Ms. Fong Lee and Librarian staff for their assistance.

I would like to thank Professor Khairun Azizi, the then Dean and Professor Ahmad Fauzi, Dean, School of Materials and Mineral Resources Engineering for their support and motivation, the administration staff especially Pn.Jamilah. I thank Professor Hj. Zainal Arifin Ahmad for his motivation and encouragement.

I would like to express my sincere gratitude to Professor Dato' Dr.V.G.Kumar Das, Former Vice-Chancellor, AIMST University for his mentorship and motivation without whose support this work would have been only a dream, the AIMST University Management for encouraging me to undergo my PhD at all stages, Former Deans Prof.P.K.Nair, Prof.K.S.Sarma, the present Dean Assoc.Prof. Dr. Jayaseelan Marimuthu, for their support, all my colleagues, students, friends especially Mr. Girish Kumar for his companionship.

My heart felt appreciation and thanks to my family members; my father Haji. S.Mohamed Nainar who was the first person in my life to inspire me to do Phd, my mother Hajjah M.Fathima, my wife Dr.Reshma, my kids Abdullah & Amanullah for their patience and endeavouring support to complete my thesis. I cannot forget my brother Abdul Hameed who had always been there without any hesitation to support me at all times. My thanks are due to the Almighty GOD for providing me this wonderful life.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF PUBLICATIONS & CONFERENCES/APPENDICES	ix
LIST OF TABLES	х
LIST OF FIGURES	xii
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	XX
ABSTRAK	xxii
ABSTRACT	xxiii

	CHAPTER 1. INTRODUCTION	1
1.0	Introduction	1
1.1	Polymer Matrix Composites (PMC)	1
1.2	Polymer composites	4
	1.2.1 Polypropylene composite	5
	1.2.2 Hybrid Composites	6
1.3	Current Issues	7
1.4	Problem Statements	8
1.5	Objectives of research	9
1.6	Outline of thesis structure	10
	CHAPTER 2. LITERATURE REVIEW	12
2.0	Introduction	12

Introduction	12
Historical Background	12
2.1.1 Polymers: Plastics	12
2.1.2 What is a composite?	14
2.1.3 Types of composite materials	16
2.1.4 Carbon Nanotubes (CNTs)	23
	IntroductionHistorical Background2.1.1 Polymers: Plastics2.1.2 What is a composite?2.1.3 Types of composite materials2.1.4 Carbon Nanotubes (CNTs)

Page

2.2	.2 Polymer Matrix		
	2.2.1	Polypropylene Matrix	24
	2.2.2	Filled Polypropylene	26
	2.2.3	Particulate Fillers	30
		2.2.3.1 Feldspar (Potash – Aluminium Silicate)	30
		2.2.3.2 Structure and Properties of Feldspars	31
		2.2.3.3 Applications	32
2.3	Reinfo	prcement Fibres and Tubes	33
	2.3.1	Carbon Nanotubes (CNTs)	33
	2.3.2	Structure and Properties of Carbon Nanotubes (CNTs)	33
	2.3.3	Applications	36
2.4	2.4 Compatibilizers		
	2.4.1	Polypropylene grafted maleic anhydride (PP-g-MAH)	39
	2.4.2	Poly-ethylene co-acrylic acid (PEAA)	41
	2.4.3	Silane coupling agent	43
	2.4.4	Titanate coupling agent	46
	2.4.5	Other coupling agents	47
2.5	Chara	cterization of Polymer Composites	47
	2.5.1	Rheological properties	47
	2.5.2	Mechanical Properties	48
	2.5.3	Thermal Properties	49
	2.5.4	Morphological properties	50
	2.5.5	Structural Properties	51
2.6	CNT/p	polymer composites	51

	CHAP	PTER 3. MATERIALS AND METHODS	59
3.0	Introdu	uction	59
3.1	Materi	als	59
	3.1.1	Polypropylene (PP)	59
	3.1.2	Feldspar	60
	3.1.3	Multi-walled carbon nanotubes (MWCNT)	60

	3.1.4	Compa	tibilizers	60
	3.1.5	Coupli	ng Agents	62
		3.1.5.1	Silane Coupling Agent	62
3.2	Metho	ods and F	Preparation of Composites	63
	3.2.1.	Preparat	ion of feldspar/PP composites	63
	3.2.2.	Preparat	ion of feldspar/PP composites with compatibilizers	64
	3.2.3	Preparat	ion of silane treated feldspar/PP composites	65
	3.2.4	Preparat	ion of MWCNT/feldspar/PP composites	66
3.3	Chara	cterizatio	on of Polymer Composites	67
		3.3.1	Processing Behaviour	67
		3.3.1.1	Torque Vs Mixing Time	67
		3.3.1.2	Melt Flow Index (MFI)	68
	3.3.2	Mecha	nical Properties	68
		3.3.2.1	Tensile Test	68
		3.3.2.2	Flexural Test	69
		3.3.2.3	Izod Impact Test	69
		3.3.2.4	Surface Hardness	69
	3.3.3	Water	Absorption	70
	3.3.4	Therma	al Properties	70
		3.3.4.1	Thermogravimetric analysis (TGA)	72
		3.3.4.2	Differential Scanning Calorimeter (DSC)	72
		3.3.4.3	Dynamic Mechanical Analyser (DMA)	73
	3.3.5	Morph	ological Properties	74
		3.3.5.1	Scanning Electron Microscopy (SEM)	74
		3.3.5.2	Transmission Electron Microscopy (TEM)	75
	3.3.6	Structu	ral Characterization	76
		3.3.6.1	Fourier Transform Infrared Spectroscopy (FT-IR)	76
		3.3.6.2	X-Ray Diffraction (XRD)	77

	CHAI	PTER 4. RESULTS AND DISCUSSION	79
4.1	Effect	of filler loading on feldspar/polypropylene composites	79
	4.1.1	Processing Behaviour	79
		4.1.1.1 Mixing Torque	79
		4.1.1.2 Melt Flow Index (MFI)	82
	4.1.2	Mechanical properties	83
		4.1.2.1 Tensile strength (σ_c)	83
		4.1.2.2 Tensile modulus (E)	86
		4.1.2. Elongation at break (E _b)	86
		4.1.2.4 Morphological properties using Scanning Electron Microscopy (SEM)	87
		4.1.2.5 Flexural strength	92
		4.1.2.6 Flexural modulus	93
		4.1.2.7 Impact strength	94
		4.1.2.8 Surface hardness	95
	4.1.3	Water absorption characteristics	96
	4.1.4	Thermal Properties	98
		4.1.4.1 Thermogravimetric Analysis (TGA)	98
		4.1.4.2 Differential Scanning Calorimetry (DSC)	101
		4.1.4.3 Dynamic Mechanical Analysis (DMA)	106
	4.1.5	FTIR spectroscopic studies on feldspar/PP composites	113
	4.1.6	X-Ray Diffraction (XRD)	114
4.2	Effect	of compatibilizers on feldspar/polypropylene composites	117
	4.2.1	Processing Behaviour	117
		4.2.1.1 Mixing Torque	117
		4.2.1.2 Melt Flow Index (MFI)	120
	4.2.2	Mechanical properties	121
		4.2.2.1 Tensile strength (σ_c)	121
		4.2.2.2 Morphological properties using Scanning Electron Microscopy (SEM)	125
		4.2.2.3 Elongation at break (E _b)	129
		4.2.2.4 Tensile modulus (E)	129
		4.2.2.5 Flexural strength	132

		4.2.2.6 Flexural modulus	134
		4.2.2.7 Impact strength	135
4.2	2.3	Water absorption characteristics	137
4.2	2.4	Thermal Properties	138
		4.2.4.1 Thermogravimetric Analysis (TGA)	138
		4.2.4.2 Differential Scanning Calorimetry (DSC)	141
		4.2.4.3 Dynamic Mechanical Analysis (DMA)	146
4.2	2.5	FTIR spectroscopic studies on feldspar/PP composites	151
4.2	2.6	X-Ray Diffraction (XRD)	152
4.3 Ef	ffect	of silane coupling agent treatment on feldspar/PP composites	155
4.3	3.1	Processing Behaviour	155
		4.3.1.1 Mixing Torque	155
		4.3.1.2 Melt Flow Index (MFI)	158
4.3	3.2	Mechanical properties	160
		4.3.2.1 Tensile strength (σ_c)	160
		4.3.2.2 Morphological properties using Scanning Electron Microscopy (SEM)	162
		4.3.2.3 Elongation at break (E _b)	165
		4.3.2.4 Tensile modulus (E)	166
		4.3.2.5 Flexural strength	167
		4.3.2.6 Flexural modulus	168
		4.3.2.7 Impact strength	169
4.3	3.3	Water absorption characteristics	172
4.3	3.4	Thermal Properties	173
		4.3.4.1 Thermogravimetric Analysis (TGA)	173
		4.3.4.2 Differential Scanning Calorimetry (DSC)	175
		4.3.4.3 Dynamic Mechanical Analysis (DMA)	179
4.3	3.5	FTIR spectroscopic studies on feldspar/PP composites	184
4.3	3.6	X-Ray Diffraction (XRD)	186

4.4	Effect	of multi-walled carbon nanotube reinforcement on feldspar/PP composites	187
	4.4.1	Morphology of MWCNT using TEM	187
	4.4.2	Processing Behaviour	188
		4.4.2.1 Mixing Torque	188
		4.4.2.2 Melt Flow Index (MFI)	191
	4.4.3	Mechanical properties	192
		4.4.3.1 Tensile strength (σ_c)	192
		4.4.3.2 Morphological properties using Scanning Electron Microscopy (SEM)	194
		4.4.3.3. Elongation at break (E _b)	200
		4.4.3.4 Tensile modulus (E)	201
		4.4.3.5 Flexural strength	203
		4.4.3.6 Flexural modulus.	204
		4.4.3.7 Impact strength	205
	4.4.4	Water absorption characteristics	206
	4.4.5	Thermal Properties	207
		4.4.5.1 Thermogravimetric Analysis (TGA)	207
		4.4.5.2 Differential Scanning Calorimetry (DSC)	210
		4.4.5.3 Dynamic Mechanical Analysis (DMA)	216
	4.4.6	FTIR spectroscopic studies on feldspar/PP composites	223
	4.4.7	X-Ray Diffraction (XRD).	225
	СНАР	TER 5. CONCLUSIONS AND SUGGESTIONS	227
5.1	Conclu	isions	227
5.2	2 Suggestions for further research works		

REFERENCES	231

APPENDICES

A1	Mechanical Properties of Feldspar/Polypropylene Composite, 6 th Asean Microscopy Conference, 10 – 12 th December 2007, Electron Microscopy Society of Malaysia & Faculty of Medicine and Health Sciences, University Putra Malaysia, Cherating, Malaysia. Programme & Abstract Book (page: 27).	251
A2	The Role of Multi-Walled Carbon Nanotubes on Dynamic Mechanical Response of Feldspar filled Polypropylene Nanocomposites, International Conference on Plastics & Environment, Plastec 2008, 22 nd & 23 rd February 2008, Chennai Plastics Manufacturers & Merchants Association (CHEPMMA), Chennai, India. Proceedings (pg 103-119)	252
A3	Thermal characterization of multi-walled carbon nanotubes reinforced feldspar/polypropylene hybrid composites, International Conference on Nanotechnology, Nanotech 2008, $1 - 5$ June 2008, Boston, Nano Science and Technology Institute (NSTI), United States of America (USA).(Page:61).	253
A4	Effect of multi-walled carbon nanotube on mechanical properties of feldspar filled polypropylene composites, Journal of Reinforced Plastics and Composites (Accepted Mar, 2008, 1 st Pub, Nov, 2008) 28: 20,2473 – 2485 (2009)	254
A5	The Effect of Silane Coupling Agent on Mechanical Properties of Feldspar filled Polypropylene Composites, Journal of Reinforced Plastics and Composites (Accepted May,2008, 1 st Pub, Nov, 2008)	255
A6	Effect of Compatibilizers on Mechanical Properties of Feldspar filled Polypropylene Composites, Journal of Polymer-Plastics Technology and Engineering, 48:12, 1295 – 1303 (2009)	256

LIST OF TABLES

Table 2.1	Some applications of polymer matrix composites	16
Table 3.1	Properties of polypropylene (Titan technical data sheet, 1999)	59
Table 3.2	Chemical and physical properties of Feldspar	60
Table 3.3	Composition of feldspar/PP composites at different filler loading	63
Table 3.4	Composition of feldspar/PP composites with compatibilizers	65
Table 3.5	Composition of silane treated feldspar/PP composites	66
Table 3.6	Composition of MWCNT reinforced feldspar/PP composites	67
Table 4.1	Tensile results of feldspar/PP composites	85
Table 4.2	Effect of filler loading on the thermogravimetric analysis of the	
	feldspar/PP composites	100
Table 4.3	Thermal parameters of the feldspar/PP composites during the	
	crystallization and melting process	105
Table 4.4	Glass transition temperatures and dynamic storage moduli of feldspar/PP	
	composites at various temperature	109
Table 4.5	Glass transition temperatures and loss moduli of feldspar/PP composites	
	at various temperature	111
Table 4.6	Glass transition temperatures and Tan δ of feldspar/PP composites at	
	various temperature	112
Table 4.7	Tensile results of feldspar/PP composites with compatibilizers	123
Table 4.8	Effect of compatibilizers on the thermogravimetric analysis of the	
	feldspar/PP composites with compatibilizers	140
Table 4.9	Thermal parameters of the feldspar/PP composites with compatibilizers	
	during the crystallization and melting process	144
Table 4.10	Glass transition temperatures and dynamic storage moduli of feldspar/PP	
	Composites with compatibilizers at various temperature	148
Table 4.11	Glass transition temperatures and loss moduli of feldspar/PP composites	
	with compatibilizers at various temperature	149
Table 4.12	Glass transition temperatures and Tan δ of feldspar/PP composites with	
	compatibilizers at various temperature	151

Table 4.13	Tensile results of silane treated feldspar/PP composites	161
Table 4.14	Effect of filler loading on the thermogravimetric analysis of the silane	
	treated feldspar/PP composites	175
Table 4.15	Thermal parameters of the silane treated feldspar/PP composites during	
	the crystallization and melting process	179
Table 4.16	Glass transition temperatures and dynamic storage moduli of silane	
	treated feldspar/PP composites at various temperature	182
Table 4.17	Glass transition temperatures and loss moduli of silane treated feldspar/PP	
	composites at various temperature	183
Table 4.18	Glass transition temperatures and Tan δ of silane treated feldspar/PP	
	composites at various temperature	184
Table 4.19	Tensile results of MWCNT reinforced feldspar/PP composites	194
Table 4.20	Effect of filler loading on the thermogravimetric analysis of the MWCNT	
	reinforced feldspar/PP composites	210
Table 4.21	Thermal parameters of the MWCNT reinforced feldspar/PP composites	
	during the crystallization and melting process	216
Table 4.22	Glass transition temperatures and dynamic storage moduli of	
	MWCNT/feldspar/PP composites at various temperatures	219
Table 4.23	Glass transition temperatures and loss moduli of MWCNT/feldspar/PP	
	composites at various temperature	221
Table 4.24	Glass transition temperatures and Tan δ of MWCNT/feldspar/PP	
	composites at various temperature	222

	LIST OF FIGURES	Page
Figure 2.1	World annual plastics production since 1900	13
Figure 2.2	Inorganic building blocks used for embedment in an organic matrix in the	
	preparation of hybrid composites (a) nanoparticles (b) nanotubes	
	(c) macromolecules (d) layered materials	22
Figure 2.3	Repeating unit of polypropylene	25
Figure 2.4	Geometrical structures of polypropylene	25
Figure 2.5	Physical structure of (a) graphite (b) diamond (c) fullerene (d) single	
	walled carbon nanotube (SWCNT) (e) multi-walled carbon nanotube	
	(MWCNT)	34
Figure 3.1	The chemical structure of PP-g-MAH	61
Figure 3.2	The chemical structure of PEAA	62
Figure 3.3	The chemical structure of silane coupling agent	62
Figure 4.1	Effect of filler loading on the mixing torque of feldspar/PP composites	80
Figure 4.2	Effect of filler loading on peak torque of feldspar/PP composites	81
Figure 4.3	Effect of filler loading on stabilisation torque of feldspar/PP composites	82
Figure 4.4	Effect of filler loading on melt flow index of feldspar/PP composites	83
Figure 4.5	Tensile strength of feldspar/ PP composites	84
Figure 4.6	Tensile modulus of feldspar/PP composites	85
Figure 4.7	Percentage elongation at break [E _b] of feldspar/PP composites	87
Figure 4.8	SEM micrograph of untreated feldspar powder at Mag. X300	89
Figure 4.9	SEM micrograph of PP matrix at Mag. 300X	89
Figure 4.10	SEM micrograph of 10 wt% feldspar/PP matrix at Mag. 500X	90
Figure 4.11	SEM micrograph of 20 wt% feldspar/PP matrix at Mag. 500X	90
Figure 4.12	SEM micrograph of 30 wt% feldspar/PP matrix at Mag. 500 X	91
Figure 4.13	SEM micrograph of 40 wt% feldspar/PP matrix at Mag. 500X	91
Figure 4.14	Flexural strength of feldspar/PP composites	92
Figure 4.15	Flexural modulus of feldspar/PP composites	93
Figure 4.16	Impact strength of feldspar/PP composites	94
Figure 4.17	Surface hardness (VHN) of feldspar/PP composites	95
Figure 4.18	Water absorption of feldspar/PP composites	97
Figure 4.19	Effect of filler on the thermal stability of the polymer composites	99

xii

Figure 4.20	Effect of filler loading on DSC of feldspar/PP composites (heating) 10			
Figure 4.21	Effect of filler loading on DSC of feldspar/PP composites (cooling) 1			
Figure 4.22	Storage Modulus (E') vs. Temperature traces for the feldspar/PP			
	composites	108		
Figure 4.23	Loss Modulus (E'') vs. Temperature traces for the feldspar/PP composites			
Figure 4.24	Tan δ ' vs. Temperature traces for the feldspar/PP composites	111		
Figure 4.25	FTIR spectra for the feldspar/PP composites	113		
Figure 4.26	XRD pattern of (a) Feldspar; (b) PP; (c) 10wt% feldspar/PP; (d) 20wt%			
	feldspar/PP; (e) 30wt% feldspar/PP; (f) 40wt% feldspar/PP	116		
Figure 4.27	Effect of compatibilisers on the torque parameters of			
	(a) 20wt% feldspar/PP (b) 30wt% feldspar/PP composites	118		
Figure 4.28	Effect of compatibilisers on peak torque of feldspar/PP composites	119		
Figure 4.29	Effect of compatibilisers on stabilization torque of feldspar/PP composites	120		
Figure 4.30	Effect of compatibilizers on melt flow index of feldspar/PP composites	121		
Figure 4.31	Effect of compatibilisers on tensile strength of feldspar/PP composites 1			
Figure 4.32	Schematic illustration of the reactions involved in feldspar/PP			
	composites with PP-g-MAH as a compatibilizer	124		
Figure 4.33	Schematic illustration of the reactions involved in feldspar/PP			
	composites with PEAA as a compatibilizer	125		
Figure 4.34	Tensile fractured surface of 20 wt% feldspar/PP composites at			
	magnification 300X (a) PP-g-MAH, (b) PEAA and (c) control	127		
Figure 4.35	Tensile fractured surface of 40 wt% feldspar/PP composites at			
	magnification 300 X (a) PP-g-MAH, (b) PEAA, and (c) control	129		
Figure 4.36	Effect of compatibilisers on elongation at break of feldspar/PP composites	130		
Figure 4.37	Effect of compatibilisers on tensile modulus of feldspar/PP composites	131		
Figure 4.38	Flexural strength of feldspar/PP composites	133		
Figure 4.39	Flexural modulus of feldspar/PP composites	134		
Figure 4.40	Effect of compatibilisers on impact strength of feldspar/PP composites	136		
Figure 4.41	Effect of compatibilisers on the water absorption of feldspar/PP composites			
	with and without compatibilizers (at 30 wt% of feldspar)	137		
Figure 4.42	Effect of compatibilizers on the thermal stability of			
	(a) PPF20 (b) PPF30	139		

Effect of compatibilizers on the melting point of	
(a) 20wt% feldspar/PP (b) 30wt% feldspar/PP composites	142
Effect of compatibilizers on the crystallization temperature of	
(a) 20wt% feldspar/PP (b) 30wt% feldspar/PP composites	143
Storage Modulus(E') vs Temperature for the feldspar/PP composites	
with compatibilizers	147
Loss Modulus (E'') vs Temperature for the feldspar/PP composites with	
compatibilizers	149
Tan δ ' vs Temperature traces for the feldspar/PP composites with	
compatibilizers	150
FTIR spectra of feldspar/PP composites with PP-g-MAH, feldspar/PP	
composites with PEAA and control composite	152
XRD pattern of (a) Feldspar; (b) PP; (c) 20wt% feldspar/PP composite	
uncompatibilized; (d) 20wt% feldspar/PP compatibilized with PP-g-	
MAH; (e) 20wt% feldspar/PP compatibilized with PEAA	153
Effect of silane on the torque parameters of	
(a) 20wt% feldspar/PP (b) 30wt% feldspar/PP composites	156
Effect of silane on peak torque of feldspar/PP composites	157
Effect of silane on stabilization torque of feldspar/PP composites	158
Effect of silane treatment on MFI of feldspar/PP composites	159
Effect of silane treatment on tensile strength of feldspar/PP composites	160
Schematic illustration of the possible reactions involved in feldspar/PP	
composites with 3-aminopropyl triethoxy silane coupling agent	162
Tensile fractured surface of 20 wt% feldspar/PP composites at	
magnification ×300 (a) Silane treated feldspar/PP composite (b) untreated	
feldspar/PP composites (control)	163
Tensile fractured surface of 40 wt% feldspar/PP composites at	
magnification ×300 (a) Silane treated feldspar/PP composite (b) untreated	
feldspar/PP composites (control)	164
Effect of silane treatment on elongation at break of feldspar/PP composites	165
Effect of silane treatment on tensile modulus of feldspar/PP composites	166
Effect of silane treatment on flexural strength of feldspar/PP composites	168
	Effect of compatibilizers on the melting point of (a) 20wt% feldspar/PP (b) 30wt%feldspar/PP composites

Figure 4.61	Effect of silane treatment on flexural modulus of feldspar/PP composites	169
Figure 4.62	Effect of silane treatment on impact strength of feldspar/PP composites	
Figure 4.63	Impact fractured surface of 20 wt% feldspar/PP composites at	
	magnification 200X (a) Silane treated feldspar/PP composite (b) untreated	
	feldspar/PP composite (control)	172
Figure 4.64	Effect of silane coupling agent treatment on the water absorption of	
	feldspar/PP composites (at 30 wt% of feldspar)	173
Figure 4.65	Effect of silane treatment on the thermal stability of	
	(a) 20wt%feldspar/PP (b) 30wt%feldspar/PP composites	175
Figure 4.66	Effect of silane coupling agent on the melting point of	
	(a) 20wt%feldspar/PP (b) 30wt%feldspar/PP composites	177
Figure 4.67	Effect of silane treatment on the thermal stability of	
	(a) 20wt%feldspar/PP (b) 30wt%feldspar/PP composites	178
Figure 4.68	Storage Modulus Vs. Temperature for the feldspar/PP composites	181
Figure 4.69	Loss Modulus Vs. Temperature for the silane treated feldspar/PP	
	composites	183
Figure 4.70	Tan δ ' Vs Temperature for the feldspar/PP composites	184
Figure 4.71	FTIR spectra of silane treated feldspar (20wt%)/PP composites, control	
	composite (untreated feldspar 20wt%/PP), neat PP and feldspar	185
Figure 4.72	XRD pattern of (a) Feldspar; (b) PP; (c) 20wt% feldspar/PP composite	
	uncompatibilized; (d) 20wt% silane treated feldspar/PP composite	186
Figure 4.73	TEM images of (a) MWCNT (b) the tip of MWCNT with hollow cavity	188
Figure 4.74	Effect of MWCNT loading on the torque parameters of	
	(a) 20wt% feldspar/PP (b) 30wt% feldspar/PP composites	189
Figure4.75	Effect of MWCNT loading on peak torque of feldspar/PP composites	190
Figure 4.76	Effect of MWCNT loading on stabilisation torque of feldspar/PP	
	composites	191
Figure 4.77	Effect of MWCNT on MFI of feldspar/PP composites	192
Figure 4.78	Effect of MWCNT loading on tensile strength of feldspar/PP composites	193
Figure 4.79	Schematic illustration of the dispersion and interaction of MWCNT in	
	feldspar/PP composites at (a) 0.1wt% of MWCNT (b) 0.3wt% of	
	MWCNT (c) 0.5wt% of MWCNT	195

Figure 4.80	Tensile fractured surface of 20 wt% feldspar/PP composites at	
	magnification ×300 (a) 0.1wt%MWCNT (b) 0.3WT%MWCNT	
	(c) 0.5WT%MWCNT and (d) control	197
Figure 4.81	Tensile fractured surface of PP composite without Feldspar and at	
	different MWCNT loading (magnification ×300) (a)0.1wt%MWCNT	
	(b) 0.3wt%MWCNT (c) 0.5wt%MWCNT and (d)control	199
Figure 4.82	Effect of MWCNT loading on elongation at break of feldspar/PP	
	composites	201
Figure 4.83	Effect of MWCNT loading on tensile modulus of feldspar/PP composites	202
Figure 4.84	Effect of MWCNT loading on flexural strength feldspar/PP composites	203
Figure 4.85	Effect of MWCNT loading on flexural modulus of feldspar/PP composites	204
Figure 4.86	Effect of MWCNT loading on impact strength of feldspar/PP composites	205
Figure 4.87	Effect of MWCNT on the water absorption of feldspar/PP composites	
	(at 30 wt% of feldspar)	206
Figure 4.88	Thermogravimetric Analysis (TGA) curve of PP and (a) MWCNT/PP	
	composites. (b) MWCNT/20wt%feldspar/PP hybrid composites,	
	(c) MWCNT/30wt%feldspar/PP hybrid composites	209
Figure 4.89	Effect of MWCNT on the melting point of (a) unfilled PP (b) PPF20	
	(c) PPF30	212
Figure 4.90	Effect of MWCNT on the crystallization temperature of	
	(a) unfilled PP (b) 20wt% feldspar/PP (c) 30wt% feldspar/PP composites	214
Figure 4.91	Storage modulus (E')for pristine PP, feldspar/PP and feldspar/MWCNT/PP	
	composites. Storage modulus as a function of MWCNT content	218
Figure 4.92	Loss modulus (E") vs. temperature with various MWCNT loadings	220
Figure 4.93	Damping factor or tan δ vs. Temperature with various MWCNT loadings	222
Figure 4.94	FTIR spectra of MWCNT/20wt%feldspar/PP composites, control	
	composite (untreated feldspar 20wt%/PP), neat PP,MWCNT and feldspar	224
Figure 4.95	XRD spectra for (a) Feldspar; (b) Polypropylene (c) PPF20MWCNT0.1	
	(d)PPF20MWCNT0.3 (e) PPF20MWCNT0.5	225
Figure 4.96	XRD spectra for (a) Feldspar; (b) Polypropylene (c) PPF30MWCNT0.1	
	(d) PPF30MWCNT0.3 (e) PPF30MWCNT0.5	226

LIST OF SYMBOLS

A	area
L	length
L ₀	original length
$L - L_0$	change in length
d	outer diameter of fiber
di	inner diameter of fiber
E	Young's modulus
E _b	elongation at break
E _C	Young's modulus of composite
Ef	Young's modulus of fiber
E _m	Young's modulus of matrix
TS	tensile strength
T _c	crystallization temperature
T _m	melting temperature
T _{5%}	initial degradation temperature
T _{90%}	end degradation temperature
T _d	degradation temperature
Т	time, torque
$V_{ m f}$	fiber volume fraction
wt%	weight percentage
ΔH_{c}	enthalpy of crystallization
ΔH_m	enthalpy of melting

σ_{C}	strength of composite (stress)
$\sigma_{\rm f}$	strength of fiber (stress)
σ_{m}	strength of matrix (stress)
3	strain
τ	interfacial stress transfer
⁰ C	degree Celsius
Pa	Pascal
G	Giga
g	gram
Hz	Hertz
Κ	Kelvin
keV	kilo electron Volt
kV	kilo Volt
М	Mega
M_{m}	moisture content
M_t	percentage of moisture gain at any time
m	metre
mA	milli Ampere
m ²	square metre
Ν	Newton
cm	centimetre
cm ²	square centimetre
n	nano

μ	micron
%X _c	percentage of crystallinity
θ	angle of diffraction
tan δ	mechanical loss factor
W_i	initial weight of the sample
W_{f}	final weight of the sample
$W_{\rm f}$ - $W_{\rm i}$	increase in weight (water absorbed)
E'	storage modulus
E"	loss modulus
G'	shear storage modulus
G"	shear loss modulus

LIST OF ABBREVIATIONS

AAc	Acrylic acid
APTES	3- aminopropyl tri-ethoxy silane
ASTM	American Standard Testing Methods
AR	aspect ratio
ATR	Attenuated total reflection
CaCo ₃	Calcium carbonate
CNT	Carbon nanotubes
CO_2	Carbon di-oxide
Cu	Copper
CVD	Chemical vapor deposition
DMA	Dynamic mechanical analysis
DSC	Differential scanning calorimetry
EBSD	Electron back scatter diffraction
EDX	Energy Dispersive X-ray
FE-SEM	Field emission scanning electron microscope
F	Feldspar
FTIR	Fourier transform infrared
HDPE	high-density polyethylene
ICSD	inorganic crystal structure database
IFST	interfacial stress transfer
iPP	isotactic polypropylene
K	Potassium

MAH	maleic anhydride
MFI	melt flow index
MMC	metal matrix composites
MWCNT	multi-walled carbon nanotube
NC	nanocomposite
PE	Polyethylene
PEAA	Poly (ethylene co-acrylic acid)
РМС	Polymer matrix composite
PP	Polypropylene
PP-g-MAH	Polypropylene grafted maleic anhydride
PPAA	Polypropylene acrylic acid
PPEAA	Polypropylene ethylene acrylic acid
SEM	Scanning electron microscope
SiO ₂	Silicon di-oxide
TEM	Transmission electron microscope
TGA	Thermogravimetric analysis
UTM	Universal testing machine
XRD	X-ray diffraction

KOMPOSIT POLIPROPILENA DIPERKUAT FELSPAR: KESAN PENGSERASI, AGEN PENGKUPEL SILANA, DAN NANO TIUB KARBON BERBILANG DINDING KE ATAS SIFAT-SIFAT MEKANIKAL, TERMAL DAN MORFOLOGI

ABSTRAK

Di dalam kajian ini, felspar telah dipilih sebagai bahan pengisi untuk pelbagai pembebanan pengisi iaitu 10 wt%, 20 wt%, 30 wt%, dan 40 wt% feldspar terisi komposit polipropilena telah disediakan menggunakan teknik pencampuran leburan. Seterusnya, kepingan komposit dihasilkan menggunakan penekan panas. Ujian tensil telah dilakukan menggunakan mesin pengujian Instron. Didapati kekuatan tensil dan % pemanjangan pada takat putus berkurang manakala modulus tensil dan kekerasan meningkat dengan peningkatan pembebanan pengisi. Agen pengserasi telah ditambah untuk meningkatkan keserasian dan pemprosesan komposit felspar/PP. Dua jenis pengserasi iaitu, polietilena ko-asid akrilik (PEAA) dan polipropilena tercantum-maleik anhidrida (PP-g-MAH) telah digunakan. Agen pengserasi PP-g-MAH menunjukkan peningkatan di dalam kekuatan tensil, modulus Young dan pemanjangan pada takat putus komposit yang lebih tinggi disebabkan peningkatan lekatan antaramuka di antara feldspar dan PP sebagaimana ditunjukkan di dalam kajian morfologi menggunakan mikroscop elektron penskanan (SEM). Kesan agen pengkupel silana, 3-(aminopropil) trietoksi-silana (3-APEs) terawat dengan komposit felspar menunjukkan keputusan yang sama juga disebabkan peningkatan lekatan antaramuka sebagaimana ditunjukkan di dalam kajian morfologi menggunakan SEM. Pengurangan peratus penyerapan air telah diperhatikan untuk komposit feldspar/PP terawat silana dan komposit feldspar/PP/PP-g-MAH. Kesan penguatan nanotiub karbon berbilang dinding (MWCNT) ke atas sifat-sifat mekanik, termal dan morfologi MWCNT diperkuat komposit hibrid felspar/PP telah dikaji. Struktur dan dimensi MWCNT telah dicirikan menggunakan mikroskop elektron transmisi (TEM). Keputusan SEM menunjukkan MWCNT tersebar dengan baik di dalam komposit felspar/PP terutamanya pada pembebanan pengisi yang rendah iaitu 0.1 wt% dan menjadi faktor peningkatan kekuatan tensil, pemanjangan pada takat putus, modulus Young, kekuatan fleksural, modulus fleksural dan kekuatan hentaman. Analisis dinamik mekanik (DMA) telah dilakukan untuk mengkaji ransangan dinamik mekanik pada pelbagai suhu dan frekuensi rendah. Modulus simpanan (E') juga menunjukkan peningkatan. Analisis struktur komposit telah dilakukan menggunakan teknik FTIR dan keputusan menunjukkan puncak-puncak dominan yang melibatkan kumpulah Si-O, C-N, N-CH₃, CNT, C-O dan C-H_x di dalam komposit hibrid dan analisis XRD menunjukkan yang felspar dan MWCNT tersebar dengan baik (exfoliated) di dalam matriks PP.

FELDSPAR REINFORCED POLYPROPYLENE COMPOSITES: THE EFFECT OF COMPATIBILIZERS, SILANE COUPLING AGENT AND MULTI-WALLED CARBON NANOTUBE ON MECHANICAL, THERMAL AND MORPHOLOGICAL PROPERTIES

ABSTRACT

In this research, feldspar was chosen as a filler material where different filler loading viz. 10 wt%, 20 wt%, 30 wt%, and 40 wt% feldspar filled Polypropylene (PP) composites were prepared using melt mixing technique and then the composite sheet was produced using Hot Press. Tensile test was carried out using an Instron universal testing machine where the tensile strength and elongation at break decrease but tensile modulus and hardness increase as the filler loading is increased. Compatibilizers improved the processability and compatibility of the feldspar/PP composites. Two compatibilizers namely polyethylene co-acrylic acid (PEAA) and PP grafted maleic anhydride (PP-g-MAH) were used but PP-g-MAH compatibilizers scored better results by showing marginal increase in tensile strength, elongation at break and Young's modulus of the composites due to the enhancement of the interfacial adhesion between feldspar and PP as shown by scanning electron microscope (SEM). Silane treated feldspar composites using silane coupling agent, 3-(amino propyl) triethoxy silane (3-APEs) also showed similar results due to better interfacial adhesion as investigated by SEM. Feldspar/PP/PP-g-MAH composites and silane treated feldspar/PP composites showed less percentage of water absorption. The effect of multi-walled carbon nanotube (MWCNT) reinforcement on the properties of feldspar/PP hybrid composites was investigated. The structure and dimensions of the MWCNTs were characterized using a transmission electron microscope (TEM). SEM showed that MWCNTs were well dispersed in feldspar/PP composites particularly at low filler loading i.e. 0.1 wt% attributing to the increase in tensile strength, elongation at break, Young's modulus, flexural strength, flexural modulus and impact strength. Dynamic Mechanical Analysis (DMA) was performed to evaluate their responses at different temperatures at low frequency. The storage modulus (E') also improved. Structural analyses were done using Fourier transform infrared (FTIR) spectroscopy technique which showed dominant peaks corresponding to Si-O, C-N, N-CH₃, CNT, C-O, C-H_x groups in the hybrid composites and X-ray diffraction (XRD) which showed feldspar and MWCNT were well dispersed (exfoliated) in the PP matrix.

CHAPTER 1

INTRODUCTION

1.0 Introduction

Products made from polymers contribute strongly to the global economy in terms of performance, reliability, cost-effectiveness and high added value. Among the many reasons why polymers are widely used, two stand out. First, polymers can be operated in a variety of environments and they have useful ranges of deformability and durability which can be exploited by careful design. Second, polymers can often be readily, rapidly and at an acceptable (low) cost be transformed into usable products having complicated shapes and reproducible dimensions. This chapter introduces the polymer matrix composites, importance and current issues of polymer products, focuses on the problem statement and the objectives of this research carried out and finally it outlines the structure of the thesis.

1.1 Polymer Matrix Composites (PMC)

The hybrid organic-inorganic composites are promising materials because they synergistically integrate the advantages of organic polymer and inorganic material, such as, the excellent process properties that are generally considered to be characteristic of polymer, and high modulus and strength that are characteristic of inorganic material. However, the properties of the hybrid organic-inorganic composites are greatly influenced by the length scale of component phase. Important changes in the properties of plastics resulting from the incorporation of special additives permit their use in various

fields where the polymer alone would have had small chance to meet certain performance specifications. Fillers and reinforcements are solid additives that differ from the plastic matrices with respect to their composition and structures. They are dispersed uniformly throughout the polymer matrix to obtain the required optimum properties and hence are known as polymer matrix composites.

The use of inorganic fillers is a usual practice in the plastics industry to improve the mechanical properties of thermoplastics which are commonly known as polymer composites. Polymer composites play an important role in the engineering field due to their high strength to weight ratio and better corrosion resistance. These materials usually comprise of an effective polymeric matrix in which fibers and/or small filler particles are thoroughly dispersed in composite systems. The filler must be well dispersed in the matrix to avoid zones of weaker cohesion where flaws and other defects will be initiated upon stressing [Shui, 2003]. Polypropylene (PP) based composite material is one of the many composite systems that are successfully utilised in engineering applications. PP has been known for its good mechanical properties and processability, which allows it to accept numerous types of natural and synthetics fillers. Its versatility has also led to the possibility of producing particulate-filled composites [Pukanszky and Karger-Kocsis, 1995].

The incorporation of fillers such as talc, calcium carbonate ($CaCO_3$), mica, kaolin and wollastonite into thermoplastics is a common practice in the plastics industry, wherein it helps to reduce the production costs of moulded products. Fillers are also used to improve

the working properties of thermoplastics, such as the strength, rigidity, durability, and hardness [Bledzki and Gassan, 1998; Khunova et al., 1999]. Thus, the aim of this study is to investigate the potential of a new filler viz, feldspar with PP as this filler has not been used in polyolefin groups. Feldspars are a group of minerals that have similar characteristics to each other type of feldspar due to similar structure. It is an aluminium silicate with exchangeable cations and reactive OH groups on the surface. All feldspars have low symmetry, being only monoclinic to triclinic. They tend to twin easily and one crystal can twin up multiple times on the same plane, producing parallel layers of twinned crystals. They are slightly hard, at around 6 on Mohs scale, and have an average density at 2.55 to 2.76 g/cc. They have a rather dull to rarely vitreous luster. Crystals tend to be blocky. Some feldspar may be triboluminescent. They have two directions of cleavage which are at nearly right angles. Feldspars also tend to crystallize in igneous environments, but are also present in many metamorphic rocks[http://www.galleries.com]. Feldspar is the most important single group of rock forming silicate minerals. K-feldspar as KAlSi₃O₈ consists of three different entities (K₂O, Al₂O₃, SiO₂). Feldspar structures can be described as an infinite network of tetrahedral SiO₄ and AlO₄, which is a stuffed derivative of the SiO₂ structures with substitution of Al for some Si into tetrahedral sites, and accommodation of K into voids [Cetinkaya, S. et al., 2007].

One way of compatibilising PP with inorganic particles is by using functionalized polyolefin e.g. PP grafted with maleic anhydride (PP-g-MAH). Unfortunately, there have been only limited achievements in the functionalisation of polyolefin especially PP, which have not succeeded either during its polymerization or in the post-polymerization

processes. In addition, the improvement of the interfacial bonding between the hydrophilic fillers and the hydrophobic matrix (PP) has been an important issue in the research field, because the interfacial adhesion between the filler and PP plays an important role in determining the properties of the composites.

Other methods of compatibilising PP and inorganic filler is by modifying the filler surface using coupling agents such as silane, titanate, and also by grafting small molecules such as acrylic acid, maleic anhydride, and acrylic esters onto the polyolefin chain. Modified PP such as PP grafted-maleic anhydride (PP-g-MAH) is successfully used as a compatibiliser in PP based composite because it can efficiently improve the fiber–matrix bonding due to the formation of covalent linkages and hydrogen bonds between the maleated anhydride and the hydroxyl groups of the fillers [Bledzki and Gassan, 1998; Khunova *et al.*, 1999]. Other than PP-g-MAH, much cheaper and nonreactive compatibilisers have also been successfully employed in polymer with lack of reactive groups particularly, PP and PE.

1.2 Polymer Composites

In recent years, polymer composites have attracted great interest. Especially, nanocomposites offer new technological and economical benefits. The incorporation of nanometer scale reinforcement (e.g. layered silicates of clay, nanofiber, nanotubes, metal nanoparticles in polymeric materials) may dramatically improved selected properties of the related polymer. These nanocomposites exhibits superior properties such as enhanced mechanical properties, reduced permeability and improved flame retardency [Ray and

Okamoto, 2003]. Polymer nanocomposites with layered silicate represent a hybrid between organic and inorganic materials. Polymer layered-silicate nanocomposites are currently prepared in four ways: in-situ polymerization, intercalation from a polymer solution, direct intercalation by molten polymer (melt compounding) and sol-gel technology. Direct polymer melt intercalation is the most attractive because of its low cost, high productivity and compatibility with current processing techniques (Alexandre and Dubois, 2000]. Numerous researchers described polymer-clay nanocomposite based on single polymer matrix, including PP, polyamide, polystyrene, polyimide, epoxy, poly (methyl metacrylate), unsaturated polyester, polycaprolactone and polycarbonate. Naturally occurring montmorillonite is the most abundant member of the smectite family of clays. Naturally occurring montmorillonite is incompatible with most polymers because of its hydrophilic nature. Ion exchange is widely practiced to modify the montmorillonite's surface to increase its compatibility with hydrophobic polymer [Zanetti *et al.*, 2000].

1.2.1 Polypropylene composite

PP has also been tested for the preparation of composites. However, no direct intercalation of PP in simply organically modified layered silicates has been observed so far as PP is non-polar to correctly interact with the modified layers [Alexandre and Dubois, 2000]. Maleic anhydride-modified PP (MAH-g-PP) oligomer had been used to separate the silicate layers in the PP matrix. Maleic anhydride (MAH) gives a sufficient polarity to modified PP to diffuse between the silicate layers in order to obtain intercalated nanocomposites [Kawasumi *et al.*, 1997]. They have reported the preparation

of PP-clay hybrid via simple melt mixing of three components, i.e. PP, MAH-g-PP oligomer and clay intercalated with stearylammonium. It is found that there are two important factors to achieve the exfoliated and homogeneous dispersion of the layers in the hybrids: the intercalation capability of the oligomers in the layers and the miscibility of the oligomers with PP. The basic role of a filler is to "fill' i.e. increase the bulk at low cost, thereby improving economics while, by definition, the main function of a reinforcing filler is to improve the physical and mechanical properties of the basic polymer.

1.2.2 Hybrid Composites

Recent technological breakthroughs and the desire for new functions generate an enormous demand for novel materials. Many of the well-established materials, such as metals, ceramics or plastics cannot fulfill all technological desires for the various new applications. One of the most successful examples is the group of composites which are formed by the incorporation of a basic structural material into a second substance, the *matrix*. Usually the systems incorporated are in the form of particles, whiskers, fibers, lamellae, or a mesh. Most of the resulting materials show improved mechanical properties and a well-known example is inorganic fiber-reinforced polymers [Kickelbick, 2007].

The term hybrid material is used for many different systems spanning a wide area of different materials, such as crystalline highly ordered coordination polymers, a hybrid material is a material that includes two moieties blended on the molecular scale. Commonly one of these compounds is inorganic and the other one is organic in nature. A more detailed definition distinguishes between the possible interactions connecting the inorganic and organic species [Kickelbick, 2007].

Although we do not know the original birth of hybrid materials exactly it is clear that the mixing of organic and inorganic components was carried out in ancient world. At that time the production of bright and colorful paints was the driving force to consistently try novel mixtures of dyes or inorganic pigments and other inorganic and organic components to form paints that were used thousands of years ago. Therefore, hybrid materials or even nanotechnology is not an invention of the last decade but was developed a long time ago [Kickelbick, 2007].

Apart from the use of inorganic materials as fillers for organic polymers, such as rubber, it was a long time before much scientific activity was devoted to mixtures of inorganic and organic materials [Kickelbick, 2007].

1.3 Current Issues

In the automobile industry, polyolefins especially PP have become the most important plastics, replacing not only steel but also other plastics such as ABS, PVC etc., The reason is the versatility offered by the possibility of modifying PP, which allows us to use similar raw materials for forming almost all the plastics parts of vehicles. For eg, elastomer modified PP's which are of different degree of toughness offer a more favourable cost performance ratio than other materials and allow innovation design concepts. Moreover, apart from economic consideration, PP represents many advantages in-term of easy processing and recycling [Almeras *et al.*, 2003].

1.4 Problem Statements

Polymer composites are the area of interest for most of the researchers. The enormous availability of material resources around us especially thermoplastics, make them a vulnerable subject for research. More over thermoplastics are easily manufactured and are light in weight which is advantageous. There are many kinds of fillers which have been introduced so far in order to increase the variety of fillers and their combinations to obtain mixture of properties. The use of common mineral fillers and fibres has been established in the material research field for some years. However, combination of both mineral particulate filler and fibre reinforcement together are still under development stage. The needs for new types of fillers for polymer composites application are inevitable in order to produce a composite with new set of properties.

Initially, PP and feldspar composites were prepared to improvise the mechanical properties and also to reduce the cost. There has to be an inclusion of a compatibilizer to improve the compatibility between the feldspar/PP composites. Further reinforcement of the composites with nano-scale filler such as MWCNTs in the mineral/polymer composites (eg. feldspar/PP composites) is expected to improve the strength, stiffness and rigidity of the feldspar/PP composites. The issues to be addressed are the characteristics of the nanotubes present within the polymer matrix such as the dispersion uniformity, tube size and their loading amount.

The following approaches have been identified as a potential route to meet this goal. They are:

- i. The inclusion of untreated feldspar into the thermoplastic matrix (PP) to form feldspar/PP (control) composites by melt-mixing method.
- ii. Addition of compatibilizers such as PP grafted maleic anhydride (PP-g-MAH) and polyethylene- co-acrylic acid (PEAA) during the melt-mixing of feldspar/PP composites.
- iii. The inclusion of silane treated feldspar into the PP matrix by melt-compounding.
- iv. The reinforcement of MWCNTs into the feldspar/PP composites by melt-mixing which gives a better uniform dispersion of the MWCNTs.

However, several studies have indicated that the above mentioned approaches have their own potentials and limitations. Generally, the inclusion of mineral particulate filler will reduce some of the mechanical properties such as strength and toughness. On the contrary, the reinforcement with a small proportion of MWCNTs may help to produce a good balance of mechanical and thermal properties of the composites.

1.5 Objectives of research

The present research work proposal aims to develop a new advanced polymeric hybrid composite materials namely MWCNT/feldspar/PP composites and to evaluate their mechanical, thermal and morphological properties.

The objectives of this research are listed below:

- to evaluate the mechanical, thermal, and morphological properties of feldspar/PP composites.
- to study the effect of compatibilizers and coupling agents on the mechanical, thermal and morphological properties of the feldspar/PP composites.
- > to investigate the effect of reinforcement of MWCNTs in feldspar/PP composites.

1.6 Outline of thesis structure

The study focuses on the properties of feldspar/PP composites and the effect of compatibilizers, coupling agent and multi-walled carbon nanotube reinforcement on feldspar/PP composites.

Chapter 1 will introduce some basic information about composites, polymer matrix composites, definition and concept about hybrid composites, the use of compatibilizers for better properties. It also states the problem statement, objectives of the research and organization of thesis structure.

Chapter 2 discusses the literature review on various published works on polymer composites and carbon nanotubes reinforced polymer nanocomposite, particularly those that are closely related to this work.

Chapter 3 discusses the material specifications, research methodology, and finally all experimental procedures carried out in this research in order to evaluate the mechanical, thermal, morphological and structural characteristics.

Chapter 4 discusses on the effect of feldspar loading on the mechanical, thermal and morphological properties, the effect of compatibilisers and coupling agents on the mechanical, thermal and morphological properties, the effect of multi-walled carbon nanotube reinforcement on feldspar/PP composites. The effect will be presented by means of data table, graphs, electron micrograph of the feldspar particles, SEM/TEM images of MWCNT, the fractured surface of the PP and MWCNT/feldspar/PP hybrid composites were also included and analyzed.

Chapter 5 presents some concluding remarks on the present work and the evaluation made in order to assess the achievements of the objectives. Some of the suggestions for further research works have also been listed.

Details about the reference materials were reported in the References. Finally, the abstracts of the paper published in journals and conference proceedings were presented in the Appendices.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter will cover the basic definition of polymer composites and their classification, followed by the historical developments of polymer composites and their applications. The role of polymer matrix especially PP and their structure, particulate mineral fillers viz. feldspar particles and their structure, carbon nanotube reinforcing filler will be discussed. Subsequently, a literature survey was done on polymer composites and those related to the present research work.

2.1 Historical Background

2.1.1 Polymers: Plastics

The year 1967 was a significant year for plastics. One event, related to American pop culture and one that some of us tend to remember, is the advice given to the young graduate played by Dustin Hoffman in the movie "The Graduate". The prophetic words told to the new graduate – "I just want to say one word to you, Ben. Just one word – plastics" – where a symbol of the times and a sign of things to come. The same year that the movie was showing in the theaters, the volume of plastics' production surpassed that of all metals combined. Today, almost forty years later, plastics production is six times higher than in 1967, while production of metals has barely doubled. However, to be fair, in the popularity contest between metals and plastics we can always present the data differently, namely by weight. This way, the tonnage of metals produced worldwide is

over twice the tonnage production of polymers. Neverless, the fact is that today the volume of polymers produced is three times larger than that of metals. In fact, the world's annual production of polymer resins has experienced a steady growth since the beginning of the century, with growth predicted way into the 21st century. Figure 2.1 shows the graphical representation of the World's annual plastics production in millions of tons.

Figure 2.1 World annual plastics production since 1900 [Utracki, 1995].

There has been a steady increase in the world annual plastics production throughout the years, with slight dips during the oil crisis in the mid-1970s and during the recession in the early 1980s. In the developed countries, the growth in annual polymer production has diminished somewhat in recent years. However, developing countries in South America and Asia are now starting to experience tremendous growth. With the exception of recession years, the growth in US polymer production has been declining in the past 20 years to approximately 4% of annual growth rate. Since 1970, China has seen the highest annual growth in the world, ranging from a maximum approximately 50% between 1976 and 1977 to a low of 2% between 1980 and 1981. According to a soon-to-be-released

updated report from Business Communications Company, Inc. - RP-234 Polymer Nanocomposites: Nanoparticles, Nanoclays and Nanotubes, the total worldwide market for polymer nanocomposites reached 24.5 million pounds valued at US\$90.8 million in 2003 (about \$3.71/lb). This market has grown at an AAGR (average annual growth rate) of 18.4% (US\$211.1 million) during 2008.

There are over 18,000 different grades of polymers, available today in the US alone. In 1993, 90% of the polymers produced in the US were thermoplastics. However, in a 1995 worldwide projection, thermoplastics account for 83% of the total polymer production [Progelhof and Thomas, 1993].

It is a fact that some time now, polymers have become an indispensable material in everyday life. From sports to medicine, and from electronics to transportation, polymers are not only a material that is often used, but also the material that in many cases make it possible. One can sum it up with Hans Uwe Schenck's often quoted phrase – "Without natural polymers, there would be no life; without synthetic polymers, no standard of living."

2.1.2 What is a composite?

A composite is a material having two or more distinct constituents or phases and thus we can classify bricks made from mud reinforced with straw, which were used in ancient civilizations, as a composite [Hull and Clyne, 1996]. A versatile and familiar building material which is also a composite is concrete is a mixture of stones, known as aggregate,

held together by cement. In addition to synthetic concrete there are naturally occurring composites of which the best known examples are bone, mollusc shells and wood; bone and wood. Within the last forty years there has been a rapid increase in the production of synthetic composites, those incorporating fine fibres in various plastics (polymers) or mineral particulated fillers in various plastics (polymers) dominating the market. Predictions suggest that the demand for composites will continue to increase steadily with metal and ceramic based composites making a more significant contribution.

Composites make up a very broad and important class of engineering materials. World annual production is over 10 million tones and the market has in recent years been growing at 5-10% per annum. Composites are used in a wide variety of applications. Further more, there is a considerable scope for tailoring their structure to suit the service conditions [Hull and Clyne, 1996].

Composites materials have fully established themselves as workable engineering materials and are now relatively commonplace around the world, particularly for structural purposes. Early military applications of polymer matrix composites during World War II led to large-scale commercial exploitation, especially in the marine industry, during the late 1940's and early 1950's. Today, the aircraft, automobile, leisure, electronic and medical industries are quite dependent on fibre-reinforced plastics, and these composites are routinely designed, manufactured and used. Less exotic composites, namely particulate or mineral filled plastics are also widely used in industry because of the associated cost reduction [Mathews and Rawlings, 1999].

Some typical applications of polymer matrix composites are listed in Table 2.1 which gives an overview of all the products that are made using polymer composites in different industrial sectors.

Industrial sector	Examples
Aerospace	Wings, fuselage, radomes, antennae, tail-planes, helicopter blades,
	landing gears, seats, floors, interior panels, fuel tanks, rocket motor
	cases, nose cones, launch tubes.
Automobile	Body panels, cabs, spoilers, consoles, instrument panels, lamp-
	housings, bumpers, leaf springs, drive shafts, gears, bearings.
Boats	Hulls, decks, masts, engine shrouds, interior panels.
Chemicals	Pipes, tanks, pressure vessels, hoppers, valves, pumps, impellers.
Domestic	Interior and exterior panels, chairs, tables, baths, shower units,
	ladders.
Electrical	Panels, housings, switchgear, insulators, connectors.
Leisure	Motor homes, caravans, trailers, golf clubs, racquets, protective
	helmets, skis, archery bows, surfboards, fishing rods, canoes, pools,
	diving boards, playground equipment.

Table 2.1: Some applications of polymer matrix composites (Adapted from Hull, 1981)

2.1.3 Types of composite materials

Many useful engineering materials have a heterogeneous composition. Metals for instances, are often used in the form of alloys. The addition of a small percentage of

another metal, such as copper, magnesium or manganese, is necessary to prevent plastic deformation occurring in aluminium at very low stresses an increase in carbon content from 0.1wt% to 3 wt% is a primary determinant in whether a ferrous alloy becomes mild steel or a cast iron. Concrete, which like cast iron, has good compressive but poor tensile properties, consists of a hard aggregate embedded in a metal silicate network [Ward and Hadley, 2002].

Both human and animals depend on natural composites for their living. Bones must be stiff and yet able to absorb significant amount of energy without fracturing; they also provide anchor points for muscles, which are composite. The skeletal material of plants, and in particular wood, provides a splendid example of the desirable properties of a composite. As a gross simplification, its structure can be considered in terms of an array of relatively stiff fibres embedded in a more compliant matrix. The matrix permits to be redistributed among the fibres, so retarding the onset of fracture at stress concentrations.

A further form of composite is one where the second component acts as filler. Carbon black in vehicle tyres is an example of filler needed to provide the required properties. Each carbon particle provides an anchorage for many rubber molecules, and so assists in the redistribution of stress; and the carbon is also essential to obtain the desired hysteresis behaviour and abrasion resistance. A much simpler application of filler is the use of sawdust or other cheap powder in mouldings made from a thermosetting or a thermoplastic. Although the mechanical properties of the base material are degraded (except possibly for impact resistance), they are still adequate for the proposed application, and the product cost is reduced. Good adhesion between the fibre and matrix will assist in reducing stress concentrations, and transverse cracks will grow only with difficulty across a fibrous composite [Ward and Hadley, 2002].

Many materials are effectively composites. This is particularly true of natural biological materials, which are often made up of at least two constituents. In many cases, a strong and stiff component is present, often in elongated form, embedded in a softer constituent forming the matrix. However, this definition is not sufficient and three other criteria have to be satisfied before a material can be said to be a composite. First, both constituents have to be present in reasonable proportions, say greater than 5%. Secondly, when the constituent phases have different properties and the composite properties are noticeably different from the properties of the constituents, then these materials are recognized as composites. For example, plastics, although they generally contain small quantities of lubricants, ultra-violet absorbers, and other constituents for commercial reasons such as economy and ease of processing, do not satisfy either of these criteria and consequently are not classified as composites. Lastly, a man-made composite is usually produced by intimately mixing and combining the constituents by various means. It is a known that composites have two (or more) chemically distinct phases on a micro or a nano scale, separated by a distinct interface, and it is important to be able to specify these constituents. The constituent that is continuous and is often but not always, present in the greater quantity in the composite is termed as matrix. The normal view is that it is the properties of the matrix that are improved on incorporating another constituent to produce a composite. A composite may have a ceramic, metallic or polymer matrix. The second

constituent is referred to as the reinforcing phase, or reinforcement, as it enhances or reinforces the mechanical properties of the matrix. In most cases the reinforcement is harder, stronger, and stiffer than the matrix, although there are some exceptions for eg. ductile metal reinforcement in a ceramic matrix and rubber like reinforcement in a brittle polymer matrix. At least one of the dimensions of the reinforcement is small, say less than 500µm and sometimes only of the order of a micron. The geometry of the reinforcement; in other words, the mechanical properties of the composites are a function of the shape and dimensions of the reinforcement. We usually describe the reinforcement as being either fibrous or particulate [Mathews and Rawlings, 1999].

Particulate reinforcements have dimensions that are approximately equal in all directions. The shape of the reinforcing particles may be spherical, cubic, platelet or any other regular or irregular geometry. The arrangement of the particulate reinforcement may be random or with a preferred orientation, and this characteristic is also used as a part of the classification of composite structure. In the majority of particulate reinforced composites the orientation of the particles is considered, for practical purposes, to be random.

A fibrous reinforcement is characterized by its length being much greater than its crosssectional dimension. However, the ratio of length to the cross-sectional dimension, known as the aspect ratio, can vary considerably. In single-layer composites long fibres with high aspect ratios give what are called as continuous fibre reinforced composites, whereas discontinuous fibre composites are fabricated using short fibre of low aspect ratio. The orientation of the discontinuous fibres may be random or preferred. The frequently encountered orientation in the case of a continuous fibre composite is termed as unidirectional and the corresponding random situation can be approximated to by bidirectional woven reinforcement. Multilayered composites are another category of fibre reinforced composites. These are classified as either laminates or hybrids. Laminates are sheet constructions which are made by stacking layers (also called as plies or laminae and usually unidirectional) in a specified sequence. A typical laminate may have between 4 to 40 layers and the fire orientation changes from layer to layer in a regular manner through the thickess of the laminate, eg. $0/90^{\circ}$ stacking sequence results in a cross ply composites. Hybrids composite are usually multilayered composites with mixed fibres and are becoming commonplace. The fibres may be mixed in a ply or layer by layer and these composites are designed to benefit from the different properties of the fibres employed. For eg. A mixtue of glass and carbon fibres owing to the low cost of glass fibres, but with mechanical properties enhanced by the excellent stiffness of carbon. Some hybrids have a mixture of fibrous and particulate reinforcement [Matthews and Rawlings, 1999]. Recent technological breakthroughs and the desire for new functions generate an enormous demand for novel materials. Many of the well-established materials, such as metals, ceramics or plastics cannot fulfill all technological desires for the various new applications. Most of the resulting materials show improved mechanical properties and a well-known example is inorganic fiber-reinforced polymers. Apart from the use of inorganic materials as fillers for organic polymers, such as rubber, it was a long time before much scientific activity was devoted to mixtures of inorganic and organic materials. The term hybrid material is used for many different systems spanning a wide

area of different materials, such as crystalline highly ordered coordination polymers. Blends are formed if no strong chemical interactions exist between the inorganic and organic building blocks. One example for such a material is the combination of inorganic clusters or particles with organic polymers lacking a strong (e.g. covalent) interaction between the components.

After having discussed the above examples one question arises: what is the difference between inorganic-organic hybrid materials and inorganic- organic nanocomposites? In fact there is no clear borderline between these materials. The term nanocomposite is used if one of the structural units, either the organic or the inorganic, is in a defined size range of 1-100 nm. Therefore there is a gradual transition between hybrid materials and nanocomposites, because large molecular building blocks for hybrid materials, such as large inorganic clusters, can already be of the nanometer length scale. Commonly the term nanocomposites is used if discrete structural units in the respective size regime are used and the term hybrid materials is more often used if the inorganic units are formed *in* situ by molecular precursors, for example applying sol-gel reactions. Examples of discrete inorganic units for nanocomposites are nanoparticles, nanorods, carbon nanotubes and galleries of clay minerals as shown in Figure 2.2 (a), (b) and (d). Usually a nanocomposite is formed from these building blocks by their incorporation in organic polymers, inorganic clusters or nanoparticles with specific optical, electronic or magnetic properties in organic polymer matrices. These organic polymers are usually in macromolecules as shown in Figure 2.2 (c). However, sometimes a controlled aggregation can also be required, e.g. percolation of conducting particles in a polymer

matrix increases the overall conductivity of the material. If the organic polymerization occurs in the presence of an inorganic material to form the hybrid material one has to distinguish between several possibilities to overcome the incompatibility of the two species. An important area with respect to potential applications of hybrid materials and nanocomposites is the ability to design these materials on several length scales, from the molecular to the macroscopic scale. The enhancement of mechanical and thermal properties of polymers by the inclusion of inorganic moieties, especially in the form of nanocomposites.

Figure 2.2 (a) Inorganic building blocks used for embedment in an organic matrix in the preparation of hybrid composites (a) nanoparticles (b) nanotubes (c) macromolecules (d) layered materials

Medical materials are also one typical application area of hybrid materials, as their mechanical properties can be tailored in combination with their biocompatibility, for example nanocomposites for dental filling materials. Many methods used are more related to the characterization of amorphous organic polymers. The heterogeneous nature of hybrid materials means that generally a variety of analytical techniques has to be used to get a satisfactory answer to structure– property relationships [Kickelbick, 2007].

2.1.4 Carbon Nanotubes (CNTs)

CNTs, long, thin cylinders of carbon, were discovered in 1991 by S. Iijima. These are large macromolecules that are unique for their size, shape, and remarkable physical properties. They can be thought of as a sheet of graphite (a hexagonal lattice of carbon) rolled into a cylinder. These intriguing structures have sparked much excitement in the recent years and a large amount of research has been dedicated to their understanding. Currently, the physical properties are still being discovered and disputed. What makes it so difficult is that nanotubes have a very broad range of electonic, thermal, and structural properties that change depending on the different kinds of nanotube (defined by its diameter, length, and chirality, or twist). With unique atomic structure and very high aspect ratio, carbon nanotubes (CNTs) have extraordinary mechanical properties (such as high strength and unique flexibility), making them ideal reinforcing materials in composites [Hone *et al.*, 1999; Unger *et al.*, 2002; Sun and Zhao, 2005]. CNTs incorporated composites represent a new frontier in materials science because the reinforcement scale has changed from micrometers to nanometers.

2.2 Polymer Matrix

2.2.1 Polypropylene Matrix

PP is one of the most important and widely used commercial thermoplastics polyolefin polymers. Its consumption is still increasing more rapidly than the total for all thermoplastic. This polymer and its blends and composites find wide application in automotive parts, extruded profiles, cable insulation, footwear, packaging industry, etc [Karger-Kocsis, 1995].

This situation is likely to continue in the future due to following reasons:

- Relatively low cost product due to low monomer cost and well established polymerization technology, compared with other thermoplastics.
- PP can be modified for a variety of applications through copolymerization, orientation and other techniques.
- The ease in processing of these polymers allows their use in most commercial fabrication techniques.

PP is a linear hydrocarbon polymer containing little or no unsaturation. The presence of methyl group attached to alternate carbon atoms on the chain backbone can alter the properties of the polymer in number of ways [Brydson, 1995]. The repeating unit of PP is shown in Figure 2.3. The most significant influence of the methyl group is that it can lead to products of different tacticity, ranging from complete isotactic and syndiotactic structures to atactic molecules. The isotactic is the most regular since the methyl groups are all disposed on one side of the molecule. The isotactic polymer is stiff, highly crystalline and with a high melting point. The melting point of isotactic is 165 °C. Within the range of commercial polymers the greater mount of isotactic material the greater the