

NEURAL CONTROLLER UTILIZING GENETIC
ALGORITHM TECHNIQUE FOR DYNAMIC

SYSTEMS

MARWAN A ALI

UNIVERSITI SAINS MALAYSIA
2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/199244112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NEURAL CONTROLLER UTILIZING GENETIC ALGORITHM

TECHNIQUE FOR DYNAMIC SYSTEMS

by

MARWAN A. ALI

Thesis submitted in fulfillment of the
 Requirements for the degree of

Master of Science

October 2009

Acknowledgements

 I would like to express my heartfelt gratitude to my supervisor, Dr. Harsa Amylia

Mat Sakim for her support and motivation. Her guidance and advice has inspired me to

generate fruitful approaches in achieving the objective of this research. Without her

effort, I would not be able to bring this research to a completion. Also, my gratitude

goes to my co-supervisor; Dr Rosmiwati Mohd Mokhtar for her support and advice to

complete this thesis.

 My gratitude is extended to my beloved family members that support and

encourage me all along without hesitation. I treasure dearly their encouragement and

moral support.

 Last but not least, I would like to express my sincere gratitude to Malaysia my

second country for unlimited support and hospitality.

ii

TABLE OF CONTENTS

Acknowledgements ii

Table of Contents iii

List of Tables vi

List of Figures vi

List of Abbreviations and Symbols xi

Abstrak xiv

Abstract xv

CHAPTER 1 ─ GENERAL INTRODUCTION

1.1 Background of Research 1

1.2 Neural Networks and Genetic Algorithms in Control Engineering: A survey 2

1.3 Evolutionary Computation 5

1.3.1 How is GAs Different from Traditional Methods? 7

1.3.2 The Simple GA 8

1.3.3 GAs Parameters 10

1.4 Problem Statement 11

1.5 Research Objectives 12

1.6 Research Scope and Approach 12

1.7 Thesis Outline 14

CHAPTER 2 ─ LITERATURE REVIEW

2.1 Introduction 15

2.2 Adaptive Control 16

 2.2.1 Self-Tuning Controller 18

 2.2.2 Model Reference Adaptive Control Schemes 19

2.3 Basic Functions to Implement Adaptive Control 22

 2.3.1 Identification 23

 2.3.2 Modification 24

2.4 The Selection of Model Reference 24
2.5 The Structure of Multi-Layer FNNs 25

2.6 Genetic Synthesis of MLP Neural Networks 27

2.6.1 Evolving Weights in a Fixed Network 28

iii

 2.6.2 Objective-to-Fitness Transformation 30

2.6.3 Evolving Network Architectures 32

2.7 Summary 35

CHAPTER 3 ─ METHODOLOGY AND EVALUATION OF THE ADAPTIVE

NEURAL CONTROLLER

3.1 Introduction 36

3.2 Structure of Adaptive Neural Controller Cooperated with Model Reference 37

3.3 The Proposed Algorithm for Neural Genetic Controller 38

3.4 Simulation Models 40

 3.4.1 Nonlinear SISO Plants 41

 3.4.2 Linear MIMO Plants 47

 3.4.3 Gas Turbine System 51

 3.4.4 The Gantry Crane system 55

3.5 The Robustness of the Proposed Controller to Output Disturbance 62

3.6 PID Controller 67

 3.6.1 PID as an Adaptive Controller for Some Nonlinear Plants 68

 3.6.2 Robustness of PID Controller 71

3.7 Comparison between NNs and PID Controllers 73

3.8 Summary 75

CHAPTER 4 ─ STRUCTURE OPTIMIZATION OF NEURAL CONTROLLER

USING GAs

4.1 Introduction 76

4.2 Variable Length Chromosome Representation 77

4.2.1 The Evolution of “pure” Architectures 78

4.2.2 The Simultaneous Evolution of Both Architectures and Weights 78

4.3 Structure of Hidden Nodes Neural Controller 79

4.4 The Proposed Genetic Structure Selection for a Neural Controller 80

4.5 Simulation Models 81

4.6 Summary 105

iv

CHAPTER 5 ─ DISCUSSION AND CONCLUSION

5.1 Discussion 107

5.2 Conclusion 110

5.2 Suggestions for Future Work 100

REFERENCES 111

APPENDICES

Appendix A

Appendix B

Appendix C

PUBLICATION LIST

v

List of Tables

 Page

Table 4.1 Different Responses Examples 105

Table A-1 GA Terminology

List of Figures

 Page

9 Schematic Diagram of Genetic Algorithm

Figure 1.1

17 Basic Adaptation Schemes Figure 2.1

18 Structure of An Explicit Self-Tuner

Figure 2.2

19 Model Reference Adaptive Control

Figure 2.3

20 Parallel MRAC Figure 2.4

21 Series MRAC Figure 2.5

21 Series-Parallel MRAC Figure 2.6

22 Direct MRAC Figure 2.7

22 Indirect MRAC Figure 2.8

26 A Typical Multi-layer Feedforward Neural Network Figure 2.9

29 The Weights of Encoding Real Value to The
Chromosome

NNsFigure 2.10

33 Direct Encoding Approach Figure 2.11

34 Grammatical Encoding Approaches Figure 2.12

34 Chromosome Encoding A grammar Figure 2.13

37 The Proposed Adaptive Neural Controller Figure 3.1

39 Flowchart of the Genetic Learning Scheme for MRAC
Incorporating Neural Controller

Figure 3.2

 vi

42 The MRAC of Nonlinear SISO Plant 1 Figure 3.3

44 The MRAC of Nonlinear SISO Plant 2 Figure 3.4

46 The MRAC of Nonlinear SISO Plant 3 Figure 3.5

48 The Reference Input Signals Used For Plant 4 and Plant 5 Figure 3.6

49 The MRAC of Linear MIMO Plant 4 Figure 3.7

53 The MRAC of Gas Turbine System Figure 3.8

56 Block Diagram of The Gantry Crane System. Figure 3.9

57 The Gantry Crane System (Plant 6) Figure 3.10

58 The MRAC of Gantry Crane System with Unit Step Input Figure 3.11

59 The MRAC of Gantry Crane System with Change Step
Input

Figure 3.12

61 The MRAC of Gantry Crane System With Constraint in
Control Signal Between [-10, 10] volt

Figure 3.13

63 The MRAC of Nonlinear SISO Plant 1 With 2% External
Disturbance

Figure 3.14

64 The MRAC of Nonlinear SISO Plant 1 With 20% External
Disturbance

Figure 3.15

65 The MRAC of Nonlinear SISO Plant 2 With 2% External
Disturbance

Figure 3.16

66 The MRAC of Nonlinear SISO Plant 2 With 20% External
Disturbance

Figure 3.17

68 The PID MRAC of Nonlinear SISO Plant 1 Figure 3.18

70 The PID MRAC of Nonlinear SISO Plant 2 Figure 3.19

71 The PID MRAC of Nonlinear SISO Plant 1 With 20%
External Disturbance

Figure 3.20

72 The PID MRAC of Nonlinear SISO Plant 2 With 20%
External Disturbance

Figure 3.21

80 Representation of Variable Length Chromosome Figure 4.1

82 The MRAC of Example 1

Figure 4.2

 vii

85 The MRAC of Example 2 Figure 4.3

87 The MRAC of Example 3 Figure 4.4

90 The MRAC of Example 4 Figure 4.5

92 The MRAC of Example 5 Figure 4.6

95 The MRAC of Example 6 Figure 4.7

98 The MRAC of Example 7 Figure 4.8

102 The MRAC of Example 8

Figure 4.9

 The Schematic Drawing of the Gantry Crane Scale model Figure B.1

 Definition of The Coordinate System and The Various
Variables Which Play a Role in The Mathematical Model
of The Crane

Figure B.3

 viii

List of Abbreviations and Symbols

AI Artificial Intelligent

ANNs Artificial Neural Networks

BIBO Bounded Input-Bounded Output

BP Back Propagation

CMAC Cerebeller Model Articulation Controller

EA Evolutionary Algorithms

EC Evolutionary Computation

EP Evolutionary Programming

ES Evolutionary Strategies

ESN Echo State Network

FLC Fuzzy Logic Controller

FNN Feedforward Neural Network

GAs Genetic Algorithms

GDR Generalized Delta Rule

MIMO Multi Input Multi Output

MLP Multilayer Perceptron

MRAC Model Reference Adaptive Controller

MRAFC Model Reference Adaptive Fuzzy Controller

MSE Mean Square Error

NNs Neural Networks

PI Proportional Integral

PID Proportional, Integral, Derivative

RLS Recursive Least Square

SAE Sum Absolute of Error

SISO Single Input Single Output

STC Self-Tuning Controller

TDL Tapped Delay Line

TSS Total Sum Squared

am0, am1…. Parameters of the Denominator Polynomial of the Model Reference

A-Z Non-Terminal Symbols

a-p Terminals Symbols

bm0, bm1…. Parameters of the Nominator Polynomial of the Model Reference

 ix

Cmax Constant Value to Map the Objective Function to Fitness Function

e (k) Output Error Between yp (k) and ym (k)

ef (k) Feedback Error Between r(k) and yp (k)

ei (k) Error between yp (k) and (k) py
∧

F Cord Tension

g Gravity Constant

GP (s) Plant Transfer Function in s-domain

Gm (s) Model Reference Transfer Function in s-domain

hs Simulation Step Size

H Hyperbolic Tangent Activation Function

k Discrete Time Instant

K Gain

kP Proportional Gain

ki Integral Gain

kd Derivative Gain

I Actual Cord Length

L Linear Activation Function of the Output Node

m Mass Load

ni Number of Input Nodes

nh Number of the Hidden Nodes

no Number of Output Nodes

nl Number of Hidden Layers

Np Number of the Training Patterns

Netj Weighted Sum of the Inputs of the Output Node j in the Hidden Layer

neto Weighted Sum of the Inputs of the Output Nodes

Pc Crossover Probability or Crossover Rate

Pm Mutation Probability or Mutation Rate

r (k) Reference Input

S Start Symbol and Non-Terminal

Tob Observation Time

Ti Integer Time

Td Derivative Time

Ts Sampling Time

 x

u Control Signal

u (k) Control Signal at Sample k

W, V Weight Matrices

x t Trolley Position

x l Actual Horizontal Load Position

yp (k) Output of the Plant at Sample k

ym (k) Output of the linear Model-Reference at Sample k

y l Actual Vertical Load Position

py
∧

(k) Estimated Plant Output

∧

p Identification Model

µ Constant Value to Avoid Division by Zero

ε Empty-String Terminal

τ Time Constant

ω Swing Frequency

α Angle Between the Cord and the Vertical Axis

 xi

PENGAWAL NEURAL MENGGUNAKAN TEKNIK ALGORITMA GENETIK

UNTUK SISTEM-SISTEM DINAMIK

ABSTRAK

 Kajian ini mengemukakan kaedah pembelajaran rangkaian neural (NN)

pelbilang lapisan dengan menggunakan teknik algoritma genetik (GA). Teknik

evolusionari berasakan GA ini dikaji dan digunakan untuk skima model rujukan

kawalan suai (MRAC) bagi loji-loji yang berbeza. GA digunakan untuk memilih

bilangan nodus-nodus tersembunyi yang optima bagi pengawal neural, di samping

melatih rangkaian berkenaan bertujuan untuk meminimakan ralat antara keluaran loji

dengan keluaran model rujukan. Contoh-contoh simulasi mempamerkan bagaimana

nodus-nodus tersembunyi tersebut beradaptasi melalui penjanaan sehinggalah bilangan

integer optima tercapai, yang mana ia bergantung kepada kerencaman loji kawalan.

Operator pengkodan sebenar GA digunakan dalam kajian ini memandangkan

pengkodan binari tradisional adalah terhad. Seterusnya, kaedah pemilihan hibrid serta

strategi elitisme digunakan untuk proses pengeluaran semula GA. Perbandingan juga

dibuat antara pengawal neural yang dicadangkan ini dengan pengawal perkadaran,

pembezaan, pengkamiran (PID) klasik yang telah dilaras secara genetik. Hasil akhirnya

digunakan sebagai pengawal suap belakang berasaskan model rujukan. Analisis

perbandingan juga dibuat berasaskan kadar penumpuan, keupayaan pengesanan model

rujukan yang diingini dan ketegapan pengawal-pengawal terhadap gangguan keluaran.

Berdasarkan keputusan simulasi, dapat disimpulkan bahawa pengawal neural yang

dicadangkan ini adalah lebih baik berbanding pengawal PID dalam kedua-dua aspek:

ketegapan dan keupayaan pengesanan.

 xii

NEURAL CONTROLLER UTILIZING GENETIC ALGORITHM TECHNIQUE

FOR DYNAMIC SYSTEMS

ABSTRACT

 This research presents a method of learning multilayer Neural Network (NN)

using Genetic Algorithms (GAs) techniques. The evolutionary techniques based on

GAs are studied and employed for the Model Reference Adaptive Control (MRAC)

scheme of different plants. The GAs are used for selecting an optimal number of hidden

nodes for the neural controller, as well as training the network to minimize the error

between the output of the plant and the output of the model reference. The simulation

examples demonstrate how the hidden nodes are adapted through the generation until

they reach their optimal integer number, which depends on the complexity of the

controlled plant. The real-coding operators of GAs have been used in this work because

of the limitations of traditional binary coding. Moreover, a hybrid selection method

plus elitism strategies are used for reproduction process of the GAs. A comparison

between the proposed neural controllers with a classical genetically tuned, Proportional

Derivative Integral (PID) controller is made, in which the final outcome is used as a

feedback controller based on model reference. A comparative analysis is also made

based on the speed of convergences, the tracking ability of the desired model reference

and robustness of these controllers to output disturbances. Based on simulation results,

it is concluded that the proposed neural controller is better than PID controller in both:

robustness and tracking ability.

 xiii

CHAPTER 1

GENERAL INTRODUCTION

1.1 Background of Research

 In general, the theory of dynamical systems is the paradigm for modeling and

studying phenomena that undergo spatial and temporal evolution. These phenomena

range from simple pendulum to complex atomic lattices, from planetary motion to the

weather system, from population dynamics to complex biological organisms. The

application of dynamical systems has nowadays spread to a wide spectrum of

disciplines including physics, chemistry, biochemistry, biology, economy and even

sociology. In the past, modeling was mainly restricted to linear or almost linear systems

for which an analytical treatment is tractable.

 In recent years, with the advancement of powerful computers and the theory of

dynamical systems, it is now possible to tackle, at some extent into nonlinear systems.

After all, nonlinearity is at the heart of most of the interesting dynamics. The

application of the intelligent control schemes has attracted the attention of the

researchers in the field of control dynamic systems (Yurkovich and Passino, 1999). In

the areas of control and system engineering, the feed forward networks, such as the

Multilayer Preceptron (MLP), Radial Basis Function networks (RBF) and the

Cerebeller Model Articulation Controller (CMAC), seem to have attracted the most

attention in the area of adaptive control (Brown et al., 1997; Lightbody and Irwin,

1995).

 1

 Neural networks have broad applicability to real world problems, such as in

pattern recognition, diagnostic, optimization, system identification control, robotics and

others. They have already been successfully applied in many industries, as they are well

suited in prediction or forecasting due to abilities in identifying patterns or trend in data

(Lightbody and Irwin 1995). According to their structures and learning algorithms,

neural networks can be classified into two main types that are supervised such as Back

Propagation (BP) and unsupervised learning algorithms such as Kohonen. There exists

a third type that is called "reinforcement learning", which can be regarded as a special

form of supervised learning. An example of reinforcement-learning algorithm is the

Genetic Algorithm (GAs).

1.2 Neural Networks and Genetic Algorithms in Control Engineering: A Survey

 Many control engineering problems that require some optimal performance have

been solved in recent years using NNs and GA. For instance, Karunanithi, et al, (1992)

applied techniques of GAs to NNs problems. These problems include a process of

optimizing the weighted connections in feedforward NNs using both binary and real

value representations. They discovered novel architectures in the form of connectivity

patterns for neural networks by using error propagation.

 Park et al, (1995) introduced a new method for training multilayer NN that used

GA techniques. They have tested that a method, called “Genlearn” is significantly

faster than methods that used the Generalized Delta Rule (GDR). Unlike the GDR, GA

has the advantage, in which, it can escape local minima in its search of weighting

space. The inventions of GAs have been used over the past twenty-five years in the

control field. Porter and Jones (1992) have explicitly adopted GAs to solve a three-term

 2

controller design problem. They offered new guideline in control and automation.

Many researchers in control engineering field have used GAs to solve many complex

problems that are difficult or impossible to solve by traditional methods.

 Canelon et al. (2005) proposed a new approach to control nonlinear discrete

dynamic systems, which relies on the identification of a discrete model of the system

by a neural network. A locally equivalent optimal linear model is obtained from the

neural network model at every operating point that the system goes through during the

control task. Based on the linear model, a linear state-space control design technique

can be used to design a local control action and is applied at that particular operating

point.

 Jones and Oliveira (1995) proposed the techniques of GAs to identify a model of

the process using on-line data. Then, the identified model, the GA and simulation

methods, are used to off-line tune a PID controller, so as to minimize a time domain

based cost function. Finally, the genetically tuned controller is implemented on-line on

the real process. In same year, Zitar and Hassoun (1995) introduced a machine learning

system for the rule extraction of temporal control problems. The system used a hybrid

of reinforcement learning and GA search to train Feedforward Neural Networks

(FNNs) that can successfully control highly nonlinear and noisy systems.

 Ajlouni et al. (1996) proposed the techniques of GAs as a mean of designing fuzzy

gain-scheduled PI control schemes for a class of nonlinear plants, where the

nonlinearity is a function of plant output. They showed that the use of GAs for this

purpose results in highly effective fuzzy gain-scheduled control systems. Other than

 3

that, Porter and Mohamed (1993) discussed the use of GAs to solve the dynamic plant

inversion problem for trajectory control.

 Park et al. (1995) investigated a neural-controller for non-minimum phase system,

which trained off-line with GA. Jonse et. al. (1997) adopted the techniques of GAs to

identify a model of process using experimental data. The identified model, the GA and

simulation method, are used to off-line tune the dual mode controllers-based cost

function. Bonissone et al. (1996) used GAs to tune the fuzzy controller’s performance

by adjusting its parameters (the scaling factors and the membership functions) in a

sequential order of significance. They demonstrated this approach to the manually

designed one and with only modest computational effort. Finally, the genetically tuned

controller is implemented on-line on real process.

 Krohling et al. (1997) proposed an alternative procedure based on real-coded GAs

with appropriate operators to determine PID controller parameters by minimization of

an integral performance criterion in frequency domain. As well as, Krohling (1998)

proposed the techniques of GAs to design crane controllers. The crane is controlled by

parameters of control law without linearizing the model of system. The proposed

method offers an alternative to more conventional method such as pole placement

design.

 Soft computing is proposed by Zadeh to construct new Artificial Intelligent (AI)

and to solve nonlinear and mathematically unmodeled systems problems (tractability).

It is the fusion or combination of fuzzy, neural and evolutionary GA computing (Dote,

 4

1999). Krishnapura and Jutan (2000) proposed an adaptive neural network controller

for the control of nonlinear dynamical systems.

1.3 Evolutionary Computation

 Several computer scientists in 1950s and 1960s studied evolutionary systems with

the idea that evolution could be used as an optimization tool for engineering problems.

The idea in these systems was to evolve a population of candidate solutions to a given

problem using operators inspired by natural genetic variations and natural selection.

Evolutionary Strategies (ES) were introduced in the 1960s by Rechanberg. He used it

to optimize real-valued parameters for devices such as airfoils. The field of ES has

remained an active area of research, mostly developing independently from the field of

GAs, which will be explained later in more details.

 Evolutionary Programming (EP) developed by Fogel, Owen and Walsh (Mitchell,

1998) was a technique in which candidate solution to a given tasks are represented as

finite-state machines. They are developed by randomly mutating their state-transition

diagrams and selecting the fittest. Together, ES, EP and GAs form the backbone of the

field of Evolutionary Computation (EC). GAs were invented by John Holland and were

developed by him and his colleagues at the University of Michigan in the 1960s and

1970s (Mitchell, 1998).

 In contrast with ES and EP, Holland‘s original goal was not to design algorithms

to solve specific problems, but rather to formally study the phenomenon of adaptation

as it occurs in nature and to develop ways, in which the mechanism of natural

adaptation might be imported into computer systems. Holland‘s GA is a method for

 5

moving from one population of “chromosomes” (e.g., string of ones and zeros, or “bit”)

to a new population by using a kind of “natural selection” together with genetic

inspired operators of crossover, mutation and inversion. Each chromosome consists of

“genes” (e.g, “bit”) and each gene being an instance of a particular “allele” (e.g., 0 or

1). The selection operators chose those chromosomes in the population that will be

allowed to reproduce and on an average the fitter chromosomes produce more

offspring’s than the less fit ones.

 Crossover exchange subparts of the two chromosomes roughly mimicking

biological recombination between the two single-chromosome organisms. Mutation

randomly changes the allele values of some sections of the chromosome. Holland‘s

introduction of a population-based algorithm with crossover, inversion and mutation

was major innovation. Until recently, the theoretical foundation of schema theorem of

Holland was the basis of almost all-subsequent theoretical work on GAs and

computational evolution (Mitchell, 1998).

1.3.1 How are GAs Different from Traditional Methods

 EC including GAs are found to be very good at optimization in applications for

engineers and scientists. GA is a search algorithm based on the mechanics of natural

selection and natural genetic (Goldberg, 1989). GAs work with a coding of the

parameter set not the parameters themselves. Instead of searching a single point, GAs

search from a population of points in the decision space to determine the next point.

Therefore, this point-to-point method is dangerous because it is a perfect prescription

for locating false peaks in multi-modal search spaces. In this way, GAs work from rich

database of point simultaneously (a population of strings). The probability of finding a

 6

false peak is reduced. GAs use payoff (objective function) information, instead of

derivatives or other auxiliary knowledge. The transition rules of GAs are stochastic

while many other methods have deterministic transition rules. A distinction exists,

however, between the randomized operators of GAs and other methods that are simple

random walks. GAs use random chance to guide a highly exploitative search. This may

seem unusual, using chance to achieve the directed results (the best points), but nature

is full of precedent. The power of GAs is clearly beneficial in the case of searching

among complex search space with many discontinuities or local maxima (or minima).

GAs manipulates decision on control variable representations at the string level to

exploit similarities among high performance strings.

 Other methods usually deal with functions and their control variables directly.

Because GAs operate at the coding level, they are difficult to fail when the function

may be difficult for traditional schemes. Huge search space does not affect the

complexity of GAs computation but affect the time of computation. Other methods rely

heavily on such information and on problems where the necessary information is not

available or difficult to obtain. GAs remain general by exploiting information available

for any search problem. GAs processes similarities in the underlying coding together

with information ranking the structure according to their survival capability in the

current environment.

 7

1.3.2 The Simple GA

 Given a clearly defined problem to be solved and bit string representation for

candidate solutions, a simple GA works as follows:

1- Start with a randomly generated population of (n1-bit) chromosome (candidate

solutions to a problem).

2- Calculate the fitness of each chromosome in the population.

3- Repeat the following steps until n offspring’s have been created.

a) Select a pair of parent chromosomes from the current population, the

probability of selection being an increasing function of fitness. Selection is

done “with replacement”, meaning that the same chromosome can be

selected more than once to become a parent.

b) With the probability, denoted as Pc (the “crossover probability” or

“crossover rate”), crossover the pair at a randomly chosen point (chosen

with uniform probability) exact copies of their respective parent.

c) Mutate the two offspring’s at each locus with probability Pm (the mutation

probability or mutation rate), and place the resulting chromosomes in the

new population.

4- Replace the current population with new population.

5- Go to step 2.

 Each iteration is called a “generation”. The entire process of generation is called a

“run”. At the end of a run there are often one or more highly fit chromosomes in the

population. Since randomness plays a large role in each run, two runs with different

random-number seeds will generally produce different detailed behaviors. The

schematic diagram of GA is represented in Figure 1.1.

 8

Select Pair of

Chromosomes for
Mating On Basis of

Fitness

Old Population
Chromosomes

Evaluate Each
Chromosomes for

Fitness

Apply Crossover and
Mutation Operators

Replace Old Population with New
ation Until Some Criterion

s Been Achieved: for Example
(Until Total Number of

Generations is Completed)

Popul
Ha

Replace Old Population with
New Population Until Some

Criterion Has Been
Achieved: for Example
(Until Total Number of

Generations is Completed)

New Chromosomes
Population

Initialize the
First Population

Figure 1.1 − Schematic Diagram of Genetic Algorithm

 The simple procedure described as above, is the basis for most application of

GAs. There are number of details to fill in, such as the size of the population, the

probabilities of crossover and probability mutation. The success of the algorithm often

depends greatly on these details. However, the parameters of the simple GA are not

always the most effective or appropriate ones (Mitchell, 1998; Goldberg, 1989).

1.3.3 Parameters of GA

 When choosing the values for the various parameters, such as population size,

crossover rate, and mutation, the following details may be important:

 9

a - Population Size (Npop)

 The population size affects both the ultimate performance and the effectiveness of

GAs. GAs generally does poorly with very small population because the population

provides an insufficient sample size for most hyper planes. On the other hand, a large

population requires more evolutions per generation, possibly resulting in an

unacceptable slow rate of convergence. Typically the best population size is selected

from 50-100 individuals (Mitchell, 1998).

b - Crossover Rate (Pc)

 The crossover rate controls the frequency with which the crossover operator is

applied. If this rate is too high, it results in the wastage of a lot of computation time in

exploring promising regions of the solution space. If the crossover ratio is too low, the

searching stagnates due to the lower exploration rate. Typically the best crossover

probability is selected such as (0.5≤ Pc ≤ 0.8) (Mitchell, 1998).

c - The Mutation Rate (Pm)

 The mutation rate controls the rate at which new genes are introduced into the

population for trial. Usually, the mutation probability is chosen to be quite small, since

this will help guarantee that all the individuals in the mating pool are not mutated so

that any search progress that was made is lost (i.e., we keep it relatively low to avoid

degradation to exhaustive search via a random walk in the search space). Typically the

best mutation probability is selected from 0.005-0.01 (Mitchell, 1998).

 10

1.4 Problem Statement

 Most systems of interest to human are complex systems but the nonlinear

dynamic system is one of the most interesting types of complex system. Increased in

applications of uncertainty complex dynamical systems and also the limitations of

traditional methods have forced system designers to turn away from the conventional

control methods. The large dimensionality and interactions between variables of

dynamical systems are the major obstacles for successful attempts to extend the

classical techniques to design controllers for multivariable plants.

 In other words, it is difficult to control different complex dynamic models

which have a huge number of parameters under unexpected environment change with a

very good accuracy. Thus, this led to a more general concept of control. The controller

ability is necessary to control uncertainty system accurately and with acceptable

performance characteristics over a very wide range. For this purpose, the Neural

Network technique (NNs) co-operating with Genetic algorithm technique (GAs) are

used in this work to control highly nonlinear and noisy systems.

 11

1.5 Research Objectives

 The main aim of the project is to investigate the use of Feedforward Neural

Network (FNN) as an adaptive controller for different linear and nonlinear dynamical

plants including Single Input Single Output (SISO) and Multi Input Multi Output

(MIMO) models utilizing the genetic algorithm techniques. The specific research

objectives are as follows:

(a) To design a structure of neural genetic controller employing the parallel model

reference then, to compare the neural genetic controller with a conventional

controller. The comparison of simulation results is based on the speed of

convergences, the tracking ability of the desired model reference and the

robustness of these controllers to output disturbances.

(b) To design neural genetic controller for an overhead crane and gas-turbine as

nonlinear dynamic applications.

(c) To optimize the genetic algorithm with real-coding and hybrid selection method,

and use it as learning procedure to find the parameters and the required

architecture of the NN controllers when they are used as ordinary feedback

controllers.

1.6 Research Scope and Approach

 This research focuses on complex dynamic systems which have huge number of

parameters. As explained in the problem statement, the large dimensionality of many

processes and the significant interaction between variables of dynamical systems are

the major obstacles for the successful attempts of extending the classical techniques for

the design of controllers to multivariable plants. The use of NNs in control systems can

be seen as a natural step in the evolution of control methodology to meet the needs of

 12

rapidly advancing technology and a competitive market. Basically, there are three

major needs:

1- The need to deal with increasingly complex systems.

2- The need to accomplish increasingly demanding design requirements.

3- The need to attain these requirements with less precise advanced knowledge of

plants and their environment.

 As well as, many techniques have been used for structure and optimizing the

design of control system. Genetic algorithm technique is attractive for a number of

reasons.

1- It can handle problem constraints by simply embedding them into the

chromosome coding.

2- GA can solve multi-objective problem.

3- Since it is a technique independent of the error surface, it is ready to solve

multi-modal, non-differentiable, and non-continuous problems.

4- It is very easy to understand the technique with very few (or even none)

mathematics.

 The genetic algorithm technique and simulation of neural networks system is

developed in MATLAB 7.5.a. As for any search and learning method, the way in which

candidate solutions are encoded, is a factor in the success of GA. In this research, the

direct parallel MRAC incorporating neural controller and will be used as

feedback controller to make the plant track the model reference trajectory. The

evolutionary approach such as can serve as a very powerful tool in helping to find

the network (controller) parameters and the architecture for a specific problem.

The powerful abilities of the proposed neural genetic controller mode are tested through

a discrete model representation for speed of convergence, the tracking ability and

FNNs

GAs

 13

robustness by simulation. Then, comparative study will be done between this proposed

controller and the classical PID by applying both of them to control different plants.

1.7 Thesis Outline

The thesis is organized as follows:

 Chapter one introduces a general background about NNs and GAs. Their terminology

and some of the GAs applications are surveyed with the most attention given to those in

control systems engineering.

 Chapter two introduces the principle concept of adaptive control, concentrating on

model reference and self-tuning control scheme.

 Chapter three presents the genetic parameters optimization of fixed neural controller

structure. Also, a comparison with PID controller is introduced based on the model

reference configuration for controlling different linear and non-linear plants.

 Chapter four discusses the use of GAs to find the optimal number of hidden nodes for

the proposed neural controller in chapter three, to control different plants. In other

words, this chapter presents the utilization of genetic optimization of variable neural

controller structure (i.e. with variable chromosome length). This chapter provides with

a discussion and survey on the previous work on the problem concerned.

 Chapter five summarizes the conclusions and suggestions for future work.

 14

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 Recently, many attempts in field of intelligent control using different approaches

have been proposed to control complex dynamic models with unexpected environment

changes. Dongming Xu et. al,(2005) presented a direct adaptive approach to design

controllers for nonlinear dynamical systems, where system identification of the

unknown dynamical system is not required. That approach used both Echo State

Network (ESN) and Genetic Algorithm (GA). ESN is a simple modeling of the

controller which only a linear readout needs to be trained. The GA is used to optimize

ESN linear readout directly so that system identification is not required. Other than

that, Dracopoulos and Jones, (1997) also applied an adaptive control architecture using

neural networks and genetic algorithms to a complex, highly nonlinear and chaotic

dynamic system which uses small control adjustments to stabilize a chaotic system (for

a satellite) . In an otherwise unstable but natural periodic orbit of the system, the neural

genetic controller may uses large control adjustments and proves capable of actively

attaining any specified system state, with no prior knowledge of the dynamics even in

the presence of significant noise.

 Meanwhile, in this research the model reference adaptive control architecture was

used as an alternative for using classical optimization objectives that are represented in

terms of performance indices. Therefore, the problem is to tune a fixed controller for

linear and nonlinear time invariant plants so that the response of control system is

almost similar with the response of the model reference adaptive control. In other

words, all required performance specifications of control system are given in terms of

 15

the response of the model. The use of model reference has the following advantages

(Ioannou and Fidan, 2008):

i. The capability of achieving a high performance taking into consideration all terms

that describe transient response behavior.

ii. Avoiding the use of multi-objective optimization techniques, which will become

difficult when they are used for large dimension of objectives.

iii. All optimization requirements are simply specified by one statement (the model-

reference).

2.2 Adaptive Control

 The requirement for more complex and higher performance control system has

been the stimulus for the development of a systematic control theory. Even with the

development of such a systematic control theory, there is still something else missing.

The adaptive control concept seems old and has gained a significant interest since the

early 1950‘s (Ioannou and Fidan, 2008; Lecchinia et. al., 2006). Unlike fixed control

systems, the adaptive control systems adapt or adjust their behavior to the changing

properties of the controlled plants and their environment.

 The two basic schemes of controller‘s adaptation can be distinguished, as shown

in Figure 2.1. The behavior changes are indicated by measurable signals (where z is

external disturbance), and if it is known in advance, then the controller has to be

adapted in dependencies of these signals. Feed forward adaptation (open loop

adaptation) can be applied as shown in Figure 2.1(a). Here no feedback for the

adaptation exists from internal closed loop signals to the controller. The other scheme

can be called the feedback adaptation (closed loop adaptation) as shown in Figure

 16

2.1(b). In the first step of closed loop adaptation, information on the plant behavior

(structure and parameters) is gained by measuring plant input and output

signals . This can be performed by plant identification. Based on this

information, the controller can be calculated and adapted (Ioannou and Fidan, 2008;

Tin and Poon, 2005; Lecchinia et. al., 2006).

)(ku

)1(+kyp

 z

)1(+kpy

 r (k) +

 _

 +

 +

u (k) Controller Plant ∑ ∑

Adaptation
Algorithm

(a)

 z

)1(+kyp

 u (k) +

 +

 r (k) +

 _

Controller Plant ∑ ∑

Adaptation
Algorithm

(b)

Figure 2.1 − Basic Adaptation Schemes (a) Feed forward Adaptation. (b) Feed back

 Adaptation.

 Two types of adaptive control are considered in the literature. They are: Self-

Tuning Controller (STC) and Model Reference Adaptive Controller (MRAC).

 17

2.2.1 Self –Tuning Controller

 Self-tuning control is an approach to the automatic tuning problem. It can be

viewed either as a tuning aid for control laws which has fixed parameters (like the

widely used three-term controller in industry), or as means of which a time varying

plant can be controlled in a consistent way. The self-tuner has three main elements as

shown in Figure 2.2. A recursive parameter estimator monitors the plant‘s input and

output and computes an estimate of the plant dynamic in terms of a set of parameters in

a prescribed structural model. The parameter estimates are then fed into a control

algorithm, which then provides a new set of coefficient for feedback law. The control

algorithm simply accepts the current estimates and ignores their uncertainties; such a

procedure is called certainty-equivalent. The rationale for this approach is that,

although there may be a poor control during the tuning phase, taking suitable

precautions can minimize this, but the overall algorithm is considerably simplified

(Krstic et al, 1997).

)1(+kpy u (k)

 Plant

18

Tapped Delay Line (TDL)

Feedback Controller

 - - - - - - - - - - - - - - - - - - Parameters

 Control Algorithm

 - - - - - - - - - - - - - - - - - - -

Recursive Parameter Estimator

Figure 2.2 − Structure of An Explicit Self-Tuner

2.2.2 Model Reference Adaptive Control Schemes

 The basic principle of a model reference control scheme is shown in Figure 2.3.

19

)1(+ke

Model Output)1(+kym

 out + yr (k) +)1(+k put p

 _

 u (k)Controller Plant ∑ ∑

Adaptation
Algorithm

Adaptation
Mechanism

Figure 2.3 − Model Reference Adaptive Control

 As mentioned before, the desired performance is expressed in terms of a model

reference, which gives the desired specification (response) to a reference input. The

system also has an ordinary feedback loop which is composed of plant and the

controller. The error is the difference between the output of plant and the model

reference. The controller has parameters that changes based on this error (called

modeling error to distinguish it from the feedback error). There are thus two feedback

loops in Figure 2.3. An inner loop, which provides the ordinary control feedback, and

an outer loop adjusts the parameters in the inner loop. The inner loop is assumed to be

faster than the outer loop (Alexander et al, 2001; Patiño and Liu, 2000). The idea of

MRAC is compelling to the closed loop system behavior following a desired model

reference for all operating conditions (i.e. the error will be minimum). So the control

law is derived from the plant's parameters and the model's parameters. If the plant’s

parameters are not known, then the estimated parameters will be used instead. The

MRAC can be classified according to the position of model reference with respect to

the controlled plant (Alexander et al., 2001).

a. Parallel MRAC

 The most popular form of MRAC scheme is shown in Figure 2.4.

20

Figure 2.4 − Parallel MRAC

 Figure 2.4 shows that a model reference is placed in parallel with the plant. The

plant input or the reference input may be used by the adaptation mechanism. A

characteristic of most (but not all) MRAC scheme is the direct adaptation, without an

explicit parameter estimation part.

b. Series MRAC

 In this scheme, the model reference is placed in cascade with the plant and can be

regarded as a trajectory generator. The series type is illustrated in Figure 2.5.

)1(+kyp + O/P

 _

Model Output)1(+kym

r (k) +
 u (k) Controller Plant ∑

Parallel Model
Reference

∑

Adaptation
Mechanism

 O/p)(kyp

e (k+1)

r (k) u (k)
Controller Plant ∑ ∑

Adaptation
Mechanism

Series Model
Reference

Figure 2.5 − Series MRAC

c. Series-Parallel MRAC

 This is a combination of a parallel and series configuration.

Model Output)1(+kym

)(kyp O/p

e (k+1)

r (k)

 u (k)
Controller Plant ∑ ∑

Adaptation
Mechanism

Series Model
Reference

Parallel Model
Reference

Figure 2.6 − Series Parallel MRAC

 Moreover, MRAC systems can be classified into direct and indirect control

(Alexander et al., 2001).

 Direct Control - Comparison is between model reference and a control loop

with an adaptive controller as shown in Figure 2.7.

 21

 Indirect Control - Comparison is between the system and its model directly,

(explicit identification and implicit control) as shown in Figure 2.8.

)1(+kym

)1(+kyp _

 +

e (k+1)

e (k+1)

r (k) u (k)

Controller

Plant ∑

Model Reference

Figure 2.7 − Direct MRAC

22

)1(+
∧

kyp +

 -

e (k+1)

)1(+kym

ei (k+1)

 _
)1(+kyp -

 +

∧

p e (k+1)

r (k) u (k)

Controller

Plant ∑

Model Reference

∑
Identification

Model (
∧

p)

Figure 2.8 − Indirect MRAC

2.3 Basic Functions to Implement Adaptive Control

 Adaptive control is usually based on a simulation model identification and

control. To implement adaptive control techniques on real system, the following

procedures must be considered (Alexander et al., 2001; Filip et al., 2009).

2.3.1 Identification

 Identification is a fundamental problem of the system theory. The control

problem so closely related that the control system design largely depends on the

knowledge of the plant. Even though there are several control methods dealing with the

uncertainties of the plant, the more knowledge of the plant, the more accurate and

easier to design a control system. Therefore it is important to get as much as possible

information on the plant (Jagannathan, 2001). The activity of identification that can be

carried out includes:

 On–line identification in which the identification with computers is conducted

on–line with the plant (i.e. the additional of a new data point or data set is

employed to update the model parameters). This is also called real–time

processing or sequential identification.

 Off–line identification which means the identification when the measured signals

are first stored in a block or array (i.e. all data are analyzed once). This is called

batch processing or non-sequential identification (Jagannathan, 2001; Sun and

Zheng, 1998).

 There are two types of identification which can be classified as parametric and

nonparametric. When the model is described by numbers, which represent the

parameters of the plant, the determination of these numbers is called parametric

identification. The input-output description of the plant and constructing a model,

which behaves similarly, is called nonparametric identification (Jagannathan, 2001).

Algorithms that are suited to a real-time usage and are based on the successive updating

of the model parameters are called recursive.

 23

 Least squares and related methods are the most widely used for plant

identification. These methods are attractive because of their simplicity but only if the

model identified is being linear in the parameters. Other methods such as maximum

likelihood estimate and stochastic least squares are also used. The most popular

parameter estimation algorithm is the recursive least square method (RLS), which is

simple to implement and it requires only small computational inputs.

2.3.2 Modification

 The control signal modification depends on the decision. It initiates the required

modification so as to drive the system towards an optimum performance. The decision

function acts upon the information about the present system performance and the

desired or optimum performance. This function is to decide what corrections (if any) to

take and to determine signal (Alexander et al., 2001; Kalkkuhl et al, 1997).

2.4 The Selection of Model Reference

 The concept of model reference was originally born as a particular class of control

systems. The desired performance of control system is expressed in terms of a model

reference which gives the desired response to a command signal. The adaptive control

techniques are essentially evolved to implement high performance control systems

when the plant’s dynamic characteristics are poorly known or when unpredictable

variations occurred (Ioannou and Fidan, 2008). In these techniques, the parameters of

controllers are adjusted on-line based on the error between the outputs of model

reference and control system through an adaptation mechanism.

 24

	1.pdf
	Title.doc
	Organization1.doc
	Organization2.doc
	CHAPTER 1.doc

	CHAPTER 2.pdf
	CHAPTER 3.pdf
	4.pdf
	CHAPTER 4.doc
	CHAPTER 5.doc
	REFERENCES.doc
	Appendices.doc

