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PENGKLONAN DAN PENGEKSPRESAN GEN SINTETIK 

ERYTHROPOIETIN MANUSIA DALAM  YIS METALOTROFIK, Pichia 

pastoris 

 

 

ABSTRAK 

 

 Erythropoietin manusia adalah hormon atau glikoprotein yang dihasilkan di 

buah pinggang dan tulang sumsum dengan fungsi fisiologikal yang penting seperti 

penghasilan sel darah merah, pertumbuhan sel darah baru dan penyembuh luka. 

Sumber asal EPO manusia diekstrak dari urin manusia (uhuEPO). Alternatifnya, 

rekombinan erythropoietin manusia dapat menampung bekalan uhuEPO yang 

terbatas. Oleh itu, fokus dalam kajian ini adalah untuk menghasilkan sintetik huEPO 

dan diekspres di dalam Pichia pastoris. Kaedah pemasangan tindak balas rantaian 

polymerase (PCR) digunakan untuk menghasilkan gen sintetik menggunakan dua 

puluh set oligonukleotida yang saling bertindih, yang terdiri daripada jujukan gen 

huEPO A dan enzim penyekat. Keputusan dari analisis jujukan DNA menunjukan 

gen sintetik huEPO dipadankan dengan tepat walaupun sedikit mutasi terhasil. Gen 

sintetik huEPO A yang tiada mutasi telah berjaya diperolehi menggunakan sistem 

mutagenesis terarah tapak. Kemudian, ia disubklonkan ke dalam pPIC9k dan 

ditransfomasi ke dalam strain Pichia, GS115. Transformasi plasmid rekombinan 

yang telah diluruskan telah berjaya dintegrasi di lokus HIS4 antara plasmid 

rekombinan dan genom P. pastoris seterusnya menghasilkan tranforman His+ Mut+. 

Kajian pengekspresan skala kecil dijalankan dan kultur-kultur diinduksi 

menggunakan metanol selama tiga hari (0 hingga 72 jam) dengan selang masa 24 

jam.  Protein rhuEPO yang dirembeskan terhasil pada jalur 30 kDa dan disahkan 

dengan analisis ELISA. Berdasarkan analisis ELISA, jumlah EPO yang tertinggi 

dihasilkan pada 72 jam.  
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CLONING AND EXPRESSION OF SYNTHETIC HUMAN 

ERYTHROPOIETIN IN METHYLOTROPHIC YEAST, Pichia pastoris 
 

ABSTRACT 

 

 Human erythropoietin is a hormone or glycoprotein produced by the kidney 

and bone marrow with important physiological functions, such as, erythropoiesis, 

angiogenesis, and wound healing.  The natural source of huEpo is purified from 

human urine (uhuEPO). Alternatively, recombinant human erythropoietin could 

overcome the limited supply of uhuEPO. Thus, the focus of this study is to generate a 

synthetic huEPO gene and express in Pichia pastoris. PCR assembly method utilized 

to construct a synthetic gene using twenty sets of overlapping oligonucleotides, 

covering the huEPO A gene sequence and two newly introduced restriction enzyme 

sites. Results from DNA sequence analysis showed accurate assembled synthetic 

huEPO gene albeit minor base mutations detected. A free-mutation synthetic huEPO 

A gene successfully obtained using site directed mutagenesis system. Then it was 

sub-cloned into pPIC9k and was transformed into Pichia strain, GS115. 

Transformation of the linearized recombinant construct successfully integrated at the 

HIS4 locus between the recombinant plasmid and the P. pastoris genome, hence, 

generating  His+ Mut+ transformants. The small scale expression studies were carried 

out and the cultures were induced with methanol for three days (0 to 72 hr) with 24 

hr interval time. Secreted rhuEPO protein was observed at approximately 30 kDa 

band and further confirmed using ELISA analysis. Based on ELISA analysis, the 

highest amount of Epo concentration was observed at 72 hr.  
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1.0 INTRODUCTION  

1.1 Human Erythropoietin (huEPO)  

Anemia is a life-threatening disease and one of the world’s leading clinical 

problems. Its incident will further increasing in ageing population (Weiss and 

Goodnough, 2005). World Health Organization estimates that anemic patient in 

worldwide population will be staggering two billion and that approximately 50% of 

all anemia can be attributed to iron deficiency (World Health Organization, 2001). 

Development of anemia treatment had been carried out with many strategies and 

become an active research area. Realized there is a close relationship between 

impaired renal and anemia had prompted the researcher to study erythropoietin 

(EPO) as the predominant hematopoietic growth factor found in the renal that 

controls red blood cells formation. The existence postulated as early as 1906 (as cited 

by Carnot et al., 1906 in Sytkowski, 2004) but very little information about the 

structure of EPO had been published because of its very limited availability.  

EPO derived from anemic sheep was purified in 1971 (Goldwasser and Kung, 

1971) but the amount obtained was too small. The need to produce EPO in high 

quantity had encouraged the pioneering work to isolate 10 mg EPO from 2550 liters 

of human urine (Miyake et al., 1977; Jelkmann, 2000). The preparation allowed the 

identification of the amino acid sequence and synthesized human EPO DNA probes 

for the isolation and cloning of the human EPO gene from mRNA in kidney and liver 

which are the major site of EPO production (Jacobs et al., 1985; Dame et al., 1998; 

Jelkmann, 2000). Attempt to increase EPO production using recombinant DNA 

technique became a big success as in 1985, the first recombinant human EPO 

(rhuEPO) became available for clinical trials. It was introduced into clinical practical 

practice for correction of anemia of renal failure in 1989 and become available for 

renal patients throughout the world (Eschbach, 1994) since the use of recombinant 

human EPO had received United States Food and Drug Administration (US FDA) 

approval. RhuEPO had been produced in various cell lines; in peculiar CHO and 

BHK cells (Inoue et al., 1995). Currently, recombinant human EPO in CHO cell line 

that exhibit as similar as the natural EPO is extensively used in the therapy to cure 

severe anemia (Didier et al., 2000).  

EPO becomes a breakthrough in replacement therapy area (Eschbach et al., 

1987) for correction of anemia and now it is not solely known for its therapeutic used 

in hematopoietic cells as the importance extended to various tissues and systems. 
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Knowing EPO multifunctions and become the top list product in biopharmaceutical 

market (Pavlou and Reichert, 2004) encourage researchers seek an alternative 

strategy to replace EPO in mammalian cells with other low cost expression system 

that produced higher expression level. Thus, EPO has been produced in insect cells 

(Quelle et al., 1989), bacteria (Lee, 1984), plants (Matsumoto et al., 1995; Cheon et 

al., 2004; Weise et al., 2007) and yeasts (Elliott et al., 1989) that showed variation in 

expression level, glycosylation pattern and biological activity.  

 

1.1.1 EPO gene and structure  

EPO belongs to hematopoietic growth factor group involves in red blood cells 

maintenance. Hematopoietic growth factor is a family of cytokines that interact with 

specific receptor on hematopoietic cells (Clark and Kamen, 1987; Nicola, 1989). It is 

required for the survival, proliferation and differentiation of hematopietic progenitors 

by regulating the specific cells which they interact and further stimulate the 

formation of red blood cells (Clark and Kamen, 1987).  

The human EPO gene present as a single copy and located on the long arm 

chromosome 7 in the region q11-q22 (Powell et al., 1986; Law et al., 1986). The 

restriction fragment length polymorphisms, inherited in a Mendelian fashion, have 

been identified (Lin, 1987). It spans approximately 2.2 kb from the ATG codon to 

the stop codon. EPO consists of five exons (582 base pairs) and four introns (1562 

base pairs). No promoter-like sequences were originally identified and the promoter 

was more like that of housekeeping gene than an inducible one (Shoemaker and 

Mitsock, 1986). It proposed that EPO is constitutively produced, since it is never 

absent from plasma (Spivak and Hogans, 1987), even when there is extreme 

erythrocytosis (Moccia et al., 1980).  

 It is a heavily glycosylated protein consisting 165 amino acid with calculated 

molecular weight is 18,398 dalton (Jacobs et al., 1985; Lin et al., 1985) and it 

migrates to 30,000 dalton (Celik et al., 2007) in fully glycosylated form. The crystal 

structure of human EPO is shown in Figure 1.1. This hydrophobic polypeptide 

contain one O- and three N- linked sites, the oligosaccharide side chains or 

glycosylation sites appears to be required for the processing and transportation of  

EPO from its cell of origin (Dube et al., 1988). It is also required for prolongation of 

its biological half life, however it is not required for receptor binding (Narhi et al., 

1991). The glycosylation sites for three complex type N-glycans located at  
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Figure 1.1 The crystal structure of EPO complexed to the extracellular 

  ligand- binding domains of the EPO-R shown in ribbons                                          

  illustration (Adapted from Syed et al., 1998). 
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asparagine (Asn) residues at positions 24, 38 and 83 and a mucin- type- O- glycan 

located at ser-126 and comprise about 40% of the total mass of EPO (Celik et al., 

2007). The molecules contain two internal disulfide bonds, and their conformational 

equivalent appears to be necessary for biological activity (MacDonald et al., 1986).  

 

1.1.2 Erythropoietin (EPO) production in the cells 

 

EPO production in the cell was linked with an early erythropoiesis 

developmental biology and EPO was found in the yolk sac. It is an organ comprising 

of two layers, extra-embryonic mesodermal cells and visceral endodermal cells. The 

endodermal layer is in direct contact with macromolecules derived from the maternal 

plasma, and these molecules along with others synthesized by the endoderm itself 

influence development in the mesodermal layer within these so called “blood 

islands” (Jollie, 1990). Lee et al., (2001) examined mouse embryos for EPO and 

EPO-R expression in situ hybridization. They discovered EPO-R expression in the 

yolk sac at stage E8.0 and in the yolk sac vasculature at E9.0. However, their results 

were varied with Yasuda et al., (2002) who carried out a very similar study on 

gestational day 10 embryos using in situ hybridization and immunohistochemistry.  

They detected EPO mRNA in 57.6% of endodermal epithelial cells by in situ 

hybridization and EPO protein in 52.8% by immunohistochemistry. 

Kidney shows importance to the regulation of red blood cells thus it is known 

as the site production of circulating EPO. EPO is produced in the kidney in response 

to the oxygen tension of the blood and work as a positive feedback to increase the 

production of red blood cells. When it alarmed with the signal such as hypoxia or 

oxygen stress from cells, EPO production significantly increased as it circulates from 

kidney to the bone marrow where it stimulates the proliferation and differentiation of 

red blood cell progenitors (Chen et al., 2004). This mechanism helps in increasing 

oxygen carrying capacity. An early immunohistochemistry studies by Fisher and 

coworker localized EPO to the glomerulus (Fisher et al., 1965). After continuous 

studies carried out, the investigator detected EPO mRNA in the peritubular 

interstitial cells from anemic rats using a combination of in situ hybridization and 

immunohistochemistry (Bachmann et al., 1993).  

There is evidence indicating that EPO produced in the bone marrow, the main 

producer of red blood cells. Hermine et al., (1991) used RT-PCR and demonstrated 
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an EPO PCR product in both human and murine bone marrow. They used antisense 

oligodeoxynucleotides and showed that downregulating either EPO or its receptor 

caused decreased in mixed erythroid/ non-erythroid colony formation in vitro. Stopka 

and coworkers showed that differentiating CD34+ cells expressed both EPO and 

EPO-R detected by RT-PCR (Stopka et al., 1998). This finding suggests a potential 

autocrine or paracrine action of EPO within the bone marrow.   

In the mammalian fetus, EPO is expressed primarily in the liver. As ontogeny 

continues, EPO production in liver is suppressed and kidney production becomes 

predominant. Two types of cells in the liver had been identified to produce EPO 

using in situ hybridization.  Koury et al., (1991) first studied adult mice using in situ 

hybridization and demonstrated EPO mRNA in isolated hepatocytes. Additionally, a 

small population of nonepithelial appearing cells in or near the sinusoids also 

contained EPO mRNA. Wintour et al., (1996) examined the 41 day ovine fetus and 

identified EPO mRNA in both mesonephros and the metanephros as well as in the 

liver by RT-PCR. In situ hybridization of the mesonephros demonstrated that the 

EPO mRNA was present in interstitial cells lying between the proximal but not the 

distal tubules, similar to those cells identified in the anemic adult mouse kidney 

(Koury et al., 1991; Lacombe et al., 1988) 

In order to determine the presence of EPO in the plasma, several assays have 

been developed. Qualitative assay was the earliest assay used to determine EPO; 

consist of measuring increasing number of red blood cell, reticulocyte numbers or 

hematocrit (Krantz et al., 1970; Fisher, 1998). Followed by a method that measured 

EPO with the incorporation of  
59Fe into the circulating red blood cells of normal rats 

(White et al., 1960). As many assays being developed, it becomes clear that there 

was a need for standardization. Initially the “Cobalt unit” that was defined as the 

amount of EPO stimulated in the fasted rat assay equal to 5 µmol of cobalt was 

developed (White et al., 1960). Then Standard A was introduced which recognized 

as lyophilized Step IV sheep EPO (23 U/mg) as the crude preparation of EPO 

partially purified from the plasma of anemic sheep was relatively stable (Goldwasser 

et al., 1962). Later, Standard B was developed consist of lyophilized crude human 

urinary EPO. It defined 1 unit of EPO that contain in 1.48 mg of the Standard protein 

10 International Units (10 IU) per ampoule. This is also known as the Second 

International Reference Preparation (Annable et al., 1972). Now, it is being replaced 
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by the Second International Standard 2003, which also is composed of pure 

recombinant EPO (120 IU/ampoule) (World Health Organization, 2003). 

 

1.1.2.1 Regulation of EPO production  

In normal condition, EPO present in a low concentration but under anemic or 

anoxic stress, high amount of EPO were found in the plasma and also excreted in the 

urine. An early study showed that the starting material to extract EPO was obtained 

from urine of anemic patient (Miyake et al., 1977; Jelkman, 2000). There are several 

factors that regulate EPO production.  

Hypoxia-inducible factor-1 (HIF-1) is a fundamental physiologic stimulus 

that causes a rapid increase in renal production of EPO through an exponential 

increase in the number of EPO-producing cells (Koury et al., 1989). It acts as a 

transcription factor for a large number of hypoxia-inducible genes, including those 

coding for vascular endothelial growth factor, platelet-derived growth factor, 

glycolytic enzymes, as well as for EPO (Wang, 1993). Hypoxia is a condition when 

the tissues are deprived of oxygen. There are four types of hypoxia that include 

hypoxemic, anemic, stagnant, and histotoxic. Model for EPO production regulation 

is shown in Figure 1.2.  It seems most likely that several transducer substances 

released during hypoxia (adenosine, eicosanoids, catecholamines) and reoxygenation 

(oxygen-derived metabolites such as hydrogen peroxide) activate adenylate cyclase 

to generate cAMP, which in turn activates protein kinase A. Finally it leads to the 

production of phosphoprotein which are involved in transcription and translation of 

the final 166-amino acid EPO molecule. Hydroxylation of HIF-1 by prolyl 

hydroxylase, which requires the presence of oxygen, predisposes HIF-1 to 

ubiquitination by the von Hippel-Lindau protein, followed by degradation in the 

proteosome. In contrast when oxygen is absent, HIF-1 is not susceptible to 

degradation and HIF-1 levels increase rapidly, followed by up-regulation of many 

hypoxia-responsive genes, including that for EPO (Prchal, 2003).  

Factors other than tissue hypoxia might be involved in the regulation of EPO 

production or may influence serum concentration. Abnormally high EPO levels have 

been reported in patients with aplastic anemia (Gaines et al., 1992), and dramatic 

changes in serum levels have been described after chemotherapy (Schapira et al., 

1990; Birgegard et al., 1989) and during vitamin B12 or iron replacement therapy  
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Figure 1.2 Regulation of hypoxia that stimulates EPO secretion. Several  

  chemical agents released and activation of receptor in the cell  

  membrane further initiates transcriptional and/or translational  

  stages of EPO biosynthesis (Adapted from Sytkowski, 2004). 
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(Kendall et al., 1992; Cazzola et al., 1992). These finding shows that the higher 

number of RBC precursors the faster the EPO clearance (Cazzola et al., 1996a). 

Inflammatory cytokines may interfere with EPO gene expression. Interleukin-

1 (IL-1) and transforming growth factor β (TGF β) have found to inhibit hypoxia-

induced EPO production in vitro (Faquin et al., 1992; Jelkmann et al., 1992). These 

cytokines also inhibit erythroid progenitor cells proliferation, thus playing a major 

role in the pathogenesis of the anemia of chronic disease (Means et al., 1992). At 

variance, IL-6 was shown to mimic hypoxia in vitro (Faquin et al., 1992) and 

elevated levels in human are associated with adequate endogenous EPO production 

(Cazzola et al., 1996b). Another factor is increase in plasma viscosity that inhibits 

EPO formation, thus contribute to anemia both inflammation and monoclonal 

gammophaties (Singh et al., 1993). 

  

1.1.3 EPO receptor 

Cytokines activate its biological activity by binding to the specific receptor 

that found on the surface of the cells known as EPO receptor (EPO-R) (D’Andrea et 

al., 1990). Unlike human insulin that produced in a specific islet, EPO is produced 

by numerous cell types and EPO-R is expressed on a wide variety of cells, both 

hematopoietic and non hematopoietic cells. It is suggesting that EPO expanding its 

therapeutic function beyond erythropoiesis owing to the wide distribution of EPO 

receptor.  

The EPO-R is a member of the cytokine receptor superfamily (Latini et al., 

2008) that forms a dimer on the cell surface and for erythropoiesis, it exists in a 

preformed dimerized configuration in which a single ligand molecule engages two 

identical receptor extracellular domains (Frank, 2002). EPO functioned 

mechanistically as a cross-linker that brings the intracellular portion of its receptor 

(EPO-R) into close proximity, producing the signal transduction events that 

eventually allow the cells to mature into red blood cells. However the monomeric 

EPO-R also appears to be capable of interacting with other membrane receptor 

proteins forming heteromeric receptor complexes that modulates different signals 

unrelated to erythropoiesis (Latini et al., 2008). 

It is also play a beneficial role in cells protection, activating cytoprotection 

(e.g., in the brain, heart and kidney), reducing inflammatory responses, preserving 

vascular integrity, and mobilizing stem cells, including proliferation and 
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differentiation of endothelial progenitor cells (Latini et al., 2008). Observations of 

EPO-R expression in cancer cells, coupled with identification of non-haematopoietic 

functions of EPO, have stimulated much preclinical research into the potential 

growth-modulating and hypoxia-related effects of EPO on cancer cells. (Ősterborg et 

al., 2007). Thus, accumulated data and studies of EPO related signaling pathway 

give a promising treatment for ischemic stroke in brain (Noguchi et al., 2007), heart 

failure (Latini  et al., 2008) and vascular injuries (Fliser et al., 2008).  

 

1.1.3.1 Activation of EPO signaling pathway 

In response to the interaction between EPO and EPO-R had allowed the 

conformational changes of receptor dimers and further initiate tyrosine 

phosphorylation and activation of several interacellular signaling protein; including 

JAK-STAT system, phosphatidylinositol-3 kinase and protein kinase B, mitogen-

activated protein-kinase kinase (MAP kinase), phospholipase C/ protein kinase C, 

nuclear factor kB and recently endothelial nitric oxide synthase (eNOS) (Latini et al., 

2008; Fliser et al., 2008). Activation of EPO and EPO-R that initiates several signal 

pathways are shown in Figure 1.3.   

Activation of janus tyrosine kinase 2 and signal transducer-activator of 

transcription 5 (JAK2-STAT5) system leads to homodimeric formation following the 

phosphorylation, translocates to the nucleus and activates target genes related to cell 

growth, survival and differentiation (Foley, 2008). This process also results in up-

regulation of anti-apoptotic proteins such as Bcl-2 that inhibit programmed cell death 

of erythrocyte precursors (Wojchowski et al., 1999). Therefore it gives benefit for 

cells protection against apoptosis and prolongs cells survival other than showed 

beneficial role for proliferation and differentiation red blood cells.   

Another important signaling pathway induced by EPO is the 

phosphatidylinositol (PI)-3 kinase that activates the serine/threonine protein kinase B 

also known as Akt (Latini et al., 2008). After Akt targeted at PI-rich membrane, and 

is activated by phosphorylation at Thr308 and Ser474 from two distinct PI-dependent 

kinases (Bao et al., 1999) and subsequently, the proapoptic factor Bad phosphorylate, 

which in turn disassociates from a cell survival factor, Bcl-XL resulting in protection 

from apoptosis (Datta et al., 1997). Prevention of Akt phosphorylation eliminates the 

tissues protection effect by EPO (Fliser et al., 2008). As well as PI 3-kinase signal 

pathway, mitogen-activated protein kinase (MAP kinase) also contribute to glycogen  
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Figure 1.3 Activation of several intercellular signaling pathways by EPO-EPO-R 

  interaction (Adapted from Latini et al., 2008). 
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synthase kinase 3ß inhibition, a key regulator of the mitochondrial permeability 

transition pore and therefore reduced in synergistic manner, the probability of 

mitochondrial injury, leakage of cytochrome c, and subsequent activation of 

apoptosis (Juhaszova et al., 2004) 

Recently, activation of endothelial nitric oxide synthase (eNOS) by EPO has 

been identified to be of particular importance for its endothelial and vascular effect 

(Beleslin-Cokic et al., 2004 and d’Uscio et al., 2007). This interesting discovery 

showed that EPO capable to regulate proliferation and differentiation of endothelial 

progenitor cells (EPCs) that required for vascular restorative process and promote 

endothelial regeneration (Asahara et al., 1999; Dzau et al., 2005).  Phoshorylation of 

eNOS in EPCs begin with PI3K/AKT activation then result in nitric oxide (NO) 

formation which is necessary for endothelial repair. EPO-EPO-R interaction also 

stimulates eNOS signaling pathway that promotes proliferation and differentiation of 

neural progenitor cells or neuron that exhibit as neuroprotective in brain (Noguchi et 

al., 2007).  

 

1.1.4 Expression of rhuEPO in various expression system  

Introduction of EPO to recombinant DNA technology and the abilty to 

produce recombinant protein in a large scale manufacture has profoundly impacted 

the replacement therapy field as EPO has made important contributions to human 

health mainly for patients suffer from anemia. Since then, researchers have applied 

expression of rhuEPO in different protein expression systems derived from 

mammalian, plant, insect, bacteria and yeast cells.  

RhuEPO was initially expressed in mammalian cells-culture system, CHO 

cells and was extensively used for biomedicine application. Lin et al., (1985) first 

reported that human EPO has been isolated from genomic phage library using 20-

mer and 17-mer oligonucleotide probes and expression of EPO was biologically 

active in vitro and in vivo in CHO cells. This pioneering work had contributed to 

active research works for production of EPO in CHO cells. Inoue et al., (1995) 

reported that EPO gene amplification can be achieved in CHO cell clones deficient in 

the dihydrofolate reductase gene, which allows for co-selection in the presence of 

methotrexate. Thus, chinese hamster ovary (CHO) cell lines are preferably host for 

the production of therapeutic glycoproteins as it offers several advantages, including 

an established infrastructure in the biotechnology industry, processs capability, and 
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the capacity to produce proteins with N-glycans similar to those found on human 

proteins. However, CHO cell-based expression systems also have several 

disadvantages such as a relatively high cost of goods, the potential for propagating 

infectious agents, such as viruses and prions; along development time from gene to 

production cell line; and the inability to adequately control N-glycosylation 

(Sethuraman and Stadheim, 2006). The structure of the glycan chains of this rhuEPO 

slightly differ of those of the urinary human EPO (uhuEPO), considered as the 

natural EPO molecule. These later differ from those of urinary human EPO by (1) the 

presence of NeuGc (less than 3% of total sialic acid) which exhibits a strong 

immunogenicity in adult human, (2) the kind of sialyl linkages (only 2–3 sialyl 

linkage), and (3) a number of LacNAc repeat slightly increased (up to three per 

molecule for some glycans) (Didier et al., 1999). In order to produce EPO similar 

with natural EPO glycan chain structures, EPO gene was expressed in a human 

lymphoblastoid cell line, named RPMI 1788 (Didier et al., 1999). But the data 

obtained from this study showed that in vivo and in vitro biological activities were 

not impared when compared to EPO-CHO and uhuEPO. 

Transgenic plants and animals are alternative expression system for the 

production of therapeutic glycoprotein. Studies for expression of rhuEPO in 

transgenic plants and animals were carried out. EPO had been expressed in tobacco 

and Arabidopsis, but encountered male sterility and retarded vegetative growth 

(Cheon et al., 2004). It was reported that the male sterility in EPO plants was caused 

by less pollen and shorter filaments compared to wild type controls, which affected 

self- pollination (Cheon et al., 2004). Also, a major limitation of plant-based 

expression systems is the production of non-human glycan structures that essentially 

lack galactose and sialic acid, and which contain the potentially immunogenic sugars 

xylose and α1,3-fucose (Gomord and Faye, 2004). The potential allergic responses to 

these sugars could limit the development of plants for the production of therapeutic 

glycoproteins (Sethuraman and Stadheim, 2006).  A study was carried out to produce 

EPO in transgenic animals. Park et al., (2005) have developed a line of transgenic 

swine harboring rhuEPO using microinjection into fertilized one cell pig zygotes. 

This study provides evidence that production of purified rhuEPO from transgenic pig 

milk is a potentially valuable technology, and can be used as a cost effective 

alternative in clinical applications as well as providing other clinical advantages 

(Park et al., 2005). However the recombinant protein derive from transgenic animals 
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are unable to generate proper glycosylation as N-glycans of proteins produced in 

transgenic animals contain high-mannose and hybrid type glycans with low sialic 

acid content compared to human proteins (Van Berkel et al., 2002). This difference 

contributes to reduce the proteins serum half-life.  

 

1.1.5 Clinical application of rhuEPO 

RhuEPO has been in widespread clinical use for over 15 years. Initially it 

used for the treatment of anemia associated with chronic renal failure, it has now 

been demonstrated to be effective in treating anemia in a variety of other clinical 

settings including HIV, cancer, surgery, and most recently, critical illness (Henry et 

al., 2004). The rationale for rhuEPO therapy is that increase of erythropoiesis process 

will result in higher hemoglobin, a more rapid return to a normal hemoglobin level, 

and subsequently, a reduced need for red blood cells transfusions. 

 

1.1.5.1 Treatment of Anemia  

EPO was first used in end-stage renal disease to lower blood transfusion 

dependency, a major clinical challenge of this era. Two other unexpected clinical 

effects also became apparent: improved quality of life and exacerbation (Eschbach, 

1987; 1989). Chronic kidney disease is common in patients with cardiac failure thus 

they share major risk factor and similar treatment. Hence it would benefits both 

conditions if major clinical trials in chronic kidney disease could inform the design 

of trials in cardiac failure and vice-versa. Anemia presence in both condition and 

gene therapy strategy with EPO served a potential benefits in reduction of hypoxic 

vasodilatation, lower venous return, regression of left ventricular dilation and 

increased capacity to buffer hypoxic stress conferred by higher hemoglobin 

concentrations (Foley, 2008). It has been controversial in defining optimum 

hemoglobin targets even several trials had been conducted. While most guideline 

suggests that target hemoglobin should be at least 11 g/dl (Locatelli, 2004; National 

Kidney Foundation, 2006). Evidence from recent studies suggesting hemoglobin 

target above 13 g/dl may increase the risk of cardiovascular events and death (Foley, 

2008).  

Impaired renal failure leads to anemia is more frequent among diabetic 

patient with nephropathy than non-diabetic patients with comparable renal failure 

caused by other factors (Dikow et al., 2002; Thomas et al., 2005). It is now clear that 
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advanced renal failure causes anemia because of EPO deficiency, as well as 

haematologic consequences of uraemia. Angiotensin converting enzyme inhibitor 

(ACE-I) medication and volume expansion can also exacerbate anemia in patients 

with renal failure (Bosman et al., 2001; Silverberg et al., 2003; Thomas et al., 2004). 

EPO administration protects against myocardial cell apoptosis, decrease infarct size 

and enhances microvascular growth resulting in enhanced cardiac function, improved 

left ventricular function and improves exercise capacity (Mancini et al., 2003; Meer 

et al., 2004; Wright et al., 2004; Maiese et al., 2005). Clinical application of 10 days 

rhuEPO in nine stable subjects with diabetes on maintenance dialysis showed 

improvement regarding insulin resistance (Spaia et al., 2000). It has also been 

reported that EPO improves mental abilities, exercise tolerance, well-being and life 

style of the recipients (Thomas et al., 2004). 

 Anemia is a frequent complication in patients with cancer. In cancer, anemia 

may result either from the evolution of the disease itself or from applied treatments 

and particularly, chemotherapy and/or radiotherapy (Milano and Schneider, 2006). 

Several studies have shown that survival of anemic patients is reduced and this in 

various types of cancers (lung, cervix, head and neck, prostate, multiple myelomas, 

lymphomas); the risk of a fatal outcome increases from 19 to 75 % in anemic patients 

according to the disease localization (Caro et al., 2001). It has been suggested that 

normalization of blood hemoglobin may improve quality of life and survival in 

cancer, particularly in the case of a disseminated disease (Manegold, 1998; Caro et 

al., 2001). EPO α and EPO β isoforms are currently in clinical use and these EPO 

isoforms are classically administered by the subcutaneous routine three times per 

week at doses ranging from 150 to 300 U/kg. However, recent studies suggest that a 

once-a-week subcutaneous injection of 30,000–40,000 units leads to equivalent 

results for anemia correction (Gabrilove et al., 2001).  

Anemia is found in about two thirds of patients with acquired 

immunodefiency syndrome (AIDS) and generally worsens during the treatment with 

zidozudine (AZT) (Cazzola et al., 1997). Patient suffers with AIDS normally has 

inappropriately low endogenous EPO levels. Treatment with zidozudine helps to 

increase EPO levels but still remain disproportionately depressed. Hence EPO 

therapy is a favorable approach instead of blood transfusion. Dosages of rhuEPO of 

100 to 200 IU/kg administered IV or SC three times a week induced increased 

hematocrit (Hct) and reduction of transfusion requirement in patients with baseline 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5S-4MR1K5D-2&_user=4187955&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1076901096&_rerunOrigin=google&_acct=C000012438&_version=1&_urlVersion=0&_userid=4187955&md5=44d2018073503ee1fd0e11de1bcee551#vt1#vt1
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serum EPO levels less than 500 mU/mL (Fischl et al., 1990; Henry et al., 1992) A 

large study using weekly dosages of 24 000 to 48 000 U/wk in patients with baseline 

EPO less than 500 mU/mL and Hct less than 30 % showed an increase in Hct of at 

least 6 Hct points and a decrease in transfusion requirement in 44 % of the patients 

(Phair et al., 1993).  

  

1.1.5.2 Miscellaneous uses  

As an alternative to blood transfusion in critically ill patients, rhuEPO 

therapy has been demonstrated to increase production of red blood cells that 

complimentary to other approaches to reduce loss in the Intensive Care Unit (ICU) 

and decrease the transfusion threshold in the management of the critically ill patients. 

Critically ill patients receive extraordinarily large number of red blood cells and 

blood transfusion practice is a favorable approach. Although advances in transfusion 

medicine have greatly decreased the risk of viral transmission during blood 

transfusion, other concerns regarding the risk and efficacy of transfusion practice and 

have led to a reexamination of the approach to blood transfusion (Corwin 2006).  In 

patients with multiple organ failure, rhuEPO therapy (600 U/kg) has been shown to 

stimulate erythropoiesis (Gabriel et al., 1998). In a small, randomized, placebo 

controlled trial of 160 patients (Corwin et al., 1999) therapy with rhuEPO resulted in 

an almost 50 % reduction in the number of RBC units transfused as compared with 

placebo. In this trial, patients with hematocrit less than 38 % on Intensive Care Unit 

(ICU)  day 3, rhuEPO was given at a dose of 300 U/kg daily for 5 days and then 

every other day until Intensive Care Unit (ICU) discharge. Despite receiving fewer 

RBC transfusions, patients in the rhuEPO group had a significantly greater increase 

in hemoglobin level (Corwin, 2006).   

Patients undergoing organ transplantation are treated with cyclosporine A to 

avoid rejection. This drug reduces EPO production and therefore may be responsible 

for the development of hyporegenerative anemia. RhuEPO was shown to correct 

anemia and eliminate transfusion requirement in children undergoing cardiac 

transplantation (Locatelli, 1994).   
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1.2     Technique of synthetic gene construction  

1.2.1 Background 

Genetic constructs for the expression of proteins now frequently use synthetic 

DNA. This is because sequence information from genome and metagenome 

sequencing project has increased exponentially over the last decade (Venter et al., 

2004) but most of these sequences are not available as physical DNA. Thus, 

synthetic gene that appears as similar as native gene with respectively mimics the 

natural gene characteristic used widely to generate a gene encoding virtual proteins.  

Synthetic gene is composed of genetic material that provides an immediate and easy 

path from sequence databases and sequence manipulation to physical DNA, enabling 

research without relying on natural DNA sequences or existing DNA sequences.  

Gene synthesis technique becomes a powerful gene tool in generating 

functional synthetic gene since it serves an easy, rapid and cheaper way without 

depending on mRNA isolation, genomic library (cDNA) as well as preparation of the 

natural material. Traditional technique that utilizes cDNA libraries or genomic DNA 

preps is costly, time-consuming, and error-prone and sometimes is impossible to 

obtain. It is a convenient method to obtain sequence-verified cloned DNA, especially 

when the sources of biological materials are rare, lost or dangerous specimen, when 

codons need to be optimized for expression in particular host or when the desired 

sequence is chimeric or designed de novo (Marsic et al., 2008). Cloning of cDNA of 

interest from natural mRNA has been reported to have problems due to poor sample 

availability and the high level of nucleases present in the collected source (Smith et 

al., 1982).   

Expansion of gene synthesis technology coupled with the availability of gene 

sequence data raise much attention from researcher to fully construct DNA fragment 

and applied in de nova synthesis of novel biopolymers (Van Hest and Tirrell, 2001), 

codon optimization (Gustafsson et al., 2004), construction of DNA vaccines (Yang et 

al., 2004) or simple gaining access to known DNA sequences when the original 

templates are unavailable (Dong et al., 2007). Several strategies of gene synthesis 

have been described including oligonucleotide ligation (Scarpulla et al., 1982), the 

FokI method (Mandecki and Bolling, 1988), self-primer PCR (Dillon and Rosen, 

1990; Chen et al., 1994; Hayashi et al., 1994) and PCR assembly (Stemmer et al., 

1995) 
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1.2.2 Gene assembly technique 

The principal method for assembling DNA duplexes from synthetic oligos 

was the joining of complimentary overlapping complexes with the aid of T4 DNA 

ligase and first elaborated in the late 1960s by Har Gobind Khorana (Agarwal et al., 

1970). In the classic gene assembly method (Khorana, 1979), synthetic DNA oligos 

are 5’ phosphorylated using T4 kinase, annealed to form overlapping duplexes, and 

then enzymatically joined using T4 DNA ligase. A variation of that method was used 

to synthesize a 5386 bp ΦX174 RFI DNA molecules in 2 weeks (Smith et al., 2003) 

where 42- mer oligos were 5’ phosphorylated, gel- purified, annealed and ligated 

using Taq ligase at 55o.C. This strategy was applied broadly in order to synthesis 

many genes prior to the expression in E. coli, for instance, human immune interferon 

(Tanaka et al., 1983) and human interferon- gene (Edge et al., 1983). 

Although gene assembly technique offers a simple and rapid step, the cost in 

generating a synthetic gene is high especially when construct a large gene. The 

assembly efficiency of the host cells is low, thus multiple screening test needed to be 

carried out for positive results. Narang et al., (1986) had reported that mixture of 

linearized plasmid containing six synthetic complimentary oligos was directly 

transformed into competent cells. They found out that 1 out of 100 transformants was 

positive in colony hybridization using one of the synthetic fragment probes. 

 

1.2.3 PCR mediated gene assembly  

The most appealing method had been introduced for gene synthesis strategy 

is PCR assembly described by Stemmer et al., (1995) due to its inherent simplicity. 

This method uses oligos of 40 nucleotides long that overlap each other by 20 

nucleotides. The oligos are designed to cover the complete sequence of both strands, 

and the full length gene is generated progressively in a single reaction by overlap 

extension PCR (OEPCR), followed by amplification in a separate tube by PCR with 

two outer primers (Dong et al., 2007). 

In assembly PCR strategy, short oligos are selected which cover the desired 

gene duplex, with overlaps between successive oligos on the complementary (so-

called sense and anti-sense) strands of the duplex. The oligos are synthesized 

separately, and are pooled in solution. Assembly of the oligos is achieved via 

hybridization of overlapping oligos on the sense and anti-sense strands. PCR 

extension with the presence of DNA polymerase is used to fill in any gaps in the 
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assembly, and second PCR performed in order to amplify the product (Stemmer et 

al., 1995). This strategy initially derived by the success of DNA shuffling that was 

introduced as a  method  for in  vitro  recombination  by combinatorial assembly of 

genes from random  fragments generated by partial  DNase I digestion (Stemmer et 

al.,  1994 a, b), or from a mixture  of oligos and  random  fragments  (Crameri  and 

Stemmer, 1995).   

Emerging technologies aim to significantly improve the scale and reliability 

of gene synthesis, enabling synthesis of genes of length 10 kb and up to 100 kb, as 

well as multiplexed synthesis of sets of genes (Tian et al., 2004). These technologies 

typically avoid the traditional high cost of individual oligo synthesis, by the use of 

parallel synthesis of primer-tagged oligos on photolithographic microarrays, 

followed by amplification of oligos and cleavage of primers. Further array-based 

hybridization techniques are used to identify and remove oligos with in correct base 

composition due to synthesis errors (Thachuk and Condon, 2007). 

 

1.3 Pichia pastoris as an expression system 

1.3.1 Background 

Yeast and other fungal protein expression host are widely accepted as a cost 

effective expression systems, easy to manipulate, able to grow rapidly and capability 

to produce protein using a eukaryotic protein-synthesis pathway. Since the early 

1980’s, yeast have been used the large-scale production of intracellular and 

extracellular proteins of human, animal and plant origins (Romanos et al., 1992; 

Romanos, 1995). One of the most successful and widely used yeast is Pichia 

pastoris, a methylotrophic yeast that able to yield higher recombinant protein. At 

present, the methylotrophic yeast P. pastoris has been used for the production of over 

420 heterologous proteins (Macauley-Patrick et al., 2005; Liu and Liu, 2008). 

 Discovery of P. pastoris started about 30 years ago when Koichi Ogata first 

described a new yeast species that can utilize methanol as its sole source of carbon 

and energy (Ogata et al., 1969). The methanol utilized-yeast (methylotrophs) 

attracted immediate attention as potential sources of single-cell protein (SCP) to be 

marketed primarily as high-protein animal feed. During 1970s, Philip Petroleum 

Company of Bartiesville, USA, started to cultivate P. pastoris in media containing 

methanol as carbon source (Wegner, 1990). Unfortunately, the oil crisis in 1970s 

caused a dramatic increased in the cost of methane but the price of soybeans 
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decreased. As soybean was the major alternative source of animal feed, then the 

choice of SCP production from methanol become less popular. Then P. pastoris was 

developed as a single-cell heterologous gene expression system and become success 

in biotechnology area. Researcher at SIBIA (Salk Institute Biotechnology/Industrial 

associates. Inc) isolated the alcohol oxidase 1 (AOX1) gene and developed vectors, 

strains and methods for molecular genetic manipulation of P. pastoris (Cregg et al., 

1985; Ellis et al., 1985; Cregg and Madden, 1987; Tschopp et al., 1987b; Cregg et 

al., 1989; Koutz et al., 1989).  

The genetic nomenclature adopted for P. pastoris mirrors that used for 

Saccharomyces cerevisiae, one of the most well characterized systems in modern 

biology (Higgins, 1995). S. cerevisiae was the first eukaryotic expression system to 

be used, and remains the most common due to the vast amount of information 

available on its genetics and physiology (Zhang et al., 2000). However P. pastoris 

had raised much attention than S. cerevisiae due to several factors. It can be grown to 

higher densities up to 100 g/L [dry weight] which is difficult to reach with S. 

cerevisiae that is not always optimal for large-scale production due to problems such 

as loss of the plasmid during scale-up, hyperglycosylation, and low protein yield 

(Romanos et al., 1992). The rapid acceptance of P. pastoris as an expression system 

is due to the strong regulated expression under the control of AOX1 promoter, along 

with the strong preference of P. pastoris for respiratory growth that greatly facilitates 

P. pastoris culturing at high cell densities (Higgins and Cregg, 1998). 

  

1.3.2 AOX1 promoter and methanol metabolism 

Methyltrophic yeast is a yeast species that able to use methanol as their 

source of energy. There are four different genera that capable metabolizing methanol 

including Pichia spp., Candida spp, Hansenula spp. and Torulopsis spp. (Higgins 

and Cregg, 1998). The methanol metabolic pathway appears to be the same in all 

yeasts and involves a unique set of pathway enzymes (Veenhuis et al., 1983).  The 

first step in the metabolism of methanol is the oxidation of methanol to 

formaldehyde, generating hydrogen peroxide in the process, by the enzyme alcohol 

oxidase (AOX). This reaction is accomplished by catalase (CAT), which converts the 

hydrogen peroxide into water and hydrogen (Veenhuis and Harder, 1991).  In order 

to avoid hydrogen peroxide toxicity, this first step in methanol metabolism takes 
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place within a specialized organelle, called the peroxisome, which sequesters toxic 

hydrogen peroxide away from the rest of the cell (Higgins and Cregg, 1998).  

Alcohol oxidase is a homooctomer with each subunit containing one non-

covalently bound FAD (flavin adenine di-nucleotide) co-factor that act as a 

prosthetic group (Van der Klei et al., 1991). It has a poor affinity for oxygen and 

methylotrophic yeasts appear to compensate for this deficiency by synthesizing large 

amounts of the enzyme (Higgins and Cregg, 1998). There are two genes in P. 

pastoris that encode alcohol oxidase, AOX1 and AOX2. When induced with 

methanol, the AOX1 promoter is responsible for the vast majority of alcohol oxidase 

activity in the cell (Cregg et al., 1989). Disruption of the AOX1 gene or its promoter 

leads to a slow methanol utilization (Muts) phenotype. As the cells must rely on the 

weaker AOX2 for methanol metabolism, and this gene yields 10-20 times less alcohol 

oxidase activity than the AOX1 gene, a slower growing and slower methanol utilizing 

strain is produced. Because of its slower growth, it is desirable when a gene product 

is difficult to synthesize, slow to fold, or must undergo other complex 

posttranslational modifications (Daly and Hearn, 2005).   

In methanol grown cultures, alcohol oxidase can constitute up to 30 % of the 

total cellular protein (Gellissen, 2000).  This strong AOX1 promoter has therefore 

been utilized to drive the expression of recombinant proteins to high levels. In 

methanol-grown shake-flask cultures, this level is typically about 5 % of total soluble 

protein but can be ≥ 30 % in cells fed methanol at growth limiting rates in fermentor 

cultures (Couderc and Baratti, 1980).  

 

1.3.3 Common expression strains  

All P. pastoris expression strains are derived from NRRL-Y 11430 (Northern 

Regional Research Laboratories, USA). Some have a mutation in one or more 

auxotrophic genes to allow for selection of expression vectors containing the 

complementing biosynthetic gene (e.g. HIS4) upon transformation (Cregg et al., 

1985). All of these strains grow on complex media but require supplementation with 

histidine (or other appropriate nutrient) for growth on minimal media (Higgins and 

Cregg, 1998).  

The most commonly used expression host is wild-type or GS115 (his4), 

which are wild type with regard to the AOX1 and AOX2 genes and grow on methanol 

at the wild-type rate (methanol utilization plus or Mut+ phenotype). Strains with 
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deleted AOX genes sometimes are better producers of a foreign protein than wild-

type strains (Tschopp et al., 1987b; Cregg et al., 1987; Chirulova et al., 1997). These 

strains also require much less methanol to induce expression, which can be useful in 

large fermenter cultures where large amounts of methanol are sometimes considered 

a significant fire hazard. KM71 (his4 arg4 aox1Δ::ARG4) is a strain in which the 

chromosomal AOX1 gene is largely deleted and replaced with the S. cerevisiae ARG4 

gene (Cregg and Madden, 1987) As a result, this strain must rely on the much weaker 

AOX2 gene for AOX and grows on methanol at a slow rate (methanol utilization slow 

or MutS phenotype). The third host, MC100-3 (his4 arg4 aox1Δ::SARG4 

aox2Δ::Phis4), is deleted for both AOX genes and is totally unable to grow on 

methanol (methanol utilization minus or Mut- phenotype) (Cregg et al., 1989; 

Chirulova et al., 1997).  

Some foreign protein secretes into the culture medium and unstable due to 

rapid degradation by proteases there. This condition can contribute to reduce the total 

amount of protein production and complicate the recovery process. Major vacuolar 

proteases appear to be a significant factor in degradation, particularly in fermenter 

cultures, due to the high cell density environment combination with the lysis of a 

small percentage of cells. The use of host strains that are defective in these proteases 

has proven to help reduce degradation in several instances. SMD1163 (his4 pep4 

prb1), SMD1165 (his4 prb1), or SMD1168 (his4 pep4) are a series of protease-

deficient strains that may provide a more suitable environment for expression of 

certain heterologous proteins.  

The PEP4 gene encodes proteinase A, a vacuolar aspartyl protease required 

for the activation of other vacuolar proteases such as carboxy peptidase Y and 

proteinase B. Proteinase B, prior to processing and activation by proteinase A, has 

about half the activity of the processed enzyme. The PRB1 gene codes for proteinase 

B. Therefore, pep4 mutants display a substantial decrease or elimination in 

proteinase A and carboxy peptidase Y activities, and partial reduction in proteinase B 

activity. In the prb1 mutant, only proteinase B activity is eliminated, while pep4 prb1 

double mutants show a substantial reduction or elimination in all three of these 

protease activities (Higgins and Cregg, 1998). Unfortunately, these protease deficient 

cells are not as vigorous as wild type strains due to lower viability, that possesses a 

slower growth rate and show difficulty to transform (Cereghino and Cregg, 2000). 
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So, this type of strains are recommended when proteolysis protection in foreign 

proteins are strictly required.   

 

1.3.4 Expression vectors 

Vectors containing the AOX1 promoter have been commercially available 

and have been used for the production of cytosolic or secreted proteins for 

approximately two decades (Romanos et al., 1992; Cregg et al., 1993). Even though 

autonomous replication sequences PARS1 and PARS2 have been described for 

generating stable episomal plasmids (Cregg et al., 1985), the majority of available P. 

pastoris vectors are designed for integration into various yeast chromosomal loci 

(Romanos et al., 1992; Cregg et al., 1993; Scorer et al., 1994). The most common 

features for P. pastoris expression vector components include a fragment of the 

promoter, a multiple cloning site (MCS), AOX1 5’ for insertion of foreign DNA 

sequences and a 3’ fragment of the AOX1 gene required for transcription termination 

(Tschopp et al., 1987b; Cregg et al., 1987). Additional features that are present in 

certain P. pastoris expression vectors serve as tools for specialized functions.  

Heterologous proteins produce in P. pastoris can either be expressed 

intracellularly or secreted into the medium. As yeast secrete only low levels of native 

protein, extracellular production of recombinant protein is most desirable as the 

secreted heterologous protein will constitute the vast majority of the protein in the 

medium.  For secretion of foreign proteins, vectors have been constructed that 

contain a DNA sequence encoding a secretion signal. Signal sequences derived from 

the P. pastoris acid phosphatase pho1p or the S. cerevisiae-mating factors are 

introduced to generate in-frame gene fusions in the vectors (Higgins and Cregg, 

1998).  Thus, secretion serves an easy and speed purification process compared to 

expression protein intracellularly. However, the option of secretion is usually limited 

to foreign proteins that are normally secreted by their native hosts. 

Two groups of marker genes involve are the auxotrophic marker group and 

the dominant antibiotic resistance group (Ilgen et al., 2005; Cereghino and 

Cereghino, 2007). Several vectors are available which have auxotrophic markers for 

elements of the arginine, adenine, histidine, uracil and methionine biosynthetic 

pathways in P. pastoris (Cereghino et al., 2001; Nett and Gerngross, 2003; Nett et 

al., 2005; Thor et al., 2005). The most common marker genes containing dominant 

antibiotic resistance markers are the Sh ble gene from Streptoalloteichus hinustanus 
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and the BSD gene from Aspergillus terreus, encoding zeocin and blasticid in 

resistance, respectively (Miles et al., 1998). Another dominant selectable marker that 

has been described for use in P. pastoris is the sorR system, based on the Sorangium 

cellulosum enzyme acetyl-CoA carboxylase, which confers resistance to the 

macrocyclic polyketide soraphen A (Wan et al., 2004). The P. pastoris formaldehyde 

dehydrogenasegene (FLD1), which has been developed as a marker for transformant 

selection using fld1 host cells (Sunga and Cregg, 2004; Resina et al., 2005, 2007). 

The G-418 sulphate resistance gene, under the control of the bacterial Tn903 kanR 

promoter, has previously been utilized for work with P. pastoris, but only as a 

secondary marker after primary selection with an auxotrophic marker such as HIS4 

(Scorer et al., 1994; Clare et al., 1991a). Recently, substitution of the native bacterial 

promoterin P. pastoris with the constitutive GAP promoter resulted in improved 

expression of a modified Tn903 kanR gene that conferred resistance to G-418 

sulphate and demonstrated transformants containing up to 4 copies of the E. coli- 

lactamase gene, as determined from real-time PCR analysis (Cereghino et al., 2008).  

 

1.3.5 Integration of expression vectors into the P. pastoris genome 

In order to generate a stable transformants, P. pastoris is transformed by 

integration of the expression cassette into the chromosome at a specific locus 

(Sreekrishna et al., 1997; Cregg and Higgins, 1995). Chromosomal integration is 

more desirable than the use of episomal plasmid expression systems as episomal 

plasmids tend to have low copy number, and this will affect the amount of product 

expressed (Daly and Hearn, 2005). The size of the plasmid may also affect the 

stability in the host since large episomal plasmids can be lost during repeated 

generations as they are mitotically unstable (Thiry and Cingolani, 2002; Romanos et 

al., 1992). In addition, transformants containing episomal plasmids need to be 

cultured under continual ‘selection-based’ media conditions in order to maintain the 

transformed population of cells (Romanos et al., 1992). This procedure may require 

the use of additives such as antibiotics, which in turn result in increased production 

costs (Thiry and Cingolani, 2002). Development of genetically stable expression 

strains is therefore highly desirable (Thiry and Cingolani, 2002) with a rate of vector 

loss less than 1 % per generation in the absence of selectable markers usually set as 

the target (Romanos, 1995). Moreover, such integration vectors usually contain 

selectable markers that enable detection of the transformants. Some vectors allow for 
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direct analysis of tandem multiple integration events, but other wise further analysis 

of the integration number is required (Daly and Hearn, 2005). Integration into the 

genome can occur via homologous recombination when the vector or expression 

cassette contains regions that are homologous to the P. pastoris genome and hence 

integration can occur via gene insertion or gene replacement shown in Figure 1.4. 

Integration by gene insertion can result in tandem multiple integration events due to 

repeated recombination events at a rate of 1–10 % of transformants (Clare et al., 

1991a). Transformations that target gene replacement generally result in single copy 

transformants; however, gene replacement transformants are usually more 

genetically stable (Romanos et al., 1992; Clare et al., 1991a). Gene replacement is 

achieved by digesting the 5’and 3’ ends of the vector correspond to the 5’ and 3’ 

AOX1 regions of the AOX1 chromosomal locus. Transformation, therefore, results in 

site-specific eviction of the AOX1 gene (Figure 1.4). This event occurs at a frequency 

of 5–25 % of the transformants (Sreekrishna et al., 1997; Romanos, 1995). This 

event occurs at a frequency of 5–25 % of the transformants (Sreekrishna et al., 1997; 

Romanos, 1995). The other transformants are either His+ conversions or of the Mut+ 

phenotype as a result of gene insertion events at either the his4 or AOX1 locus 

(Figure 1.4). (Romanos, 1995). The site of integration and the type (insertion or 

replacement) events can be confirmed by southern blot analysis hybridized with a 

probe generated from the AOX1 promoter region (Paifer et al., 1994). 

The introduction of the expression cassette into the yeast chromosome can be 

achieved in a variety of ways including spheroplast formation, electroporation and 

lithium chloride treatments. The spheroplast transformation method has been used to 

generate multi-copy transformants by using vectors such as pPIC9K and pPIC9 

(Greenwald et al., 1998; Berger et al., 2002). This method requires several steps with 

the risk that contamination of the yeast may occur. Also, over digestion with the cell-

lysing enzyme, zymolyase can reduce cell viability. Electroporation has become 

increasingly popular and can be used successfully with zeocin-resistant vectors. This 

method requires fewer steps and the risk of contamination is reduced. Experience in 

this laboratory has shown that very efficient expression systems can be constructed 

through application of this strategy, enabling adiverse range of mature and correctly 

folded proteins to be prepared and readily purified, particularly when they contain a 

peptide tag, such as hexahistidine, at the N- or C- terminal positions. For example,  
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