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PEMBELAJARAN DAN PENGOPTIMUMAN FUNGSI
KERNEL DARIPADA DATA YANG TIDAK CUKUP BERLABEL

ABSTRAK

Dalam semua teknik pembelajaran, kaedah inti menjadi semakin popular kerana ke-

cekapan, kejituan serta kebolehannya untuk mengendalikan data berdimensi tinggi.

Masalah asas yang berkaitan dengan teknik pembelajaran ini adalah pilihan fungsi

inti. Oleh itu, inti sebagai suatu prosedur yang fungsi inti dipilih bagi set data terten-

tu adalah penting. Dalam tesis ini, dua pendekatan dicadangkan untuk mempelajari

fungsi inti: pembelajaran pindah dan pendekatan tanpa-selia. Pendekatan pertama

menggunakan pengetahuan yang dipindahkan daripada data tidak berlabel. Data tidak

berlabel digunakan seiring dengan data berlabel bagi mengoptimumkan inti dengan

menggunakan analisis beza-layan Fisher dan selisih min maksimum. Kejituan penge-

lasan menunjukkan bahawa bilangan contoh ujian yang diramal dengan betul daripa-

da inti asas. Di samping itu, inti yang dioptimum dibandingkan dalam dua set data

yang melibatkan imej satelit dan data sintetik, yang menunjukkan bahawa pendekatan

yang dicadangkan mampu memberikan keputusan yang lebih baik. Pendekatan ked-

ua merupakan suatu kaedah tanpa-selia untuk mempelajari gabungan linear daripada

fungsi inti. Di sini, struktur intrinsik data tidak berlabel ditaabir melalui suatu langkah

yang dikenali sebagai pengaruh, yang dikira dengan membina suatu graf berpemberat.

Langkah pengaruh dalam ruang sifat secara kebarangkaliannya berkaitan dengan ruang

input yang membolehkan suatu masalah pengoptimuman dapat diselesaikan. Masalah

xiii



pengoptmuman dirumus dalam dua konveks yang berbeza, iaitu: pemprograman linear

dan pemprograman separa tentu, yang bergantung pada jenis gabungan inti yang diper-

timbangkan. Di sini, dua sumbangan dapat dirumuskan. Yang pertama, pendekatan

tanpa-selia baru untuk mempelajari fungsi inti . Yang kedua, suatu kaedah untuk men-

taabir kesamaan yang diwakili oleh fungsi inti melalui pengiraan pengaruh global di

setiap titik pada struktur set data. Pendekatan yang dicadangkan ini menekankan pil-

ihan inti yang bebas atau tidak bergantung pada algoritma pembelajaran berasaskan

inti. Penilaian empirik daripada pendekatan yang dicadangkan pada pengelasan imej

dan teks menunjukkan keberkesanan algoritma dalam mendapatkan lebih banyak hasil

yang jitu.
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LEARNING AND OPTIMIZATION OF THE KERNEL
FUNCTIONS FROM INSUFFICIENTLY LABELED DATA

ABSTRACT

Amongst all the machine learning techniques, kernel methods are increasingly be-

coming popular due to their efficiency, accuracy and ability to handle high-dimensional

data. The fundamental problem related to these learning techniques is the selection of

the kernel function. Therefore, learning the kernel as a procedure in which the kernel

function is selected for a particular dataset is highly important. In this thesis, two ap-

proaches to learn the kernel function are proposed: transferred learning of the kernel

and an unsupervised approach to learn the kernel. The first approach uses transferred

knowledge from unlabeled data to cope with situations where training examples are

scarce. Unlabeled data is used in conjunction with labeled data to construct an opti-

mized kernel using Fisher discriminant analysis and maximum mean discrepancy. The

accuracy of classification which indicates the number of correctly predicted test ex-

amples from the base kernels and the optimized kernel are compared in two datasets

involving satellite images and synthetic data where proposed approach produces better

results. The second approach is an unsupervised method to learn a linear combination

of kernel functions. Here, the global intrinsic structure of the unlabeled data is inferred

through a measure called influence, which is computed by constructing a weighted

graph and performing a random walk upon it. The measure of influence in the fea-

ture space is probabilistically related to the input space that yields an optimization

xv



problem to be solved. The optimization problem is formulated in two different con-

vex settings, namely linear and semidefinite programming, depending on the type of

kernel combination considered. Here, the contributions are twofold: first, a novel un-

supervised approach to learn the kernel function, and second, a method to infer the

local similarity represented by the kernel function by measuring the global influence

of each point towards the structure of the dataset. The proposed approach focuses on

the kernel selection which is independent of the kernel-based learning algorithm. The

empirical evaluation of the proposed approach on image and text classification shows

the effectiveness of the algorithm in obtaining more accurate results.
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CHAPTER 1

INTRODUCTION

Machine learning is a multidisciplinary field that concerns with the design and de-

velopment of algorithms that allows computers to learn, predict and generalize the

previous experiences. Computers are able to observe the events and we are hoping

to use the observations to predict future events with the help of machine learning.

The observations are used to formulate a hypothesis about a specific incident. Us-

ing machine learning techniques, computers have so far depicted a significant level

of learning ability. Currently, the most important applications of machine learning

are in computer vision (for example recognizing objects in a picture), information re-

trieval (for example identifying the titles related to one specific news article), natural

language processing (for example recognizing part of speech in a document) and many

newly emerged applications like finding genes in DNA sequences, mining the social

networks and others.

Machine learning algorithms Bishop (2006) (or learning algorithms in short) use

observations, or training examples (samples) as in the machine learning parlance, as

previous experience to learn to improve their behavior in future. Training examples are

usually considered in a batch known as a dataset. The objective of a learning algorithm

is to build a hypothesis or model that forms an appropriate insight into the nature of the

problem. Any model obtained from data, maps the training examples (input space) to

1



their prediction value (output or target space). The process of using the instances of a

dataset to learn the prediction model for that dataset is called the training phase. In the

training phase, learning algorithms seek to find the nature of the underlying problem

by investigating the instances of data. In general, having more training examples will

increase the chance of correct prediction as the learning algorithm is more familiar

with various aspects of the observations. However in many cases, the dataset contains

misleading instances that hinder the learning process due to the imperfection in mea-

surement devices. Consequently in any learning algorithm, the possible existence of

noise should be considered.

A training example is commonly represented in the form of a list of all the values

extracted from the training object called feature vector. There are other representations

like graphs or strings, but in this research the emphasis is on the commonly known

vector representation. This representation of instances paves the way to treat them as

points or vectors and perform well-established mathematical and physical analysis.

Machine learning algorithms are usually organized into several categories based

on the type of training examples. Apart from the presented categories, other types of

learning algorithms like reinforcement learning are also considered which are beyond

the scope of this thesis.

• Supervised learning is the category of learning algorithms that deals with the

labeled data. By labeled data, we mean that each entry in a dataset is assigned

with an appropriate value indicating its status. Supervised learning is usually

formulated as minimization of the errors based on the model’s prediction and

2



the correct label of a given example.

• Unsupervised learning tackles the problem of learning in the cases where no

labeled data is available. Two common classes of unsupervised algorithms are

dimensionality reduction and clustering. In dimensionality reduction, one in-

tends to find a space in which data is represented with a lower dimensionality

than its original space. The low-dimensional representation of data preserves

some aspects of the higher dimensions, for example, the distances between pairs

of points. In clustering, the goal is to put the instances with similar attributes in

one category. The most challenging problem faced in clustering is the determi-

nation of suitable attributes from the underlying data and how to assess similarity

between them. As an example, consider an algorithm that needs to classifying

three birds ostrich, crow and swan in two categories; should ostrich and crow

be assigned to the same class based on their similarity on color or contrast, or

should crow and swan be assigned the same class based on the fact that both

birds can fly?

• Semi-supervised learning is a new class of learning algorithms that attempts

to use the advantages of supervised and unsupervised methods. Since labeled

examples may be difficult or expensive to obtain in some cases, the goal of

semi-supervised learning is to assist the training phase to formulate stronger

hypothesis. In this case, few labeled and a considerable number of unlabeled ex-

amples are jointly used to train the learning algorithm. In such algorithms, it is

assumed that the unlabeled data naturally surrounds the labeled ones, thus, they

strengthen the hypothesis about the label value of a particular example. This

property of the dataset is usually called the cluster assumption.
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1.1 Kernel methods

In recent years, kernel(-based) methods or kernel machines have been actively stud-

ied by the machine learning community Scholkopf and Smola (2001); Shawe-Taylor

and Cristianini (2004); Cristianini and Shawe-Taylor (2000); Klaus-Robert Muller and

Scholkopf (2001); Smola et al. (2007). There are supervised, unsupervised and semi-

supervised variations of kernel-based algorithms. These algorithms are the potential

solutions to many problems because of their lower error rate compared to other learning

methods, relatively fast training time and elegant compatibility with high dimensional

data. The kernel machines work by nonlinear mapping of data points (vectors) to a

higher, or possibly infinite, dimensional space such that building the hypothesis model

for the problem is easier. In order to illustrate how mapping to a higher dimensions

influence decision function, consider an example taken from Scholkopf and Smola

(2001) in which a 2-dimensional point in the input space is mapped to a 3-dimensional

space as shown in Figure 1.1:

Figure 1.1: Circles from crosses are separated with a hyperplane in a 3-dimensional
mapped space (Source: Scholkopf and Smola (2001))

([x]1, [x]2) 7→ ([x]21, [x]22,
√

2[x]1[x]2) (1.1)

4



where [x]i denotes the ith element in the vector. As it is shown in Figure 1.1, while the

dataset in the input space is only separable with relatively complex decision function

(an ellipsoid like function), a hyperplane which is geometrically simpler in the mapped

space perfectly discriminates circles from crosses.

The kernel function represents the inner product of the points in this high dimen-

sional space. Thus, the kernel function amounts to the angle between the vectors of

training examples which can be interpreted as the similarity between them. Hence, any

algorithm that needs a measure of similarity can use a kernel function for that purpose.

(See Chapter 2 for a comprehensive introduction to the kernel functions)

The hypothesis model in kernel machines is defined based on a pairwise relation

between data points in a higher dimensional space. As it will be shown in Chapter 2,

the hypothesis model is solely dependent on a weighted sum of a kernel function in

a dataset which makes its selection crucial. Furthermore, it is particularly interesting

to know that in the ideal case mapped data in a higher dimensional space is linearly

separable. Hence, the well-established linear analysis can be performed in a higher

dimensional space which consequently amounts to a nonlinear prediction of the target

values (like the example in Figure 1.1). The nonlinear analysis in kernel methods is of

a significant value because many of the real-world problems are not linear in nature.

The mapping of the input points to a higher dimensional space will form a new

geometrical representation of the dataset (for example the mapped dataset in Figure

1.1) which plays an important role in defining the correct model. The selection of the

kernel function has a direct relation to this geometrical representation. Therefore, in
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Figure 1.2: The kernel machines perform the prediction in a general framework as
illustrated in this figure.

each learning problem a specific mapping function leads to a desirable solution to the

learning problem.

In Figure 1.2 the process in which a kernel machine operates is illustrated. The

prior knowledge, that is the user’s problem-specific knowledge that should be incor-

porated for informed decision making, when available is reflected in kernel function

k while the criteria for learning, that is the principle behind the optimality of an algo-

rithm, is directly influences the kernel machine. It is an important attribute of kernel

methods as the prior knowledge of the user can be incorporated independent from the

learning algorithm and its optimality conditions. Furthermore, in the kernel machines

the decision making is performed solely based on the information obtained from the

operation of the kernel function on a pair of examples from the dataset (x and x′ in this

figure). Examples of kernel-based methods include support vector machine (SVM)

(Vapnik, 1999), a well-known supervised algorithm, and kernel principle component

analysis (kernel-PCA) (Scholkopf et al., 1998), a popular dimensionality reduction

technique. The detailed introduction to these algorithms will be discussed in subse-

quent chapters.
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1.1.1 Model selection

Model selection refers to the stage in which the correct class of hypothesis is deter-

mined for any of the machine learning algorithms. Subsequent to the appropriate

model selection phase, the learning algorithm finds correct patterns in data and per-

forms an accurate prediction. Model selection is also referred to as one example of a

famous philosophical principle known as Occam’s razor which states simpler models

should be selected over the complex ones and the tradeoff between them should be

sought to deter from over-fitting or under-fitting Cherkassky and Mulier (2007). In

kernel methods, there are usually two aspects of model selection: firstly, selecting the

kernel function and its parameters (typically referred to as hyper-parameters) and sec-

ondly, the parameters of the learning algorithm itself, if there are any. The former, is

specifically very crucial to the performance of the learning algorithm and if not se-

lected appropriately, the tuning in the later part is not effective. In this research, the

kernel selection and optimization, as the most important aspect of model selection in

kernel machines, is considered.

1.1.2 Optimization

Machine learning techniques normally lead to a maximization or minimization objec-

tive. Even the well-known frameworks such as empirical risk minimization (ERM)

Vapnik (1999) in statistical learning theory and maximum likelihood (ML) estimation

Jain et al. (2000) define the learning criteria as an optimization problem. Hence, the

success of machine learning algorithms greatly depends on the performance of the op-

timization problem. Consequently, a special attention from machine learning commu-
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nity has been given to the optimization problems because if a learning algorithm results

in an unsolvable optimization problem, the whole learning algorithm fails. Conversely,

the triumph of a learning algorithm is certain if its objective leads to an optimization

problem with efficient solution. Furthermore, if the optimization does not guarantee

the global optimality of the solution, the learning algorithm may not be able to uti-

lize its maximum capability. Various local optimum solutions for a particular learning

problem may lead to different models that do not produce stable accuracy for a dataset.

Thus, it is an advantage to design a learning algorithm that is capable of producing an

optimal solution which is consistent in every run of the problem with same param-

eters. Additionally, there has been optimization packages recently released that are

capable of performing mathematical optimizations with relative efficiency (like CVX

(Grant and Boyd, 2009)). Specifically in the cases considered in this research, the pro-

posed approaches are designed with the intention of having a unique solution that can

be efficiently solved. In the proposed approaches the fulfillment of the constraints are

sought which leads to a well-defined optimization. Due to the efficiency in solving the

optimization, the proposed approach can be trusted in finding the optimal solution for

the problem. In this research, we will discuss several mathematical optimization forms

that produce an optimal solution.

1.2 Motivation and problem statement

Many of the algorithms in machine learning are dependent on an appropriate selection

of a measure of similarity or dissimilarity (distance). In case of kernel methods, this

measure is the kernel function. There have been various kernel (functions) proposed

which tend to exhibit diverse characteristics of the mapped space and consequently
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explore various aspects of data. Moreover, many of the well-known kernels have pa-

rameters to select that must be finely tuned like σ in Gaussian kernel

k(x, x′) = exp (−‖x− x
′‖2

2σ2
) (1.2)

In Figure 1.3 the kernel function is kept constant as a Gaussian kernel and the value of

parameter σ is changed to show the fact that changes in the parameter value will have

a dramatic influence on the decision function. The variance parameter in the Gaussian

kernel are set to 0.01, 1, 10, 100 in Figure 1.3b to Figure 1.3f. As it is shown, the

variation of a parameter in kernel function changes the decision boundary in SVM

dramatically. Even a small variation from 0.01 to 1 has also dramatically change the

image of the classification model or decision boundary. The parameter is selected

such that each one is ten times more than the former value. Large leaps in parameter

value are intentionally selected to show manual selection of an appropriate initial value,

update rate and finally the optimal value is extremely complicated. Consequently,

it is very challenging to design an algorithm that can automatically determine such

value. Choosing an appropriate kernel and possibly its hyper-parameters as the most

important aspect of model selection in kernel methods is a challenging task which

needs a lot of experience as well as several hours of experiments to overcome.

This issue of selecting the appropriate kernel and its hyper-parameters has given

rise to new area of research in model selection known as learning the kernel. That is,

the kernel is learnt from the dataset at hand as an optimal kernel for the given learning

problem. In these methods, an automatic solution to selection of the appropriate kernel

is sought.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: The task of classification for a 2-dimensional dataset of blue (dark) and
yellow (light) points is shown (Source: Smartlab (2010))

In this research, answers to the following questions are explored:

1. Is it possible to use the data from a similar problem, and learn the kernel from

the mixture of this data and a small number of labeled training examples?

2. Is it possible to extend the previous case to completely unsupervised learning of

the kernel without using any labeled data?

Supervised methods are widely proposed to overcome the problem of learning the

kernel, but they mostly hold the assumption that abundant labeled data are available.

In such cases, if the number of training examples is not sufficient, the quality of the

optimal kernel obtained is significantly reduced. Needless to say, these supervised

methods are not suitable for the cases where no labeled data is available.

Due to difficulty of obtaining labeled training examples, it is useful to have an

algorithm that runs with a limited number of training examples. Therefore, it is useful
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to have an unsupervised algorithm to learn the kernel functions which can subsequently

be used in both supervised and unsupervised learning algorithms.

The answer to the first and second questions surely needs a probe on the nature of

the mapping functions which amounts to considering the geometrical representation or

structure of the points before and after mapping. Intuitively, it means defining a map-

ping function for each point should be consistent with the dataset, that is the similarity

is defined as a unique measure for a specific set. However, this poses a new question

3. How is it possible to extract the intrinsic structure of a dataset?

Therefore, the answer to the third question will pave the way for better understanding

the nature of the underlying problem. The information about the intrinsic structure of

the data will help investigating the best optimal for a given dataset. Specifically in the

unsupervised case, the structure of the dataset is the only hint that can be used to learn

the kernel.

1.3 Objectives

The objectives of this research are:

1. To investigate the algorithms for learning to construct kernels in the case where

there are minimal labeled examples.

2. To propose a kernel function constructed from the transferred structure in SVM.

3. To propose an unsupervised approach to learn the kernel function and investigate
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its performance in a supervised and unsupervised kernel machines

1.4 Scope

The scope of the presented work is defined as

1. In the proposed algorithms, it is assumed that meaningful values are extracted

from corresponding training example and stored in a feature vector. The evalua-

tion of the proposed algorithms is performed on the extracted features.

2. The results of the proposed algorithms are evaluated by the benchmark or syn-

thetic datasets available openly for the researchers. Although all the benchmark

datasets are created from real-world problems, it is not intended to look into

providing solution for any specific problem. Furthermore, in spite of reporting

the general information about the benchmark datasets, the quality in which the

dataset has been produced is beyond the scope of this work.

3. Although the proposed approaches are generic in nature, the reported results

are only obtained from the evaluation of the respective approach on the noted

kernel-based algorithms.

4. The results of running the proposed unsupervised approach is obtained from

solving a convex optimization problem. The convexity and some examples of the

convex programs will be explained but the detailed description on the methods

to solve any specific convex problem will not be discussed.

5. The algorithms proposed in this research emphasize on learning the kernel func-

tion as the most important aspect of model selection in kernel methods. Although
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other aspects of model selection which usually leads to an algorithm specific tun-

ing are briefly discussed but any comprehensive investigation on those methods

are not covered.

1.5 Overview of methodology

The two approaches proposed specifically focus on probing the influence of the struc-

ture of the dataset. In cases where sufficient number of labeled examples is not avail-

able the structure of the dataset seems to be the only hint on the criteria for measuring

the quality of the optimal kernel obtained.

In the first method, limited labeled examples are available which should be uti-

lized. As it is shown in Figure (1.4), the algorithm requires three inputs: X as the

labeled training examples, Z as the training examples obtained from a similar prob-

lem and k as the initial kernel function. A suitable transformation of k is sought that

satisfies the objective criteria defined on both X and Z . There are two sets of cri-

teria considered, firstly on the labeled examples that the similarity and dissimilarity

between instances should be preserved (and often magnified). Secondly, the structure

of the dataset X represented by the transformed kernel κ∗ should have the highest re-

semblance with the dataset Z obtained from a similar problem. This is because the

number of labeled training examples is not sufficient to make an informed decision on

them consequently an attempt to use the aid of the additional data is made. Ultimately,

the algorithm is simplified as an optimization problem that can be easily solved using

available optimization techniques.
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Figure 1.4: The framework in which the optimum kernel κ∗ is obtained

X

k1, . . . , km

-

-
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to their influence

-κ∗

Figure 1.5: Given the dataset X the optimal kernel function is selected from the para-
metric representation of the set of kernel functions.

In the second approach as illustrated in Figure (1.5), unlike the first one a paramet-

ric kernel based on the set of initial kernel functions is defined. The objective is to find

the appropriate weight of the parameters and consequently obtain the optimal kernel

such that the similarity of each instance is best measured with respect to the influence

values defined on the structure of the dataset. The process used to infer the structural

aspects of the dataset is of a great importance which provides the influence of each

point in the structure of the dataset. In the second approach the structural aspect is

more closely examined as there are no labeled examples available. This approach is

proposed in two settings which eventually form two optimization problems.

1.6 Research impacts

The results of this research have a direct impact on the following fields of machine

learning:

1. Transfer learning and multi-task learning as two very closely related fields

of research seek to use the assistance of other data sources to formulate a more
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accurate learning algorithm. The optimal kernel learned from a dataset can be

transferred to aid other similar learning problems in enhancing the prediction

accuracy.

2. Distance learning is very closely related to the objective of this thesis. As it will

be noted in subsequent chapters, distance metrics can be obtained from a kernel

function. Therefore, finding a suitable kernel function provides a distance metric

for algorithms that require one.

3. New family of kernel-based learning algorithms can be devised if a method

to compute the kernel is embedded into the learning problem. In this case, the

only thing a user required to do is to select few parameters and the algorithm is

able to adapt itself to the data and run with higher accuracy.

1.7 Thesis contributions

This thesis presents two approaches to learn the kernel. Accordingly, two methods to

model the structure of the dataset are also considered. Specifically, the contributions

of this thesis can be summarized as

1. Two algorithms to learn the kernel functions are proposed in this research. These

algorithms learn the kernel functions from the dataset to be subsequently used in

the respective learning algorithm.

2. In order to find the optimal kernel, the structure of the dataset has been inves-

tigated. In the proposed approaches, two different methods are used to enforce

the structural constraints in the algorithm that leads to the optimal kernel.

15



3. The constraints defined on the learning are modeled in an optimization formula-

tion. In the method considered in Chapter 5, the optimizations with mathemat-

ically solid background are considered. In other words, the proposed approach

can be considered as an application of the mathematical optimization in machine

learning.

1.8 Outline of thesis

The organization of the rest of this thesis is as follows:

In Chapter 2, the notion of kernel functions as one of the novelties in machine

learning community and various aspects of their definition is discussed. Furthermore,

two of the most popular kernel-based algorithms, namely SVM and kernel-PCA, will

be discussed. Additionally, the basics of convex optimization as one branch of the

mathematical optimization methods will be presented. The concepts explained in this

chapter will lay the foundation for further reference in subsequent chapters.

Recently there has been a growing interest in learning the kernels from the training

data. In Chapter 3, a review of the state-of-the-art techniques available in the literature

will be presented.

In Chapter 4, the case of insufficient labeled data in training SVM and the influence

of optimizing kernels in accurate prediction will be investigated.

In Chapter 5, an unsupervised approach to learn the kernel function will be dis-

cussed such that the structure of the dataset is scrutinized. The empirical evaluation of
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the proposed approach in a supervised (SVM) and an unsupervised case (Kernel-PCA)

is presented.

In the final chapter, the thesis is concluded and the possible directions for the future

works are discussed.
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CHAPTER 2

THEORETICAL BACKGROUND

The introduction of kernel methods to machine learning owes to the recent advances

in functional analysis, statistics and optimization. The strong theoretical models of

kernel-based algorithms as well as their success in wide range of applications attract

a lot of researchers to further develop these methods. The origins of the theoretical

foundations of kernel-based learning algorithms can be traced to the work of Aron-

szajn (1950) where the reproducing kernels were developed based on the foundation

laid on the Mercer’s theorem Mercer (1909). In subsequent years, Mercer’s theorem

has proved to be significant in laying the foundation of the kernel-based algorithms.

The impact of such theorems had not been fully perceived until later years where the

nonlinear methods in machine learning started to emerge. The paradigm shift in ma-

chine learning towards nonlinear methods led to the introduction of artificial neural

network and decision trees that revolutionized pattern recognition in 1980s. The arti-

ficial neural network (ANN) is an example of a non-linear learning algorithm that has

found tremendous success in many application domains (Basheer and Hajmeer, 2000).

Although artificial neural networks has been successful in many applications, their

drawbacks like slow convergence of the optimization and possibility of being trapped

in the local optima encouraged researchers to develop new class of nonlinear learn-

ing algorithms Vapnik (1999). One of the most important algorithms that proposed

in mid-1990s is support vector machine (SVM) that, in contrary to neural networks,
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has a strong mathematical foundation and well-formed optimization that can be solved

efficiently (Shawe-Taylor and Cristianini, 2004). SVM is an example of kernel-based

learning algorithms that put the mathematical foundation laid in previous years into

practice and showed their real impact in computer science.

In this research, it is intended to find a kernel function for a specific dataset. This

is typically in contrary to the basics of the way kernel methods are designed as the

existence of an appropriate kernel function is taken for granted. However, the kernel

functions have to satisfy several conditions which represent the principles behind their

definition and their conceptual interpretation. Hence, the kernel function constructed

from the data is only worthy if it complies with the requirements of the learning al-

gorithms and aligns with the principles of kernel functions. In Section 2.1, the basic

characteristics of the kernels, their impact, several of the related theories that justify

their effect and immediate conclusions from their principles will be discussed.

Other than the basic concept that kernel functions represent which makes them

naturally desirable, their impact in the area of machine learning could not be made

possible without the progresses made in optimization. Specifically, optimization prob-

lems that have a strong mathematical background are considered as they provide the

means for a unique solution to a given problem. Therefore, the convex optimization, as

the most important class of mathematical optimization methods, will be discussed in

Section 2.2. Consequently, the use of these optimization methods and kernel functions

lead to the development of the kernel-based learning algorithms. In Seciton 2.3, two of

the most significant of these learning algorithms are discussed, SVM and kernel-PCA,

that will be subsequently used in the empirical evolution of the proposed approaches
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in Chapter 4 and 5.

2.1 Kernel functions

The increasing complexity of real-world problems has rendered growing demand for

non-linear learning solutions. Kernel methods are newly developed alternative of artifi-

cial neural networks that project data to a higher dimensional space which exhibits non-

linear characteristics for the learning algorithm. In this section, fundamental theories

related to the concept of kernels are presented. More comprehensive introduction can

be found in Scholkopf and Smola (2001); Cristianini and Shawe-Taylor (2000); Klaus-

Robert Muller and Scholkopf (2001); Shawe-Taylor and Cristianini (2004); Smola

et al. (2007). Kernels have several important properties that make them favorable in

machine learning:

1. Accessibility to high-dimensional feature space at computationally efficient cost,

both from time and space perspective.

2. Most of the kernel-based learning algorithms could be presented as convex opti-

mization that does not suffer from local optima and typically solved efficiently.

3. Solid mathematical foundation that justifies the performance of the learning al-

gorithm and enables further developments.

4. Enabling a modular approach to learning. This means, a kernel function is ca-

pable of combining with various learning algorithms. Conversely, each learning

algorithm is capable of handling any kind of data structure as long as the kernel

function is able to resolve its attributes (for example graphs, strings and others).
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The kernel function for a given dataset X = {x1, x2, . . . , xn} is defined as:

k : X × X 7→ R, (x, x′) 7→ k(x, x′) ∀x, x′ ∈ X (2.1)

The function k amounts to the inner product of the feature vectors (data points)

in a higher dimensional space. The points in the dataset X known as the input space

are mapped to a higher dimensional space H called the feature space. The nonlinear

function φ called feature map performs the projection of X toH, that is

φ : X 7→ H, Rd 7→ RD

x = ([x]1, [x]2, . . . , [x]d) 7→ φ(x) = ([φ(x)]1, [φ(x)]2, . . . , [φ(x)]D)

(2.2)

where d and D are the dimension of data while [x]i and [φ(x)]i are the vector entries

referring to the attributes in the input and feature space respectively. For example in

case of Fig. 1.1, the mapping function is defined as

φ : X = R2 7→ H = R3

Therefore, given a feature map φ the inner product of two points x, x′ ∈ X in the

feature spaceH is given by kernel function k as

k(x, x′) = 〈φ(x), φ(x′)〉 (2.3)

Subsequently, for a given kernel function k and dataset X , the n× n matrix

K = (k(xi, xj))ij (2.4)
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is called the kernel (Gram) matrix of k.

Performing the explicit mapping of each point in the feature space is very costly in

terms of time and space and therefore almost impossible to implement in practice. The

significance of kernel functions is that the inner product is computed implicitly, which

means for a given kernel function there is a feature space that the inner product in that

space is equivalent to the value obtained from the kernel function. Examples of these

kernel functions are

1. k(x, x′) = 〈x, x′〉 (Linear kernel)

2. k(x, x′) = (〈x, x′〉+ c)d (Polynomial kernel)

3. k(x, x′) = exp (−‖x− x
′‖2

2σ2
) (Gaussian kernel)

Each of these kernel functions represents a unique feature space. For example, one

can observe that in case of polynomial kernel for an N dimensional input space, the

dimensions of the feature space is obtained from Cristianini and Shawe-Taylor (2000)

d+N − 1

d

 (2.5)

Additionally, in case of Gaussian kernel, by applying the Taylor expansion on the

exponential function, a polynomial with an infinite degree is obtained:

exp(x) =
∞∑
i=0

1

i!
xi (2.6)
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Therefore, it can be concluded that the Gaussian kernel in fact corresponds to a feature

space with infinite dimensions.

The definition of kernel functions as inner product has an interesting property that

allows their further use as similarity measures:

Proposition 1 The inner product amounts to the angle between projected vectors in

the feature space, that is

^(φ(x), φ(x′)) , arccos
( 〈φ(x), φ(x′)〉
‖φ(x)‖‖φ(x′)‖

)
radians (2.7)

Considering normal vectors in the feature space, a larger angle corresponds to smaller

similarity value and vice-versa.

Furthermore, Cauchy-Schwarz inequality may be extended to kernels using the

definition in Eqn. (2.3):

|k(x1, x2)|2 ≤ k(x1, x1)k(x2, x2) (2.8)

Although the Cauchy-Schwarz inequality is true for all kernel functions, however,

any function that satisfies this inequality does not necessarily introduce a kernel and

consequently does not represent an inner product in a higher dimensional space. The

necessary conditions for validity of kernel functions will be subsequently discussed.
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The necessary conditions for the validity of the kernel functions are the conse-

quence of the mapping of the data points to a feature space with special characteristics

for the inner product of the projected points. This space is called the Hilbert space

named after the 20th century mathematician David Hilbert.

Definition 1 (Hilbert Space) A Hilbert space H is an inner product space with the

additional properties that is separable and complete.

The Hilbert space is simply an abstract vector space that generalizes the notation of

Euclidean space. The importance of Hilbert space in the definition of kernel functions

is that it ensures the feature space induced from the mapping function is equipped

with measurements of length and angle. Additionally, it guarantees the sequence of

products to be limited.

The necessary conditions for a function to represent an appropriate feature space

is defined in the well-known Mercer’s theory (Scholkopf et al., 1999; Scholkopf and

Smola, 2001; Williamson et al., 1999) which has a significant influence in establishing

the kernel methods in machine learning.

Theorem 1 (Mercer’s Theorem) Suppose k is a bounded continuous symmetric real-

valued function such that the integral operator Tk : L2(X )→ L2(X ) is:

(Tkf)(.) =

∫
X
k(. , x)f(x)dx, (2.9)
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