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ALGORITMA PENGURANGAN LAJUR “GALLOP” UNTUK  

PENGUJIAN MEMORI 

ABSTRAK 

 Pengujian memori amat penting dalam perkembangan pantas teknologi bagi 

sistem dalam cip. Ini disebabkan oleh peningkatan memori kapasiti dalam rekaan cip yang 

semakin kecil, kompleks dan berkuasa rendah. Masa pengujian untuk memori dalam cip 

merupakan satu cabaran yang hebat untuk mencapai produk yang berkualiti tinggi dan kos 

rendah dalam masa ke pasaran yang singkat. Pengurangan masa pengujian untuk memori 

amat penting kerana kos pengeluaran dalam industri amat bergantung pada masa 

pengujian produk dalam mesin. Terdapat banyak algoritma yang boleh digunakan untuk 

menguji memori, termasuk lajur “gallop” (GalCol). GalCol merupakan algoritma yang 

penting untuk mengesan kecacatan gandingan dan peralihan yang unik. Namun demikian, 

algoritma GalCol asal memakan masa pengujian yang lama. Algorithma pengurangan 

lajur “gallop” dibangunkan untuk mempercepatkan masa pengujian memori. Algorithma 

pengurangan GalCol mempunyai ciri ciri algoritma yang sama dengan GalCol asal. 

Perbezaan ketara dalam pendekatan algoritma pengurangan GalCol adalah pengurangan 

bilangan pergerakan sel sasaran. Pergerakan sel sasaran dihadkan pada 8, 16 dan 32 sel 

untuk setiap sel asas. Projek ini melibatkan dua peringkat, iaitu pembangunan perisian 

menggunakan perisian INTEL dan Synopsys dan pembangunan algoritma pengurangan 

GalCol dalam process pengeluaran milik INTEL. Memori L2 SRAM bersaiz 64KB dalam 

15 cip telah diuji dengan algoritma pengurangan GalCol. GalCol X8 algoritma mencapai 

pengurangan masa pengujian memori yang tertinggi, iaitu sebanyak 79.5% dan 75.7% 

pada frekuensi 600MHz dan 1.6GHz dan ketepatan hasil yang selaras dengan GalCol asal. 
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REDUCED GALLOPING COLUMN ALGORITHM FOR MEMORY TESTING 

ABSTRACT 

Memory testing is significantly important nowadays especially in SOC’s design, 

due to their rapid growth in the memory density and design complexity in smaller chip 

area and low power design. Thus, test time in memory testing is a key challenge to 

accelerate time to market, high yield and low test cost in high volume manufacturing. Test 

time reduction in memory testing is important in industry, as test cost is directly related to 

validation time of each product on the tester. There are lots of memory algorithms used 

for memory testing, including the galloping column algorithm (GalCol). The GalCol 

algorithm test is important to detect unique coupling and transition faults. However, the 

existing GalCol algorithm takes huge test time due to its test complexity. To overcome 

the test time issue in industry, reduced GalCol algorithms with solid data background are 

proposed. The reduced GalCol algoritms have similar test behavior as original GalCol 

algorithm with major difference in the number of galloping of the target cells. The 

galloping of target cells are reduced to first and last 8, 16 and 32 of cells of every base 

cell. This project is progressed in two stages, which are the software development using 

INTEL software and Synopsys tool and test implementation on INTEL production flow. 

These algorithm are verified on 15 units of 64KB L2 SRAM memory. In this project, test 

time reduction and consistent pass fail test results are achieved in the reduced GalCol 

algorithm tests. The GalCol X8 algorithm obtains the highest test time reduction of about 

79.5% at 600MHz and 75.7% at 1.6GHz with consistent pass or fail test results 

comparable to original GalCol algorithm in the HVM test flow.
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Nowadays, system-on-chip (SOC) designs that combines processing core, 

graphics, audio, video and input output components (IO) onto a single chips are 

increasingly important on consumer electronic market segments. Example are tablet and 

smartphone devices (Vermeulen & Goossens, 2014). The consumer electronics (CE) 

manufacturers spend tremendous effort to develop lower power, more intelligent, higher 

performance and cost-effective SOC designs and to accelerate time to market. Figure 1.1 

and Figure 1.2 show the table market segment and smartphone platform roadmap by 

INTEL  

 

Figure 1.1: Tablet segmentation by INTEL 
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Figure 1.2: Smartphone platform roadmap by INTEL 

 

Nowadays, the embedded memories occupy over 90% of the most system-on-chip 

(SOC) designs in 2014 (Nisha & Siva, 2014), which is shown in Figure 1.3 The numbers 

and variety of embedded memories such as random access memory (RAM), read only 

memory (ROM) and registers file memory (RF) are increasing tremendously in SOC 

designs. Figure 1.4 shows the semiconductor trends, which gate density will be increasing 

exponentially over years with rapid improvement in data rate speed.  

 

Figure 1.3: Chip are occupied by memories (ITRS, 2007) 
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Figure 1.4: Semiconductor trends in gate density (ITRS, 2007) 

 

The rapid growth of memory density, design complexity, speed and reduction of 

SOC chip area leads to challenges for SOC high volume manufacturing (HVM) especially 

on testing time, costs and yields impact. The test costs are largely driven by test time factor.  

Test time is the time consumption for validating each product on tester. The test time of 

SOC designs are increasingly due to tremendous growth in memory size, memory types 

and different design for test (DFT) methodologies. With the rapid growth in test time, 

HVM test costs will be higher. This will impact time to market and costs of the SOC 

products. Thus, memory test time reduction (TTR) has been an important and critical issue 

especially in HVM environment that requires extremely low defect per million (DPM) 

budget on entire SOC.  

The typical flow of memory testing in HVM is complex and time consuming to 

ensure high yield and good quality products, which is shown in Figure 1.5 (Zaid et al., 

2008). The flow are divided into 2 main phases, which are the wafer test (also named as 

sort test) and package test (also named as class test). During the wafer test phase, it 

consists of cache structural test, where each internal functional blocks are tested 

individually instead of testing the die as whole system through its input/output pins (I/O). 
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Normally wafer test stage has lesser pins than the package test phase. Fault localizing tests, 

which identifying the failing cells are run in this stage in order to repair the failing cells 

with redundant row or column. During the package test phase, cache is retested using the 

fault detecting tests to eliminate the fault chips from the HVM flow. Functional testing is 

the final stage in the package test flow, where the entire chip is validated at-speed through 

its I/O pins. The purpose of this testing is to guarantee the functionality of the processor 

and to categorize different chips according to their speed and power consumption, which 

is called as speed and power binning. The entire memory testing in package test flow 

consumes significant test time.  

 

Figure 1.5: Typical representation of a microprocessor test flow (Zaid et al., 2008) 

  

Although the test time reduction (TTR) issue is challenging in HVM flow, there 

are some useful heuristic memory tests that still can be implemented to improve test time 

and provides high fault coverage. There are lots of well-known memory algorithms widely 

used for Built-In-Self-Test (BIST) SOC memory testing in industry, such as SCAN (4N), 

Partial Moving Inversion (13N), March-C (10N), Mats++ (6N) and Galloping algorithms 

(4N2) (Michael et al., 2013). GALPAT, Walking 1/0 and Sliding Diagonal are classified 

as complex and conventional test algorithms (Van & A.J, 1999). All these different 

algorithms in industrial can detect different unique faults coverage, such as stuck-at-fault 

(SAF), transition fault (TF), coupling fault (CF), address-decoder fault (AF) and 
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neighborhood pattern sensitive fault (NPSF) (Rusli et al., 2012). Common functional static 

fault types are described in Table 1.1.  

 

Table 1.1: SRAM functional fault types (Ashokkumar & Subhash, 2014) 

 

1.2 Problem Statement 

Galloping algorithm is serving as an effective test for reliable minimum voltage 

searches, maximum frequency searches and detecting most faults in HVM flow. The tests 

stress the interaction between the base cell under tests and the remaining cells of the 

memory. It can detect and locate all SAF’s, TF’s, AF’s and CF’s with single galloping 

test (Grzegorz et al., 2011). The galloping test can be isolated within row, column or 

diagonal, which use to derive galloping column (GalCol), galloping row (GalRow) and 

galloping diagonal (GalDiag) tests. This helps to reduce the galloping test complexity. 

Galloping tests require test time of n2 order, where n is the memory size in n bits. From 

Table 1.2, complex test algorithm with n2 order are significantly higher than other non n2 

tests with assumption a cycle time of 100nS. Testing a 256 Kbit memory on the chip will 
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require 1.9 hours for test with complexity of n2. Thus, although the galloping test can 

detect most of the silicon faults, the test time for galloping test is a major concern in 

achieving TTR effort in mass production. The huge test time will cause significant impact 

on the time to market and test costs of the SOC products.  

Hence, a modified galloping algorithm that focusing on GalCol is investigated in 

order to improve the memory test time validation especially on the SOC’s high volume 

manufacturing.  

 

Table 1.2: Test time as function of memory size with cycle time of 100nS  
(Arvind, 2012)  

 

1.3 Objectives 

The project is conducted to achieve the objectives as below: 

1. To develop reduced GalCol algorithm on simulation and implement on HVM 

production test flow.   

2. To study the effectiveness of the reduced GalCol algorithm in term of test time 

reduction as compared to original GalCol algorithm.  

3. To study the effectiveness of the reduced GalCol algorithm in term of product 

failing or passing status as compared to original GalCol algorithm. The test status 

indicates whether memory under test is fault-free or not. 
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1.4 Scope of project 

This project covers the software development of Reduced GalCol algorithm and 

test implementation on HVM test production flow. Memory testing using other test 

algorithms are not implemented in this project.  

The reduced GalCol with solid data background tests are investigated and 

modified from existing GalCol test which is used in industrial. For this project, reduced 

Galcol algorithm analysis is specifically targeted on reducing galloping address by 32, 16 

and 8, instead of galloping all cell in the same column as base cell. The reduced GalCol 

tests are developed using INTEL built-in software and simulation verification is done 

using Synopsys Verilog Compiler (VCS) tool. Synopsys Verdi debug tool is used, which 

provides powerful debugging features, such as waveform viewer that helps to analyze the 

design behavior and the algorithm activity over time and source code browser for design 

signal tracing.  

To implement the reduced GalCol tests on HVM production test flow, automated 

test pattern generation flow is studied. The reduced GalCol tests from simulation are 

converted to tester friendly format using INTEL automated test pattern generation tools. 

The automated test equipment (ATE) used in this project is limited to INTEL in-house 

tester, named as High Density Modular Tester (HDMT). Despite there are many different 

ATE, HDMT is chosen because it is cheaper and HVM production test costs are lower by 

10X. This tester provides test time collection capability and pattern editor to modify the 

test pattern on tester, which are suitable for the application of this project.  

There are lots memory sizes and types in SOC designs. However, in this project, 

test time reduction analysis of reduced GalCol algorithm is targeted only on 64KB L2 

Data SRAM with single-port six transistor (6-T) memory design, which using 14-nm 
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INTEL technology. The L2 Data SRAM is chosen because it is among the biggest memory 

in the SOC designs. The memory of design under test (DUT) is tested only under room 

temperature 25’c in two different core frequencies, 600MHz and 1.6GHz on pre-burn-in 

flow after wafer test and die packaging. The test time analysis of reduced GalCol 

algorithm is specifically focus on test time taken for memory write and read operations, 

and not covering test time analysis for taken for HVM reset or tester setup time.  

To study the effectiveness of reduced GalCol algorithm, test status pass or fail on 

HVM test flow is being investigated in this project, which telling if the DUT is fault-free 

or not. This project will not be covering the fault identification, which identify the failing 

location of memory cell and the type of detected fault.  

 

1.5 Report Outline 

This report is organized into five main chapters that explain the details from the 

introduction to conclusion of reduced GalCol test algorithm project. The first chapter is 

describing the introduction of this project, which covering the project background, 

problem statement, objectives and scope of the project. 

Chapter 2 discusses on previous works in the memory test algorithms done by past 

researchers. The relevant fundamental background of previous research is also explained 

in this chapter.  

In chapter 3, the proposed reduced Galloping Column (GalCol) test algorithm is 

introduced, which includes the methodology for software development and test 

implementation on HVM test flow. The methodology for software development explains 

on pseudo-codes, test coding and simulation of reduced GalCol algorithm. This chapter 
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also describes HVM test pattern generation methods in details, test flow implementation 

and validation on ATE.  

Chapter 4 presents the experimental results and discussion of this project. This 

chapter shows the results to proof the efficiency of the reduced GalCol algorithm. The test 

time reduction and DUT pass or fail test status are analyzed in this chapter.  

Lastly, chapter 5 presents the conclusion of this project. Summary of the project 

implementation and achievements are explained. This chapter also outlines the limitation 

and future research works that needed for the reduced GalCol test algorithm.  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Overview 

As discussed in previous chapter, over 90% of SOC’s chip area is occupied by 

diverse memory. The tremendous growth of memory density, capacity and design 

complexity leads to large challenges in test time, test cost and yield in SOC high volume 

manufacturing, which eventually will impact the product time to market and product cost 

effectiveness. Thus, memory test time issue is long time research issue and unceasing 

efforts in high volume manufacturing, as product test cost is directly driven by the product 

validation time on tester. This chapter covers the past researches and analysis that have 

been carried out on test time reduction efforts, memory algorithm tests and built-in-self 

test (BIST) that is used by algorithm testing to achieve test time reduction.   

 

2.2 Test time reduction efforts 

There are lots of test time reduction approaches are carried out to solve the test 

time issue in memory testing in semi-conductor industry. A study was performed to 

remove redundant test patterns by adapting two methods. The two methods were named 

as fault detectability analysis and fail label analysis, in order to achieve memory test time 

reduction while maintaining the fault detectability (Wu et al., 1996). According to authors, 

well-defined fault model was needed in fault detectability analysis, based on which fault 

detectability of all test were analyzed. The fault coverage evaluation are done from the 

result of the analysis. On other hand, the fail label analysis began with fail labels collection 
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of each failing DUT, which this information was useful to analyze dependence relation 

between the tests. The result of the study showed that these two approaches are just dual 

to each other, which encouraging the test engineer in industry to perform test time 

reduction by analyzing fail labels in the test result directly without any knowledge of the 

fault model. The fault detectability analysis is useful for academic field since the faults 

are analyzed thoroughly and fault models are well defined. Whereas the fail label analysis 

is more practical for industrial field. 

Another study had been carried out on memory test time reduction. The author 

proposed to interconnect all test patterns, which re-using the memory states left from 

previous test (Wu et al., 2000). The objectives of this study was to minimize the tester 

settling time and share the sequences initialization time between two consecutive test 

patterns being applied on the tester. The analysis of interconnecting the test item was 

categorized into the three main parts, which were the initialization sequences, fault 

activation and verification sequences and pure verification sequence. For the initialization 

sequence part, there was commonly a sequence of write operations to initialize memory 

cells into certain initial value. Next part, was the fault activation and verification 

sequences. This key part of a test consisted a sequence of read and write operations in 

certain addressing order to activate, detect the designated faults and verify the result. The 

last part was the pure verification sequence, which aimed to verify the results through a 

sequence of read operations. The commonality between part 1 and part 3 was, they care 

only the state of memory and do not focus on how to perform their operations or reach 

their state. Furthermore, part 2 was usually started with read operations, similar to part 3, 

which could also be used to verify memory state of previous state. Thus, part 1 and part 3 
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were eliminated and replaced by memory states, where memory state from previous test 

can be reused as initialized state for the following test. However, there was unique case, 

where the verification sequence may not be always sharable and could not be classified as 

part 3. The reason was the verification sequence at end of test need to be executed with 

specific addressing order, operation mode or voltage or timing condition. Thus, this is the 

constraint of the interconnecting all test in the production.  

In addition, Junichi presented a novel method for memory test time reduction by 

installing virtual tester hardware on the tester central processing unit (CPU) memory 

(Junichi, 2001). The study showed that this approach helped to delete the duplicated tester 

hardware setting instructions, such as waveform timing setting, input output voltage 

setting and pin conditional setting, which required a long setup time amounting to a 0.3 to 

1.0 mili-second. The virtual tester hardware was comprised of memory that houses the 

addresses that enabled it in order to identify the different tester hardware parts and their 

actual setting values. The comparison between value that was already set on the real tester 

hardware and value sent from tester CPU was performed in each instruction of the test 

program. If the values are identical, the test program proceeded to next instruction. If the 

values are different in test instances, the test program ran again to set the value in the real 

tester hardware. Thus, the results proved the test time reduction of 5% to 25%, which 

verified the effectiveness of this method.  Moreover, the test time can be reduced by 

minimizing the number of times the power supply was turned ON and OFF. The power-

supply voltage will be turn OFF, reset with new value and was turned back ON if the 

existing test module had different set voltages values compared to previous test module. 
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Hence, this TTR approach is practical and greatly adapted in high volume manufacturing 

environment.  

Besides that, a systematic approach was studied and proposed for memory test 

time reduction. The authors discussed on identifying redundant test patterns in the test 

flow, then removing and/or combining the test patterns to minimizing the overall memory 

test time (Yeh et al, 2005). From this study, the original tests can be removed or merged 

and new tests can be developed without losing the fault coverage. The authors had also 

developed a TTR tool, which was useful for test time reduction for industrial products, 

which is illustrated in Figure 2.1.  

 

Figure 2.1: The proposed TTR tool (Yeh et al., 2005) 

 

This TTR tool required the input parameter file and test reduction procedure, 

which eventually produces the output data file. The test program, detected-fault table and 

test time of each test are the important input parameter files. The detected-fault table 

consisted of the detected faults for each test. The output data file provided the 

recommended reduced test procedure and the reduced test time. In the test reduction 

procedure, the authors proposed the greedy algorithm based search engine and the test 

pattern merging engine. The greedy algorithm based search engine is illustrated in Figure 

2.2. The weight was generated by sorting the tests based on test time and the weight was 
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distinguished by number of faults detected if there were tests that had same test time. The 

test with shortest test time will have the minimum weight. The minimum weight test was 

put into solution set using the greedy approach and removed from test set. The fault 

detected for the minimum weight test was also removed from fault set. This step was 

continued until fault set was empty. The final solution set was the reduced test set. Thus, 

this heuristic TTR algorithm could identify the redundant test patterns, suggested a proper 

test list and provided the correlation between the test items. The results of the study 

showed the overall test time reduction about 19.5% without reducing the fault coverage 

on an industrial DRAM chip on a DRAM tester.  However, it is challenging to obtain the 

accurate fault-detected table as input parameter file for this TTR tool implementation, 

especially on the new or in-mature process technology.  

 

Figure 2.2: The proposed greedy algorithm (Yeh et al., 2005) 
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Furthermore, a novel architecture for test time reduction in March-based algorithms 

was proposed by enabling in parallel more than one words of the RAM during the write 

operations (Voyiatzis et al, 2012). The recommended architecture needed additional write 

drivers in the driving logic, the gates required to enable the outputs of the decoder in 

parallel and additional flip-flops in address generator. Figure 2.3 illustrates the general 

structural of SRAM and the modification on driving logic. The results of the study showed 

the reduction in test time, ranges from 25% to 60% depending on the March algorithm 

with an increase of less than 2,5% in hardware overhead for 1Kbyte SRAM. There were 

few advantages of the proposed approach, such as it did not have much impact on the cell 

arrays of the RAM, which was carefully optimized with respected to area and delay as 

well as not affecting on normal RAM operation.   

 

Figure 2.3: (a) General structural of SRAM; (b) Modified driving logic 
(Voyiatzis et al, 2012) 
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2.3 Memory test algorithms analysis 

Throughout the years, there are lots of researches and developments of memory 

test algorithms such as SCAN, March C-, March SR, MATS++, PMOVI, Hammer, 

GALPAT, GalCol, and so on (Nisha & Siva, 2014). The performance and effectiveness 

of heuristic test algorithms are confirmed through simulation. In the high volume 

manufacturing environment, an efficient selection of memory test algorithms is crucial to 

accomplish high fault coverage and low test time at the same time.  

A comprehensive study on memory test algorithm in industry had been presented. 

In the study, 12 well-known and 3 fault-primitive-based memory test algorithms were 

performed at INTEL, which is listed in Table 2.1 (Hamdioui et al., 2006). The “n” denoted 

the size of memory cell array, C was the number of columns and R was the number of 

rows. (^) and (v) were the increasing or decreasing address order. An operation applied to 

a cell can be “w0” (write 0), “w1” (write 1), “r0” (read 0) or “r1” (read 1). The results of 

the study showed that the tests with most promising fault coverage in theory had similar 

highest fault coverage in real silicon practice. However, the results revealed that some 

algorithms, such as GALPAT and Walking 1/0 detected faults that cannot be explained 

with existing fault models and lacked of fault models.  

The 12 sets of traditional algorithms that selected in the case study had most 

promising fault coverage and unique faults detected. March C tests have become the 

dominant type of tests in memory testing due to their high fault coverage and linear 

complexity in test application time (Dharma et al, 2013). Many different flavor of March 

tests had been introduced, including the fault-primitive March SS, March Raw and March 

SL algorithms (Zaid et al., 2008) 



17 
 

Table 2.1: Description list of the used algorithm tests (Hamdioui et al., 2006) 

Algorithms Test Length Description/Short notation 

Fault-primitive algorithms  
March SS 
(Hamdioui et al., 
2002) 22n 

^(w0); ^(r0,r0,w0,r0,w1);^(r1,r1,w1,r1,w0); 
v(r0,r0,w0,r0,w1);v(r1,r1,w1,r1,w0);^(r0) 

March RAW 
(Hamdioui et al., 
2002) 26n 

^(w0);^(r0, w0,r0,r0,w1,r1); 
^(r1,w1,r1,r1,w0,r0);v(r0,w0,r0,r0,w1,r1); 
v(r1,w1,r1,r1,w0,r0);^(r0) 

March SL 
(Hamdioui et al., 
2004) 41n 

^(w0);^(r0,r0,w1,w1,r1,r1,w0,w0,r0,w1); 
^(r1,r1,w0,w0,r0,r0,w1,w1,r1,w0); 
v(r0,r0,w1,w1,r1,r1,w0,w0,r0,w1); 
v(r1,r1,w0,w0,r0,r0,w1,w1,r1,w0) 

Traditional algorithms 
SCAN (Abadir & 
Reghbati, 1983)  4n ^(w0);^(r0);^(w1);^(r1) 
MATS+  
(Nair, 1979) 5n ^(w0);^(r0,w1);v(r1,w0) 
MATS++ (Breuer 
et al., 1976) 6n ^(w0);^(r0,w1);v(r1,w0,r0) 
March C- 
(Marinescu, 1982) 10n ^(w0);^(r0,w1);^(r1,w0);v(r0,w1);v(r1,w0);v(r0) 
PMOVI (Jonge et 
al., 1976) 13n v(w0);^(r0,w1,r1);^(r1,w0,r0);v(r0,w1,r1);v(r1,w0,r0) 
March SR 
(Hamdioui et al., 
2000) 14n 

v(w0);^(r0,w1,r1,w0);^(r0,r0);^(w1); 
v(r1,w0,r0,w1);v(r1,r1) 

March G  
(Suk et al., 1981) 23n 

^(w0);^(r0,w1,r1,w0,r0,w1);^(r1,w0,w1); 
v(r1,w0,w1,w0);v(r0,w1,w0);^(r0,w1,r1);^(r1,w0,r0) 

Hammer10 (Van et 
al., 1999) 49n 

^(w0);^(r0,10*w1,r1);^(r1,10*w0,r0); 
v(r0,10*w1,r1);v(r1,10*w0,r0) 

GalColumn (Breuer 
et al., 1976) 6n + 4nR 

^(w0);^b(w1b, col(r0,r1b), w0b); 
^(w1);^(w0b,col(r1,r0b),w1b) 

GalRow (Breuer et 
al., 1976) 6n + 4nC 

^(w0);^(w1b, row(r0,r1b), w0b); 
^(w1);^(w0b,row(r1,r0b),w1b) 

WalkColumn (Van 
et al., 1999) 8n + 2nR 

^(w0);^(w1b, col(r0),r1b,w0b); 
^(w1);^(w0b,col(r1),r1b,w0b) 

WalkRow (Van et 
al., 1999) 8n + 2nC  

^(w0);^(w1b, row(r0),r1b,w0b); 
^(w1);^(w0b,row(r1),r1b,w0b) 

 

 March SS was developed based on fault simulation, which targets all simple static 

memory faults (Hamdioui et al., 2002). Simple faults are the faults which cannot influence 

the behavior of each other. Fault masking cannot happen as the behavior of a simple fault 
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cannot change the behavior of another one. This algorithm initializes the entire memory 

cell. Each cell is then read twice, written back to data, read again and then write inverse 

data before moving to next cell. The operations occur for both data and data complement 

in both incrementing and decrementing addresses. A last read at the end verifies the last 

read happens correctly.  

March RAW was also developed based on fault simulation (Hamdioui et al., 2002). 

The fault model used for the test development was the single port, simple dynamic fault 

and the test detects read after write (RAW) failures. The algorithm will write the array to 

initial data and then perform a read data, write the data, read the data again twice, write 

the inverse of the data and then read it before changing to the next address. The read and 

write operation happen for both data and data complement in both increment and 

decrement address sequences.  

Furthermore, March SL algorithm which developed based on fault simulation is 

used to detect all simple linked faults (Hamdioui et al., 2004). The faults that will influence 

the behavior of each other are defined as linked faults. Fault masking can occur as the 

behavior of certain fault can change the behavior of another, which causes complexity in 

linked fault testing as compared to simple fault testing.  

The GALPAT (galloping pattern) algorithm with fast X-addressing and solid data-

background can detect and locate all address faults, stuck-at-faults, transition faults and 

coupling faults in memory cells. This test is a robust non-linear algorithm, with test 

complexity of 4n2 (Arvind, 2012). Thus, the test time for this algorithm is also larger than 

other traditional algorithm, as test time is driven by the memory size and test length or 

complexity. The galloping algorithms begin by initializing the entire array to a known 
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data background. The galloping action starts by writing the base cell to data complement 

followed by a read of all target cells. Finally the base cell is restored to original value. 

Once the entire set of cells selected as targets have been validated, the base cell is 

incremented and the galloping action begins again. This sequence will continues until all 

the cells selected to be base cells have been tested (Prasanna & Saroja, 2014). For a full 

galloping pattern, the target set of cells include all other cells in a given block other than 

the base cell.  

Due to test complexity and test time constraint of GALPAT algorithm, galloping 

column (GalCol) and galloping row (GalRow) algorithms that are less complexity are also 

used in memory testing. The GalCol algorithm behaves exactly similar as full gallop 

except the read action is restricted to only the cells in the same column as the base cell 

instead of galloping through entire memory. Figure 2.4 illustrates the test sequences of the 

GalCol algorithm.  The reduction of the target cells shorten the test time compared to the 

GALPAT and makes it production test program worthy. The GalCol algorithm has been 

a reliable test for active minimum voltage searches and frequency maximum searches for 

data collection. This algorithm can detect same detects as GALPAT but some coupling 

faults can be missed.  
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Figure 2.4: Galloping column algorithm 

 

Similar comprehensive research on test algorithm effectiveness and classification 

had also be performed (Michael et al., 2013). However, the number of test algorithms was 

restricted to 29 linear marching algorithms, which did not include the complex and non-

linear algorithms such as GALPAT, GalCol, GalRow and Walking I/0. Reason was 

because the Memory BIST (MBIST) used in the experiment only supported marching 

algorithms. The objectives of the study was to obtain high fault coverage with low test 
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time through classification of algorithms. In this study, the authors discussed about 

statistical data analysis in term of fault coverage, efficiency and similarity, classification 

and grouping of the algorithms. The percentage of faults that are detected by algorithm in 

relation to the total number of faults are defined as fault coverage (FC). If the fault 

coverage is high, an algorithm is characterized as effective test. However, the higher fault 

coverage of specific algorithms is not necessary related to many complex faults discovery, 

but can also detect the simple faults and more different types of faults. The efficiency and 

similarity of test algorithms in a set was measured by taking the ratio of intersection and 

union of faults detected. The groups of similar algorithms were allocated to the functional 

fault model (FFMs), which helped in combining the test algorithms efficiently. The results 

of the study showed that at least 13 test algorithms would be needed to detect all the faults, 

such as the simple static single-cell faults, simple static coupling faults, linked faults and 

dynamic faults. However, this will require huge effort for HVM testing because MBIST 

needs to be reconfigured for each algorithm in the test set. Thus, this approach is suitable 

when only few test algorithms can be used to meet limited test time budget and high fault 

coverage goal.  

 

2.4 BISTs for memory test algorithm  

There are lots research being performed to study on the design for test (DFT) 

implementation for memory testing and validation strategy. Built-in-self-test (BIST) is 

one of the most extensively used for DFT technique. It offers full speed test application, 

high fault coverage, extensive diagnostics and less sophisticated in tester hardware 

(Neelima & RangaCharyulu, 2014).  
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Programmable built-in-self test (PBIST) is a key evolution from hard-wired BIST. 

A study have been carried out to discuss on comprehensive array DFT strategy to achieve 

extremely low defect per million (DPM) for entire arrays by (David et al., 2004). In the 

study, PBIST was used to test large array in Level 2 (L2 Data, Tag, LRU and State arrays), 

which is shown in Figure 2.5. PBIST is small micro-code machine connected to fairly 

sophisticated address generation logic, distributed data generation and comparison logic. 

PBIST is accessible and programmed using JTAG controller that can be applied with 

nearly any test platform for at-speed production testing, including functional or structural 

ATE testers, burn-in drivers, or even on a system board that has JTAG access. Besides, 

PBIST is also a powerful DFT to generate all the algorithmic tests and to raster memory 

data at-speed for fault diagnosis, memory repair and yield improvement. Furthermore, 

PBIST is capable of looping and repeating a set of instructions continuously while 

instructing the address generation logic to modify the address through each loop. A few 

programming code in PBIST (normally less than 16) are used to construct long and 

complex algorithms. Thus, the PBIST discussed by the author can be widely used in 

production memory testing due to its flexibility in generating all algorithmic tests with 

different data background and addressing, at-speed testing to detect subtle faults, high 

fault-coverage and low area overhead. It also helps in test time reduction and management 

because different set of algorithms can be implemented at different phases of test, such as 

wafer sort, package and burn-in test.  
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Figure 2.5: The PBIST architecture (David et al., 2004) 

 

Another new multiple-buffer BIST methodology was proposed, which capable to 

concurrently test a set of memory with different sizes that is shown in Figure 2.6 (Jone et 

al., 2002). The RSMarch algorithm was investigated to enable all buffers to share the same 

BIST controller. The fundamental concept of RSMarch algorithm was to tolerate 

redundant inputs and output responses in order for all buffers to receive the same control 

and data signals from the BIST controller even if the buffer sizes were different. 

Nevertheless, this redundant operations do not affect the fault coverage obtained by the 

non-redundant operations. With this new method, the test requirements of low hardware 

overhead, short test time and high fault coverage can be achieved. This proposed approach 

can be implemented on the SOC design that consists of various memory with different 

sizes.  
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Figure 2.6: The proposed BIST architecture for multiple RAMs  

(Jone et al., 2002) 

 

Programmable memory BIST (MBIST) is another commonly used DFT for 

memory test, which can be classified into two main categories: FSM-based and micro-

based (Kamran & Shambhu, 1999).  Pre-selected elements representing different 

combination of memory operations from conventional March algorithms are encoded in 

an FSM-based programmable MBIST, which supports mostly linear algorithms and has 

less area overhead. Whereas, micro-code based programmable MBIST only encodes the 

basic memory operations instead of encoding March elements, which provides flexibility 

to program any linear and non-linear algorithms but with a higher area overhead.  

A full-speed field programmable MBIST (FP-MBIST) controller was 

implemented for March algorithms and also some non-linear algorithms, such as 

Galloping, Walking, Sliding Diagonal and Butterfly algorithms (Du et al., 2005). Figure 

2.7 illustrates the top-level architecture of FP-MBIST, which consists of instruction 




