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PENGAWAL NEURAL MENGGUNAKAN TEKNIK ALGORITMA GENETIK 

UNTUK SISTEM-SISTEM DINAMIK 

 

ABSTRAK 

           Kajian ini mengemukakan kaedah pembelajaran rangkaian neural (NN) 

pelbilang lapisan dengan menggunakan teknik algoritma genetik (GA). Teknik 

evolusionari berasakan GA ini dikaji dan digunakan untuk skima model rujukan 

kawalan suai (MRAC) bagi loji-loji yang berbeza. GA digunakan untuk memilih 

bilangan nodus-nodus tersembunyi yang optima bagi pengawal neural, di samping 

melatih rangkaian berkenaan bertujuan untuk meminimakan ralat antara keluaran loji 

dengan keluaran model rujukan. Contoh-contoh simulasi mempamerkan bagaimana 

nodus-nodus tersembunyi tersebut beradaptasi melalui penjanaan sehinggalah bilangan 

integer optima tercapai, yang mana ia bergantung kepada kerencaman loji kawalan. 

Operator pengkodan sebenar GA digunakan dalam kajian ini memandangkan 

pengkodan binari tradisional adalah terhad. Seterusnya, kaedah pemilihan hibrid serta 

strategi elitisme digunakan untuk proses pengeluaran semula GA. Perbandingan juga 

dibuat antara pengawal neural yang dicadangkan ini dengan pengawal perkadaran, 

pembezaan, pengkamiran (PID) klasik yang telah dilaras secara genetik. Hasil akhirnya 

digunakan sebagai pengawal suap belakang berasaskan model rujukan. Analisis 

perbandingan juga dibuat berasaskan kadar penumpuan, keupayaan pengesanan model 

rujukan yang diingini dan ketegapan pengawal-pengawal terhadap gangguan keluaran. 

Berdasarkan keputusan simulasi, dapat disimpulkan bahawa pengawal neural yang 

dicadangkan ini adalah lebih baik berbanding pengawal PID dalam kedua-dua aspek: 

ketegapan dan keupayaan pengesanan.  
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NEURAL CONTROLLER UTILIZING GENETIC ALGORITHM TECHNIQUE 

FOR DYNAMIC SYSTEMS 

 

ABSTRACT 

         This research presents a method of learning multilayer Neural Network (NN) 

using Genetic Algorithms (GAs) techniques. The evolutionary techniques based on 

GAs are studied and employed for the Model Reference Adaptive Control (MRAC) 

scheme of different plants. The GAs are used for selecting an optimal number of hidden 

nodes for the neural controller, as well as training the network to minimize the error 

between the output of the plant and the output of the model reference. The simulation 

examples demonstrate how the hidden nodes are adapted through the generation until 

they reach their optimal integer number, which depends on the complexity of the 

controlled plant. The real-coding operators of GAs have been used in this work because 

of the limitations of traditional binary coding. Moreover, a hybrid selection method 

plus elitism strategies are used for reproduction process of the GAs. A comparison 

between the proposed neural controllers with a classical genetically tuned, Proportional 

Derivative Integral (PID) controller is made, in which the final outcome is used as a 

feedback controller based on model reference. A comparative analysis is also made 

based on the speed of convergences, the tracking ability of the desired model reference 

and robustness of these controllers to output disturbances. Based on simulation results, 

it is concluded that the proposed neural controller is better than PID controller in both: 

robustness and tracking ability. 

 xiii



CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1     Background of Research  

          In general, the theory of dynamical systems is the paradigm for modeling and 

studying phenomena that undergo spatial and temporal evolution. These phenomena 

range from simple pendulum to complex atomic lattices, from planetary motion to the 

weather system, from population dynamics to complex biological organisms. The 

application of dynamical systems has nowadays spread to a wide spectrum of 

disciplines including physics, chemistry, biochemistry, biology, economy and even 

sociology. In the past, modeling was mainly restricted to linear or almost linear systems 

for which an analytical treatment is tractable.  

 

        In recent years, with the advancement of powerful computers and the theory of 

dynamical systems, it is now possible to tackle, at some extent into nonlinear systems. 

After all, nonlinearity is at the heart of most of the interesting dynamics. The 

application of the intelligent control schemes has attracted the attention of the 

researchers in the field of control dynamic systems (Yurkovich and Passino, 1999). In 

the areas of control and system engineering, the feed forward networks, such as the 

Multilayer Preceptron (MLP), Radial Basis Function networks (RBF) and the 

Cerebeller Model Articulation Controller (CMAC), seem to have attracted the most 

attention in the area of adaptive control (Brown et al., 1997; Lightbody and Irwin, 

1995).  
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          Neural networks have broad applicability to real world problems, such as in 

pattern recognition, diagnostic, optimization, system identification control, robotics and 

others. They have already been successfully applied in many industries, as they are well 

suited in prediction or forecasting due to abilities in identifying patterns or trend in data 

(Lightbody and Irwin 1995). According to their structures and learning algorithms, 

neural networks can be classified into two main types that are supervised such as Back 

Propagation (BP) and unsupervised learning algorithms such as Kohonen. There exists 

a third type that is called "reinforcement learning", which can be regarded as a special 

form of supervised learning. An example of reinforcement-learning algorithm is the 

Genetic Algorithm (GAs). 

 

1.2    Neural Networks and Genetic Algorithms in Control Engineering: A Survey 

         Many control engineering problems that require some optimal performance have 

been solved in recent years using NNs and GA. For instance, Karunanithi, et al, (1992) 

applied techniques of GAs to NNs problems. These problems include a process of 

optimizing the weighted connections in feedforward NNs using both binary and real 

value representations. They discovered novel architectures in the form of connectivity 

patterns for neural networks by using error propagation.  

 

           Park et al, (1995) introduced a new method for training multilayer NN that used 

GA techniques. They have tested that a method, called “Genlearn” is significantly 

faster than methods that used the Generalized Delta Rule (GDR). Unlike the GDR, GA 

has the advantage, in which, it can escape local minima in its search of weighting 

space. The inventions of GAs have been used over the past twenty-five years in the 

control field. Porter and Jones (1992) have explicitly adopted GAs to solve a three-term 
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controller design problem. They offered new guideline in control and automation. 

Many researchers in control engineering field have used GAs to solve many complex 

problems that are difficult or impossible to solve by traditional methods.  

 

          Canelon et al. (2005) proposed a new approach to control nonlinear discrete 

dynamic systems, which relies on the identification of a discrete model of the system 

by a neural network. A locally equivalent optimal linear model is obtained from the 

neural network model at every operating point that the system goes through during the 

control task. Based on the linear model, a linear state-space control design technique 

can be used to design a local control action and is applied at that particular operating 

point. 

 

        Jones and Oliveira (1995) proposed the techniques of GAs to identify a model of 

the process using on-line data. Then, the identified model, the GA and simulation 

methods, are used to off-line tune a PID controller, so as to minimize a time domain 

based cost function. Finally, the genetically tuned controller is implemented on-line on 

the real process. In same year, Zitar and Hassoun (1995) introduced a machine learning 

system for the rule extraction of temporal control problems. The system used a hybrid 

of reinforcement learning and GA search to train Feedforward Neural Networks 

(FNNs) that can successfully control highly nonlinear and noisy systems. 

 

       Ajlouni et al. (1996) proposed the techniques of GAs as a mean of designing fuzzy 

gain-scheduled PI control schemes for a class of nonlinear plants, where the 

nonlinearity is a function of plant output. They showed that the use of GAs for this 

purpose results in highly effective fuzzy gain-scheduled control systems. Other than 
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that, Porter and Mohamed (1993) discussed the use of GAs to solve the dynamic plant 

inversion problem for trajectory control. 

 

        Park et al. (1995) investigated a neural-controller for non-minimum phase system, 

which trained off-line with GA. Jonse et. al. (1997) adopted the techniques of GAs to 

identify a model of process using experimental data. The identified model, the GA and 

simulation method, are used to off-line tune the dual mode controllers-based cost 

function. Bonissone et al. (1996) used GAs to tune the fuzzy controller’s performance 

by adjusting its parameters (the scaling factors and the membership functions) in a 

sequential order of significance. They demonstrated this approach to the manually 

designed one and with only modest computational effort. Finally, the genetically tuned 

controller is implemented on-line on real process.  

 

       Krohling et al. (1997) proposed an alternative procedure based on real-coded GAs 

with appropriate operators to determine PID controller parameters by minimization of 

an integral performance criterion in frequency domain. As well as, Krohling (1998) 

proposed the techniques of GAs to design crane controllers. The crane is controlled by 

parameters of control law without linearizing the model of system. The proposed 

method offers an alternative to more conventional method such as pole placement 

design. 

 

       Soft computing is proposed by Zadeh to construct new Artificial Intelligent (AI) 

and to solve nonlinear and mathematically unmodeled systems problems (tractability). 

It is the fusion or combination of fuzzy, neural and evolutionary GA computing (Dote, 
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1999). Krishnapura and Jutan (2000) proposed an adaptive neural network controller 

for the control of nonlinear dynamical systems.  

 

1.3    Evolutionary Computation 

         Several computer scientists in 1950s and 1960s studied evolutionary systems with 

the idea that evolution could be used as an optimization tool for engineering problems. 

The idea in these systems was to evolve a population of candidate solutions to a given 

problem using operators inspired by natural genetic variations and natural selection. 

Evolutionary Strategies (ES) were introduced in the 1960s by Rechanberg. He used it 

to optimize real-valued parameters for devices such as airfoils. The field of ES has 

remained an active area of research, mostly developing independently from the field of 

GAs, which will be explained later in more details.  

 

         Evolutionary Programming (EP) developed by Fogel, Owen and Walsh (Mitchell, 

1998) was a technique in which candidate solution to a given tasks are represented as 

finite-state machines. They are developed by randomly mutating their state-transition 

diagrams and selecting the fittest. Together, ES, EP and GAs form the backbone of the 

field of Evolutionary Computation (EC). GAs were invented by John Holland and were 

developed by him and his colleagues at the University of Michigan in the 1960s and 

1970s (Mitchell, 1998). 

 

        In contrast with ES and EP, Holland‘s original goal was not to design algorithms 

to solve specific problems, but rather to formally study the phenomenon of adaptation 

as it occurs in nature and to develop ways, in which the mechanism of natural 

adaptation might be imported into computer systems. Holland‘s GA is a method for 
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moving from one population of “chromosomes” (e.g., string of ones and zeros, or “bit”) 

to a new population by using a kind of “natural selection” together with genetic 

inspired operators of crossover, mutation and inversion. Each chromosome consists of 

“genes” (e.g, “bit”) and each gene being an instance of a particular “allele” (e.g., 0 or 

1). The selection operators chose those chromosomes in the population that will be 

allowed to reproduce and on an average the fitter chromosomes produce more 

offspring’s than the less fit ones.  

 

        Crossover exchange subparts of the two chromosomes roughly mimicking 

biological recombination between the two single-chromosome organisms. Mutation 

randomly changes the allele values of some sections of the chromosome. Holland‘s 

introduction of a population-based algorithm with crossover, inversion and mutation 

was major innovation. Until recently, the theoretical foundation of schema theorem of 

Holland was the basis of almost all-subsequent theoretical work on GAs and 

computational evolution (Mitchell, 1998). 

  

1.3.1    How are GAs Different from Traditional Methods 

            EC including GAs are found to be very good at optimization in applications for 

engineers and scientists. GA is a search algorithm based on the mechanics of natural 

selection and natural genetic (Goldberg, 1989). GAs work with a coding of the 

parameter set not the parameters themselves. Instead of searching a single point, GAs 

search from a population of points in the decision space to determine the next point. 

Therefore, this point-to-point method is dangerous because it is a perfect prescription 

for locating false peaks in multi-modal search spaces. In this way, GAs work from rich 

database of point simultaneously (a population of strings). The probability of finding a 
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false peak is reduced. GAs use payoff (objective function) information, instead of 

derivatives or other auxiliary knowledge. The transition rules of GAs are stochastic 

while many other methods have deterministic transition rules. A distinction exists, 

however, between the randomized operators of GAs and other methods that are simple 

random walks. GAs use random chance to guide a highly exploitative search. This may 

seem unusual, using chance to achieve the directed results (the best points), but nature 

is full of precedent. The power of GAs is clearly beneficial in the case of searching 

among complex search space with many discontinuities or local maxima (or minima). 

GAs manipulates decision on control variable representations at the string level to 

exploit similarities among high performance strings.  

 

       Other methods usually deal with functions and their control variables directly. 

Because GAs operate at the coding level, they are difficult to fail when the function 

may be difficult for traditional schemes. Huge search space does not affect the 

complexity of GAs computation but affect the time of computation. Other methods rely 

heavily on such information and on problems where the necessary information is not 

available or difficult to obtain. GAs remain general by exploiting information available 

for any search problem. GAs processes similarities in the underlying coding together 

with information ranking the structure according to their survival capability in the 

current environment. 
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1.3.2    The Simple GA 

           Given a clearly defined problem to be solved and bit string representation for 

candidate solutions, a simple GA works as follows: 

1- Start with a randomly generated population of (n1-bit) chromosome (candidate 

solutions to a problem). 

2- Calculate the fitness of each chromosome in the population. 

3- Repeat the following steps until n offspring’s have been created. 

a) Select a pair of parent chromosomes from the current population, the 

probability of selection being an increasing function of fitness. Selection is 

done “with replacement”, meaning that the same chromosome can be 

selected more than once to become a parent. 

b) With the probability, denoted as Pc (the “crossover probability” or 

“crossover rate”), crossover the pair at a randomly chosen point (chosen 

with uniform probability) exact copies of their respective parent. 

c) Mutate the two offspring’s at each locus with probability Pm (the mutation 

probability or mutation rate), and place the resulting chromosomes in the 

new population. 

4- Replace the current population with new population. 

5- Go to step 2. 

 

      Each iteration is called a “generation”. The entire process of generation is called a 

“run”. At the end of a run there are often one or more highly fit chromosomes in the 

population. Since randomness plays a large role in each run, two runs with different 

random-number seeds will generally produce different detailed behaviors. The 

schematic diagram of GA is represented in Figure 1.1. 
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Figure 1.1 − Schematic Diagram of Genetic Algorithm  

 

         The simple procedure described as above, is the basis for most application of 

GAs. There are number of details to fill in, such as the size of the population, the 

probabilities of crossover and probability mutation. The success of the algorithm often 

depends greatly on these details. However, the parameters of the simple GA are not 

always the most effective or appropriate ones (Mitchell, 1998; Goldberg, 1989). 

 

1.3.3   Parameters of GA 

           When choosing the values for the various parameters, such as population size, 

crossover rate, and mutation, the following details may be important: 
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a -   Population Size (Npop) 

      The population size affects both the ultimate performance and the effectiveness of 

GAs. GAs generally does poorly with very small population because the population 

provides an insufficient sample size for most hyper planes. On the other hand, a large 

population requires more evolutions per generation, possibly resulting in an 

unacceptable slow rate of convergence. Typically the best population size is selected 

from 50-100 individuals (Mitchell, 1998). 

b -   Crossover Rate (Pc) 

      The crossover rate controls the frequency with which the crossover operator is 

applied. If this rate is too high, it results in the wastage of a lot of computation time in 

exploring promising regions of the solution space. If the crossover ratio is too low, the 

searching stagnates due to the lower exploration rate. Typically the best crossover 

probability is selected such as (0.5≤ Pc ≤ 0.8) (Mitchell, 1998). 

 

c - The Mutation Rate (Pm) 

      The mutation rate controls the rate at which new genes are introduced into the 

population for trial. Usually, the mutation probability is chosen to be quite small, since 

this will help guarantee that all the individuals in the mating pool are not mutated so 

that any search progress that was made is lost (i.e., we keep it relatively low to avoid 

degradation to exhaustive search via a random walk in the search space). Typically the 

best mutation probability is selected from 0.005-0.01 (Mitchell, 1998). 
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1.4    Problem Statement  

          Most systems of interest to human are complex systems but the nonlinear 

dynamic system is one of the most interesting types of complex system. Increased in 

applications of uncertainty complex dynamical systems and also the limitations of 

traditional methods have forced system designers to turn away from the conventional 

control methods. The large dimensionality and interactions between variables of 

dynamical systems are the major obstacles for successful attempts to extend the 

classical techniques to design controllers for multivariable plants.  

             

            In other words, it is difficult to control different complex dynamic models 

which have a huge number of parameters under unexpected environment change with a 

very good accuracy. Thus, this led to a more general concept of control. The controller 

ability is necessary to control uncertainty system accurately and with acceptable 

performance characteristics over a very wide range. For this purpose, the Neural 

Network technique (NNs) co-operating with Genetic algorithm technique (GAs) are 

used in this work to control highly nonlinear and noisy systems.  
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1.5    Research Objectives 

         The main aim of the project is to investigate the use of Feedforward Neural 

Network (FNN) as an adaptive controller for different linear and nonlinear dynamical 

plants including Single Input Single Output (SISO) and Multi Input Multi Output 

(MIMO) models utilizing the genetic algorithm techniques. The specific research 

objectives are as follows: 

(a)   To design a structure of neural genetic controller employing the parallel model 

reference then, to compare the neural genetic controller with a conventional 

controller. The comparison of simulation results is based on the speed of 

convergences, the tracking ability of the desired model reference and the 

robustness of these controllers to output disturbances. 

(b)    To design neural genetic controller for an overhead crane and gas-turbine as 

nonlinear dynamic applications.   

(c)    To optimize the genetic algorithm with real-coding and hybrid selection method, 

and use it as learning procedure to find the parameters and the required 

architecture of the NN controllers when they are used as ordinary feedback 

controllers.  

 

1.6    Research Scope and Approach 

         This research focuses on complex dynamic systems which have huge number of 

parameters. As explained in the problem statement, the large dimensionality of many 

processes and the significant interaction between variables of dynamical systems are 

the major obstacles for the successful attempts of extending the classical techniques for 

the design of controllers to multivariable plants. The use of NNs in control systems can 

be seen as a natural step in the evolution of control methodology to meet the needs of 
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rapidly advancing technology and a competitive market. Basically, there are three 

major needs: 

1- The need to deal with increasingly complex systems. 

2- The need to accomplish increasingly demanding design requirements. 

3- The need to attain these requirements with less precise advanced knowledge of 

plants and their environment.    

         As well as, many techniques have been used for structure and optimizing the 

design of control system. Genetic algorithm technique is attractive for a number of 

reasons. 

1- It can handle problem constraints by simply embedding them into the 

chromosome coding. 

2- GA can solve multi-objective problem. 

3- Since it is a technique independent of the error surface, it is ready to solve 

multi-modal, non-differentiable, and non-continuous problems. 

4- It is very easy to understand the technique with very few (or even none) 

mathematics. 

       The genetic algorithm technique and simulation of neural networks system is 

developed in MATLAB 7.5.a. As for any search and learning method, the way in which 

candidate solutions are encoded, is a factor in the success of GA. In this research, the 

direct parallel MRAC incorporating neural controller and  will be used as 

feedback controller to make the plant track the model reference trajectory. The 

evolutionary approach such as  can serve as a very powerful tool in helping to find 

the network (controller) parameters and the architecture for a specific problem.           

The powerful abilities of the proposed neural genetic controller mode are tested through 

a discrete model representation for speed of convergence, the tracking ability and 

FNNs

GAs
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robustness by simulation. Then, comparative study will be done between this proposed 

controller and the classical PID by applying both of them to control different plants.  

 

1.7 Thesis Outline 

The thesis is organized as follows: 

  Chapter one introduces a general background about NNs and GAs. Their terminology 

and some of the GAs applications are surveyed with the most attention given to those in 

control systems engineering. 

  Chapter two introduces the principle concept of adaptive control, concentrating on 

model reference and self-tuning control scheme. 

  Chapter three presents the genetic parameters optimization of fixed neural controller 

structure. Also, a comparison with PID controller is introduced based on the model 

reference configuration for controlling different linear and non-linear plants. 

  Chapter four discusses the use of GAs to find the optimal number of hidden nodes for 

the proposed neural controller in chapter three, to control different plants. In other 

words, this chapter presents the utilization of genetic optimization of variable neural 

controller structure (i.e. with variable chromosome length). This chapter provides with 

a discussion and survey on the previous work on the problem concerned.     

 Chapter five summarizes the conclusions and suggestions for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1    Introduction 

         Recently, many attempts in field of intelligent control using different approaches 

have been proposed to control complex dynamic models with unexpected environment 

changes. Dongming Xu et. al,(2005) presented a direct adaptive approach to design 

controllers for nonlinear dynamical systems, where system identification of the 

unknown dynamical system is not required. That approach used both Echo State 

Network (ESN) and Genetic Algorithm (GA). ESN is a simple modeling of the 

controller which only a linear readout needs to be trained. The GA is used to optimize 

ESN linear readout directly so that system identification is not required. Other than 

that, Dracopoulos and Jones, (1997) also applied an adaptive control architecture using 

neural networks and genetic algorithms to a complex, highly nonlinear and chaotic 

dynamic system which uses small control adjustments to stabilize a chaotic system (for 

a satellite) . In an otherwise unstable but natural periodic orbit of the system, the neural 

genetic controller may uses large control adjustments and proves capable of actively 

attaining any specified system state, with no prior knowledge of the dynamics even in 

the presence of significant noise. 

 
         Meanwhile, in this research the model reference adaptive control architecture was 

used as an alternative for using classical optimization objectives that are represented in 

terms of performance indices. Therefore, the problem is to tune a fixed controller for 

linear and nonlinear time invariant plants so that the response of control system is 

almost similar with the response of the model reference adaptive control. In other 

words, all required performance specifications of control system are given in terms of 
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the response of the model. The use of model reference has the following advantages 

(Ioannou and Fidan, 2008): 

i. The capability of achieving a high performance taking into consideration all terms 

that describe transient response behavior. 

ii. Avoiding the use of multi-objective optimization techniques, which will become 

difficult when they are used for large dimension of objectives. 

iii. All optimization requirements are simply specified by one statement (the model-

reference). 

 

2.2    Adaptive Control 

         The requirement for more complex and higher performance control system has 

been the stimulus for the development of a systematic control theory. Even with the 

development of such a systematic control theory, there is still something else missing. 

The adaptive control concept seems old and has gained a significant interest since the 

early 1950‘s (Ioannou and Fidan, 2008; Lecchinia et. al., 2006). Unlike fixed control 

systems, the adaptive control systems adapt or adjust their behavior to the changing 

properties of the controlled plants and their environment.  

 

          The two basic schemes of controller‘s adaptation can be distinguished, as shown 

in Figure 2.1. The behavior changes are indicated by measurable signals (where z is 

external disturbance), and if it is known in advance, then the controller has to be 

adapted in dependencies of these signals. Feed forward adaptation (open loop 

adaptation) can be applied as shown in Figure 2.1(a). Here no feedback for the 

adaptation exists from internal closed loop signals to the controller. The other scheme 

can be called the feedback adaptation (closed loop adaptation) as shown in Figure 
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2.1(b). In the first step of closed loop adaptation, information on the plant behavior 

(structure and parameters) is gained by measuring plant input  and output 

signals . This can be performed by plant identification. Based on this 

information, the controller can be calculated and adapted (Ioannou and Fidan, 2008; 

Tin and Poon, 2005; Lecchinia et. al., 2006).    
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Figure 2.1 − Basic Adaptation Schemes (a) Feed forward Adaptation. (b) Feed back 

                          Adaptation. 
       

         Two types of adaptive control are considered in the literature. They are: Self-

Tuning Controller (STC) and Model Reference Adaptive Controller (MRAC). 
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2.2.1    Self –Tuning Controller          

            Self-tuning control is an approach to the automatic tuning problem. It can be 

viewed either as a tuning aid for control laws which has fixed parameters (like the 

widely used three-term controller in industry), or as means of which a time varying 

plant can be controlled in a consistent way. The self-tuner has three main elements as 

shown in Figure 2.2. A recursive parameter estimator monitors the plant‘s input and 

output and computes an estimate of the plant dynamic in terms of a set of parameters in 

a prescribed structural model. The parameter estimates are then fed into a control 

algorithm, which then provides a new set of coefficient for feedback law. The control 

algorithm simply accepts the current estimates and ignores their uncertainties; such a 

procedure is called certainty-equivalent. The rationale for this approach is that, 

although there may be a poor control during the tuning phase, taking suitable 

precautions can minimize this, but the overall algorithm is considerably simplified 

(Krstic et al, 1997).                        
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Figure 2.2 − Structure of An Explicit Self-Tuner 

  



 

2.2.2   Model Reference Adaptive Control Schemes  

           The basic principle of a model reference control scheme is shown in Figure 2.3. 
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Figure 2.3 − Model Reference Adaptive Control 

 

          As mentioned before, the desired performance is expressed in terms of a model 

reference, which gives the desired specification (response) to a reference input. The 

system also has an ordinary feedback loop which is composed of plant and the 

controller. The error is the difference between the output of plant and the model 

reference. The controller has parameters that changes based on this error (called 

modeling error to distinguish it from the feedback error). There are thus two feedback 

loops in Figure 2.3. An inner loop, which provides the ordinary control feedback, and 

an outer loop adjusts the parameters in the inner loop. The inner loop is assumed to be 

faster than the outer loop (Alexander et al, 2001; Patiño and Liu, 2000). The idea of 

MRAC is compelling to the closed loop system behavior following a desired model 

reference for all operating conditions (i.e. the error will be minimum). So the control 

law is derived from the plant's parameters and the model's parameters. If the plant’s 

parameters are not known, then the estimated parameters will be used instead. The 

  



 

MRAC can be classified according to the position of model reference with respect to 

the controlled plant (Alexander et al., 2001). 

a. Parallel MRAC 

      The most popular form of MRAC scheme is shown in Figure 2.4. 
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Figure 2.4 − Parallel MRAC 

 

         Figure 2.4 shows that a model reference is placed in parallel with the plant. The 

plant input or the reference input may be used by the adaptation mechanism. A 

characteristic of most (but not all) MRAC scheme is the direct adaptation, without an 

explicit parameter estimation part. 

b. Series MRAC 

       In this scheme, the model reference is placed in cascade with the plant and can be 

regarded as a trajectory generator. The series type is illustrated in Figure 2.5. 
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Figure 2.5 − Series MRAC 

c. Series-Parallel MRAC 

      This is a combination of a parallel and series configuration.  
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Figure 2.6 − Series Parallel MRAC 

 

          Moreover, MRAC systems can be classified into direct and indirect control 

(Alexander et al., 2001). 

 Direct Control - Comparison is between model reference and a control loop 

with an adaptive controller as shown in Figure 2.7. 
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 Indirect Control - Comparison is between the system and its model directly, 

(explicit identification and implicit control) as shown in Figure 2.8. 
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Figure 2.7 − Direct MRAC 
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Figure 2.8 − Indirect MRAC 

 

2.3     Basic Functions to Implement Adaptive Control 

          Adaptive control is usually based on a simulation model identification and 

control. To implement adaptive control techniques on real system, the following 

procedures must be considered (Alexander et al., 2001; Filip et al., 2009). 

  



 

2.3.1   Identification  

            Identification is a fundamental problem of the system theory. The control 

problem so closely related that the control system design largely depends on the 

knowledge of the plant. Even though there are several control methods dealing with the 

uncertainties of the plant, the more knowledge of the plant, the more accurate and 

easier to design a control system. Therefore it is important to get as much as possible 

information on the plant (Jagannathan, 2001). The activity of identification that can be 

carried out includes: 

 On–line identification in which the identification with computers is conducted 

on–line with the plant (i.e. the additional of a new data point or data set is 

employed to update the model parameters). This is also called real–time 

processing or sequential identification. 

 Off–line identification which means the identification when the measured signals 

are first stored in a block or array (i.e. all data are analyzed once). This is called 

batch processing or non-sequential identification (Jagannathan, 2001; Sun and 

Zheng, 1998). 

 

         There are two types of identification which can be classified as parametric and 

nonparametric. When the model is described by numbers, which represent the 

parameters of the plant, the determination of these numbers is called parametric 

identification. The input-output description of the plant and constructing a model, 

which behaves similarly, is called nonparametric identification (Jagannathan, 2001).        

Algorithms that are suited to a real-time usage and are based on the successive updating 

of the model parameters are called recursive. 
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          Least squares and related methods are the most widely used for plant 

identification. These methods are attractive because of their simplicity but only if the 

model identified is being linear in the parameters. Other methods such as maximum 

likelihood estimate and stochastic least squares are also used. The most popular 

parameter estimation algorithm is the recursive least square method (RLS), which is 

simple to implement and it requires only small computational inputs. 

 

2.3.2  Modification 

           The control signal modification depends on the decision. It initiates the required 

modification so as to drive the system towards an optimum performance. The decision 

function acts upon the information about the present system performance and the 

desired or optimum performance. This function is to decide what corrections (if any) to 

take and to determine signal (Alexander et al., 2001; Kalkkuhl et al, 1997). 

 

2.4 The Selection of Model Reference 

       The concept of model reference was originally born as a particular class of control 

systems. The desired performance of control system is expressed in terms of a model 

reference which gives the desired response to a command signal. The adaptive control 

techniques are essentially evolved to implement high performance control systems 

when the plant’s dynamic characteristics are poorly known or when unpredictable 

variations occurred (Ioannou and Fidan, 2008). In these techniques, the parameters of 

controllers are adjusted on-line based on the error between the outputs of model 

reference and control system through an adaptation mechanism.  
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