

REDUCED GALLOPING COLUMN ALGORITHM

FOR MEMORY TESTING

NGIENG SIEW CHING

UNIVERSITI SAINS MALAYSIA

2015

REDUCED GALLOPING COLUMN ALGORITHM FOR

MEMORY TESTING

By

NGIENG SIEW CHING

A Dissertation submitted for partial fulfillment of the requirement for

the degree of Master of Science (Electronic Systems Design

Engineering)

August 2015

ii

ACKNOWLEDGEMENTS

This dissertation is dedicated to everyone in the field of memory semiconductor

research who embarks the journey of expanding the collection of knowledge and great

passion for continuous improvement of test time reduction in memory testing in the

semiconductor industry.

First of all, I would like to express my gratitude to Dr. Zaini Abdul Halim, my

dissertation advisor and supervisor, for seeing the promise of this thesis and achieving

research conducted under her watchful eyes. Besides, her invaluable support, guidance

and insightful advice has resulted in the completion of this project.

My special thanks to my colleagues in INTEL, Ukchukphan Saeng Fiserm, Pui

Poh Khong and Kumar Suriya A for their informative inputs and technical support during

development of this project. They shared ideas by providing incessant information on the

research techniques and skills. Because engineering is not a collection of knowledge, I

truly appreciate their feedback and suggestion in providing me a deeper and better

understanding to the project.

In addition, appreciations are dedicated to Soh Meng Wah and Yii Wen Wen for

their inputs, moral supports and friendships. They contributed valuable suggestions in

the discussion when I faced problems in this project development and implementation.

Their efforts are greatly appreciated.

Last but not least, I offer my regards and blessing to my beloved family

who supported me in any aspect throughout this project.

iii

TABLE OF CONTENTS

 PAGE

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS x

ABSTRAK xiii

ABSTRACT xiv

CHAPTER 1 – INTRODUCTION

1.1 Background 1

1.2 Problem Statement 5

1.3 Objectives 6

1.4 Scope of project 7

1.5 Report Outline 8

CHAPTER 2 – LITERATURE REVIEW

2.1 Overview 10

iv

2.2 Test time reduction efforts 10

2.3 Memory test algorithms analysis 16

2.4 BISTs for memory test algorithm 21

2.5 Summary 27

CHAPTER 3 – METHODOLOGY

3.1 Overview 28

3.2 Proposed reduced GalCol test algorithm definition 29

3.3 Pseudo-code development of reduced GalCol algorithm 36

3.4 Simulation development for reduced GalCol algorithm 38

3.5 Post silicon implementation for reduced GalCol algorithm 48

3.5.1 Reduced GalCol test pattern generation flow 48

3.5.2 Experimental setup in HVM flow 50

3.6 Summary 54

CHAPTER 4 – RESULT AND DISCUSSION

4.1 Overview 56

4.2 Simulation results for reduced GalCol algorithm tests 56

v

4.3 Silicon results from HVM test flow implementation 61

CHAPTER 5 – CONCLUSION

5.1 Conclusion 67

5.2 Limitation/Future Works 68

REFERENCES 70

APPENDICES

APPENDIX A 73

vi

LIST OF TABLES

 PAGE

Table 1.1 SRAM functional fault types 5

Table 1.2 Test time as function of memory size with cycle time of 100nS 6

Table 2.1 Description list of the used algorithm tests 17

Table 3.1 Summary of PBIST registers used in reduced GalCol test 40

Table 4.1 Test time for reduced and normal GalCol test simulation 61

Table 4.2 Time test reduction results for reduced GalCol tests at 600MHz 62

Table 4.3 Time test reduction results for reduced GalCol tests at 1.60GHz 62

Table 4.4 DUT pass or fail status of reduced GalCol tests at 600MHz 66

Table 4.5 DUT pass or fail status of reduced GalCol tests at 1.60GHz 66

vii

LIST OF FIGURES

 PAGE

Figure 1:1 Tablet segmentation by INTEL 1

Figure 1.2 Smartphone platform roadmap by INTEL 2

Figure 1.3 Chip are occupied by memories 2

Figure 1.4 ITRS 2005 Semiconductor trends in gate density 3

Figure 1.5 Typical representation of a microprocessor test flow 4

Figure 2.1 The proposed TTR tool 13

Figure 2.2 The proposed greedy algorithm 14

Figure 2.3 (a)General structural of SRAM; (b)Modified driving logic 15

Figure 2.4 Galloping column algorithm 20

Figure 2.5 The PBIST architecture 23

Figure 2.6 The proposed BIST architecture for multiple RAMs 24

Figure 2.7 Top level architecture of FP-MBIST 25

Figure 2.8 NPMBIST architecture 27

Figure 3.1 Reduced GalCol algorithm software development flow 28

chart

Figure 3.2 Reduced GalCol algorithm test implementation on 29

HVM test flow

Figure 3.3 Example of solid data background 30

viii

Figure 3.4 Short notation of Reduced GalCol algorithm 31

Figure 3.5 Test operation of GalCol X8 33

Figure 3.6 (a) Galloping back and forth of GalcolX8 35

(b) Galloping back and forth of original GalCol 35

Figure 3.7 Pseudo-code for reduced GalCol test algorithm 37

Figure 3.8 Pseudo-code for normal GalCol test algorithm 38

Figure 3.9 High level of reduced GalCol algorithm test simulation 39

 flow

Figure 3.10 Reduced GalCol X8 Perl .pl source codes 44

Figure 3.11 Flow diagram of reduced GalCol X8 Perl .pl source codes 45

Figure 3.12 Synopsis Verdi GUI interface for reduced GalCol 47

test verification

Figure 3.13 Verdi Waveform Viewer for reduced GalCol test 47

verification

Figure 3.14 Verdi Schematic Viewer for reduced GalCol test 48

verification

Figure 3.15 Reduced GalCol HVM test pattern generation flow 49

Figure 3.16 HDMT platform for reduced GalCol pattern enabling in 50

HVM

Figure 3.17 Normal GalCol and reduced GalCol test flow on HVM 52

Figure 3.18 HVM test flow architecture for reduced GalCol experiment 53

ix

Figure 3.19 Test instance for reduced GalCol X8 algorithm 53

Figure 4.1 Galloping back and forth for the first 8 target cell in 57

GalCol X8 algorithm

Figure 4.2 Galloping back and forth for the last 8 target cell in 57

GalCol X8 algorithm

Figure 4.3 Galloping back and forth for the first 16 target cell in 58

GalCol X16 algorithm

Figure 4.4 Galloping back and forth for the last 16 target cell in 58

GalCol X16 algorithm

Figure 4.5 Galloping back and forth for the first 32 target cell in 59

GalCol X32 algorithm

Figure 4.6 Galloping back and forth for the last 32 target cell in 59

GalCol X32 algorithm

Figure 4.7 Galloping address results for GalCol X8 test with 60

base cell from 0 to 17

Figure 4.8 Pattern editor viewer that displaying passing result of 63

GalCol X8 test

Figure 4.9 Pattern editor viewer that displaying passing result of 64

GalCol X8 test

Figure 4.10 Pattern editor viewer that displaying failing result of 64

GalCol X8 test

Figure 4.11 Waveform that displaying failing result of GalCol X8 test 65

x

LIST OF ABBREVIATIONS

AF Address-Decoder Fault

ATE Automated Test Equipment

BIST Built-In-Self-Test

CE Consumer Electronics

CF Coupling Fault

CPU Central Processing Unit

DFT Design for Test

DPM Defect Per Million

DRAM Dynamic Random Access Memory

DUT Design under Test

FC Fault-Coverage

FFMs Functional Fault Models

FP-MBIST Full-Speed Field Programmable MBIST

GalCol Galloping Column

GalDiag Galloping Diagonal

GALPAT Galloping Full Pattern

xi

GalRow Galloping Row

HDMT High Density Modular Tester

HVM High Volume Manufacturing

IO Input Output

JTAG Joint Test Action Group

KB Kilo-Byte

L2 Level 2

MBIST Memory Built-In-Self-Test

NPMBIST Non-linear Programmable Memory BIST

NPSF Neighborhood Pattern Sensitive Fault

PBIST Programmable Built-In-Self Test

RAM Random Access Memory

RF Register File

ROM Read Only Memory

SAF Stuck-At-Fault

SOC System-On-Chip

SRAM Static Random Access Memory

TF Transition Fault

xii

TTR Test Time Reduction

VCS Verilog Compiler Synopsys

6T 6-Transistor

xiii

ALGORITMA PENGURANGAN LAJUR “GALLOP” UNTUK

PENGUJIAN MEMORI

ABSTRAK

 Pengujian memori amat penting dalam perkembangan pantas teknologi bagi

sistem dalam cip. Ini disebabkan oleh peningkatan memori kapasiti dalam rekaan cip yang

semakin kecil, kompleks dan berkuasa rendah. Masa pengujian untuk memori dalam cip

merupakan satu cabaran yang hebat untuk mencapai produk yang berkualiti tinggi dan kos

rendah dalam masa ke pasaran yang singkat. Pengurangan masa pengujian untuk memori

amat penting kerana kos pengeluaran dalam industri amat bergantung pada masa

pengujian produk dalam mesin. Terdapat banyak algoritma yang boleh digunakan untuk

menguji memori, termasuk lajur “gallop” (GalCol). GalCol merupakan algoritma yang

penting untuk mengesan kecacatan gandingan dan peralihan yang unik. Namun demikian,

algoritma GalCol asal memakan masa pengujian yang lama. Algorithma pengurangan

lajur “gallop” dibangunkan untuk mempercepatkan masa pengujian memori. Algorithma

pengurangan GalCol mempunyai ciri ciri algoritma yang sama dengan GalCol asal.

Perbezaan ketara dalam pendekatan algoritma pengurangan GalCol adalah pengurangan

bilangan pergerakan sel sasaran. Pergerakan sel sasaran dihadkan pada 8, 16 dan 32 sel

untuk setiap sel asas. Projek ini melibatkan dua peringkat, iaitu pembangunan perisian

menggunakan perisian INTEL dan Synopsys dan pembangunan algoritma pengurangan

GalCol dalam process pengeluaran milik INTEL. Memori L2 SRAM bersaiz 64KB dalam

15 cip telah diuji dengan algoritma pengurangan GalCol. GalCol X8 algoritma mencapai

pengurangan masa pengujian memori yang tertinggi, iaitu sebanyak 79.5% dan 75.7%

pada frekuensi 600MHz dan 1.6GHz dan ketepatan hasil yang selaras dengan GalCol asal.

xiv

REDUCED GALLOPING COLUMN ALGORITHM FOR MEMORY TESTING

ABSTRACT

Memory testing is significantly important nowadays especially in SOC’s design,

due to their rapid growth in the memory density and design complexity in smaller chip

area and low power design. Thus, test time in memory testing is a key challenge to

accelerate time to market, high yield and low test cost in high volume manufacturing. Test

time reduction in memory testing is important in industry, as test cost is directly related to

validation time of each product on the tester. There are lots of memory algorithms used

for memory testing, including the galloping column algorithm (GalCol). The GalCol

algorithm test is important to detect unique coupling and transition faults. However, the

existing GalCol algorithm takes huge test time due to its test complexity. To overcome

the test time issue in industry, reduced GalCol algorithms with solid data background are

proposed. The reduced GalCol algoritms have similar test behavior as original GalCol

algorithm with major difference in the number of galloping of the target cells. The

galloping of target cells are reduced to first and last 8, 16 and 32 of cells of every base

cell. This project is progressed in two stages, which are the software development using

INTEL software and Synopsys tool and test implementation on INTEL production flow.

These algorithm are verified on 15 units of 64KB L2 SRAM memory. In this project, test

time reduction and consistent pass fail test results are achieved in the reduced GalCol

algorithm tests. The GalCol X8 algorithm obtains the highest test time reduction of about

79.5% at 600MHz and 75.7% at 1.6GHz with consistent pass or fail test results

comparable to original GalCol algorithm in the HVM test flow.

1

CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, system-on-chip (SOC) designs that combines processing core,

graphics, audio, video and input output components (IO) onto a single chips are

increasingly important on consumer electronic market segments. Example are tablet and

smartphone devices (Vermeulen & Goossens, 2014). The consumer electronics (CE)

manufacturers spend tremendous effort to develop lower power, more intelligent, higher

performance and cost-effective SOC designs and to accelerate time to market. Figure 1.1

and Figure 1.2 show the table market segment and smartphone platform roadmap by

INTEL

Figure 1.1: Tablet segmentation by INTEL

2

Figure 1.2: Smartphone platform roadmap by INTEL

Nowadays, the embedded memories occupy over 90% of the most system-on-chip

(SOC) designs in 2014 (Nisha & Siva, 2014), which is shown in Figure 1.3 The numbers

and variety of embedded memories such as random access memory (RAM), read only

memory (ROM) and registers file memory (RF) are increasing tremendously in SOC

designs. Figure 1.4 shows the semiconductor trends, which gate density will be increasing

exponentially over years with rapid improvement in data rate speed.

Figure 1.3: Chip are occupied by memories (ITRS, 2007)

3

Figure 1.4: Semiconductor trends in gate density (ITRS, 2007)

The rapid growth of memory density, design complexity, speed and reduction of

SOC chip area leads to challenges for SOC high volume manufacturing (HVM) especially

on testing time, costs and yields impact. The test costs are largely driven by test time factor.

Test time is the time consumption for validating each product on tester. The test time of

SOC designs are increasingly due to tremendous growth in memory size, memory types

and different design for test (DFT) methodologies. With the rapid growth in test time,

HVM test costs will be higher. This will impact time to market and costs of the SOC

products. Thus, memory test time reduction (TTR) has been an important and critical issue

especially in HVM environment that requires extremely low defect per million (DPM)

budget on entire SOC.

The typical flow of memory testing in HVM is complex and time consuming to

ensure high yield and good quality products, which is shown in Figure 1.5 (Zaid et al.,

2008). The flow are divided into 2 main phases, which are the wafer test (also named as

sort test) and package test (also named as class test). During the wafer test phase, it

consists of cache structural test, where each internal functional blocks are tested

individually instead of testing the die as whole system through its input/output pins (I/O).

4

Normally wafer test stage has lesser pins than the package test phase. Fault localizing tests,

which identifying the failing cells are run in this stage in order to repair the failing cells

with redundant row or column. During the package test phase, cache is retested using the

fault detecting tests to eliminate the fault chips from the HVM flow. Functional testing is

the final stage in the package test flow, where the entire chip is validated at-speed through

its I/O pins. The purpose of this testing is to guarantee the functionality of the processor

and to categorize different chips according to their speed and power consumption, which

is called as speed and power binning. The entire memory testing in package test flow

consumes significant test time.

Figure 1.5: Typical representation of a microprocessor test flow (Zaid et al., 2008)

Although the test time reduction (TTR) issue is challenging in HVM flow, there

are some useful heuristic memory tests that still can be implemented to improve test time

and provides high fault coverage. There are lots of well-known memory algorithms widely

used for Built-In-Self-Test (BIST) SOC memory testing in industry, such as SCAN (4N),

Partial Moving Inversion (13N), March-C (10N), Mats++ (6N) and Galloping algorithms

(4N2) (Michael et al., 2013). GALPAT, Walking 1/0 and Sliding Diagonal are classified

as complex and conventional test algorithms (Van & A.J, 1999). All these different

algorithms in industrial can detect different unique faults coverage, such as stuck-at-fault

(SAF), transition fault (TF), coupling fault (CF), address-decoder fault (AF) and

5

neighborhood pattern sensitive fault (NPSF) (Rusli et al., 2012). Common functional static

fault types are described in Table 1.1.

Table 1.1: SRAM functional fault types (Ashokkumar & Subhash, 2014)

1.2 Problem Statement

Galloping algorithm is serving as an effective test for reliable minimum voltage

searches, maximum frequency searches and detecting most faults in HVM flow. The tests

stress the interaction between the base cell under tests and the remaining cells of the

memory. It can detect and locate all SAF’s, TF’s, AF’s and CF’s with single galloping

test (Grzegorz et al., 2011). The galloping test can be isolated within row, column or

diagonal, which use to derive galloping column (GalCol), galloping row (GalRow) and

galloping diagonal (GalDiag) tests. This helps to reduce the galloping test complexity.

Galloping tests require test time of n2 order, where n is the memory size in n bits. From

Table 1.2, complex test algorithm with n2 order are significantly higher than other non n2

tests with assumption a cycle time of 100nS. Testing a 256 Kbit memory on the chip will

6

require 1.9 hours for test with complexity of n2. Thus, although the galloping test can

detect most of the silicon faults, the test time for galloping test is a major concern in

achieving TTR effort in mass production. The huge test time will cause significant impact

on the time to market and test costs of the SOC products.

Hence, a modified galloping algorithm that focusing on GalCol is investigated in

order to improve the memory test time validation especially on the SOC’s high volume

manufacturing.

Table 1.2: Test time as function of memory size with cycle time of 100nS
(Arvind, 2012)

1.3 Objectives

The project is conducted to achieve the objectives as below:

1. To develop reduced GalCol algorithm on simulation and implement on HVM

production test flow.

2. To study the effectiveness of the reduced GalCol algorithm in term of test time

reduction as compared to original GalCol algorithm.

3. To study the effectiveness of the reduced GalCol algorithm in term of product

failing or passing status as compared to original GalCol algorithm. The test status

indicates whether memory under test is fault-free or not.

7

1.4 Scope of project

This project covers the software development of Reduced GalCol algorithm and

test implementation on HVM test production flow. Memory testing using other test

algorithms are not implemented in this project.

The reduced GalCol with solid data background tests are investigated and

modified from existing GalCol test which is used in industrial. For this project, reduced

Galcol algorithm analysis is specifically targeted on reducing galloping address by 32, 16

and 8, instead of galloping all cell in the same column as base cell. The reduced GalCol

tests are developed using INTEL built-in software and simulation verification is done

using Synopsys Verilog Compiler (VCS) tool. Synopsys Verdi debug tool is used, which

provides powerful debugging features, such as waveform viewer that helps to analyze the

design behavior and the algorithm activity over time and source code browser for design

signal tracing.

To implement the reduced GalCol tests on HVM production test flow, automated

test pattern generation flow is studied. The reduced GalCol tests from simulation are

converted to tester friendly format using INTEL automated test pattern generation tools.

The automated test equipment (ATE) used in this project is limited to INTEL in-house

tester, named as High Density Modular Tester (HDMT). Despite there are many different

ATE, HDMT is chosen because it is cheaper and HVM production test costs are lower by

10X. This tester provides test time collection capability and pattern editor to modify the

test pattern on tester, which are suitable for the application of this project.

There are lots memory sizes and types in SOC designs. However, in this project,

test time reduction analysis of reduced GalCol algorithm is targeted only on 64KB L2

Data SRAM with single-port six transistor (6-T) memory design, which using 14-nm

8

INTEL technology. The L2 Data SRAM is chosen because it is among the biggest memory

in the SOC designs. The memory of design under test (DUT) is tested only under room

temperature 25’c in two different core frequencies, 600MHz and 1.6GHz on pre-burn-in

flow after wafer test and die packaging. The test time analysis of reduced GalCol

algorithm is specifically focus on test time taken for memory write and read operations,

and not covering test time analysis for taken for HVM reset or tester setup time.

To study the effectiveness of reduced GalCol algorithm, test status pass or fail on

HVM test flow is being investigated in this project, which telling if the DUT is fault-free

or not. This project will not be covering the fault identification, which identify the failing

location of memory cell and the type of detected fault.

1.5 Report Outline

This report is organized into five main chapters that explain the details from the

introduction to conclusion of reduced GalCol test algorithm project. The first chapter is

describing the introduction of this project, which covering the project background,

problem statement, objectives and scope of the project.

Chapter 2 discusses on previous works in the memory test algorithms done by past

researchers. The relevant fundamental background of previous research is also explained

in this chapter.

In chapter 3, the proposed reduced Galloping Column (GalCol) test algorithm is

introduced, which includes the methodology for software development and test

implementation on HVM test flow. The methodology for software development explains

on pseudo-codes, test coding and simulation of reduced GalCol algorithm. This chapter

9

also describes HVM test pattern generation methods in details, test flow implementation

and validation on ATE.

Chapter 4 presents the experimental results and discussion of this project. This

chapter shows the results to proof the efficiency of the reduced GalCol algorithm. The test

time reduction and DUT pass or fail test status are analyzed in this chapter.

Lastly, chapter 5 presents the conclusion of this project. Summary of the project

implementation and achievements are explained. This chapter also outlines the limitation

and future research works that needed for the reduced GalCol test algorithm.

10

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

As discussed in previous chapter, over 90% of SOC’s chip area is occupied by

diverse memory. The tremendous growth of memory density, capacity and design

complexity leads to large challenges in test time, test cost and yield in SOC high volume

manufacturing, which eventually will impact the product time to market and product cost

effectiveness. Thus, memory test time issue is long time research issue and unceasing

efforts in high volume manufacturing, as product test cost is directly driven by the product

validation time on tester. This chapter covers the past researches and analysis that have

been carried out on test time reduction efforts, memory algorithm tests and built-in-self

test (BIST) that is used by algorithm testing to achieve test time reduction.

2.2 Test time reduction efforts

There are lots of test time reduction approaches are carried out to solve the test

time issue in memory testing in semi-conductor industry. A study was performed to

remove redundant test patterns by adapting two methods. The two methods were named

as fault detectability analysis and fail label analysis, in order to achieve memory test time

reduction while maintaining the fault detectability (Wu et al., 1996). According to authors,

well-defined fault model was needed in fault detectability analysis, based on which fault

detectability of all test were analyzed. The fault coverage evaluation are done from the

result of the analysis. On other hand, the fail label analysis began with fail labels collection

11

of each failing DUT, which this information was useful to analyze dependence relation

between the tests. The result of the study showed that these two approaches are just dual

to each other, which encouraging the test engineer in industry to perform test time

reduction by analyzing fail labels in the test result directly without any knowledge of the

fault model. The fault detectability analysis is useful for academic field since the faults

are analyzed thoroughly and fault models are well defined. Whereas the fail label analysis

is more practical for industrial field.

Another study had been carried out on memory test time reduction. The author

proposed to interconnect all test patterns, which re-using the memory states left from

previous test (Wu et al., 2000). The objectives of this study was to minimize the tester

settling time and share the sequences initialization time between two consecutive test

patterns being applied on the tester. The analysis of interconnecting the test item was

categorized into the three main parts, which were the initialization sequences, fault

activation and verification sequences and pure verification sequence. For the initialization

sequence part, there was commonly a sequence of write operations to initialize memory

cells into certain initial value. Next part, was the fault activation and verification

sequences. This key part of a test consisted a sequence of read and write operations in

certain addressing order to activate, detect the designated faults and verify the result. The

last part was the pure verification sequence, which aimed to verify the results through a

sequence of read operations. The commonality between part 1 and part 3 was, they care

only the state of memory and do not focus on how to perform their operations or reach

their state. Furthermore, part 2 was usually started with read operations, similar to part 3,

which could also be used to verify memory state of previous state. Thus, part 1 and part 3

12

were eliminated and replaced by memory states, where memory state from previous test

can be reused as initialized state for the following test. However, there was unique case,

where the verification sequence may not be always sharable and could not be classified as

part 3. The reason was the verification sequence at end of test need to be executed with

specific addressing order, operation mode or voltage or timing condition. Thus, this is the

constraint of the interconnecting all test in the production.

In addition, Junichi presented a novel method for memory test time reduction by

installing virtual tester hardware on the tester central processing unit (CPU) memory

(Junichi, 2001). The study showed that this approach helped to delete the duplicated tester

hardware setting instructions, such as waveform timing setting, input output voltage

setting and pin conditional setting, which required a long setup time amounting to a 0.3 to

1.0 mili-second. The virtual tester hardware was comprised of memory that houses the

addresses that enabled it in order to identify the different tester hardware parts and their

actual setting values. The comparison between value that was already set on the real tester

hardware and value sent from tester CPU was performed in each instruction of the test

program. If the values are identical, the test program proceeded to next instruction. If the

values are different in test instances, the test program ran again to set the value in the real

tester hardware. Thus, the results proved the test time reduction of 5% to 25%, which

verified the effectiveness of this method. Moreover, the test time can be reduced by

minimizing the number of times the power supply was turned ON and OFF. The power-

supply voltage will be turn OFF, reset with new value and was turned back ON if the

existing test module had different set voltages values compared to previous test module.

13

Hence, this TTR approach is practical and greatly adapted in high volume manufacturing

environment.

Besides that, a systematic approach was studied and proposed for memory test

time reduction. The authors discussed on identifying redundant test patterns in the test

flow, then removing and/or combining the test patterns to minimizing the overall memory

test time (Yeh et al, 2005). From this study, the original tests can be removed or merged

and new tests can be developed without losing the fault coverage. The authors had also

developed a TTR tool, which was useful for test time reduction for industrial products,

which is illustrated in Figure 2.1.

Figure 2.1: The proposed TTR tool (Yeh et al., 2005)

This TTR tool required the input parameter file and test reduction procedure,

which eventually produces the output data file. The test program, detected-fault table and

test time of each test are the important input parameter files. The detected-fault table

consisted of the detected faults for each test. The output data file provided the

recommended reduced test procedure and the reduced test time. In the test reduction

procedure, the authors proposed the greedy algorithm based search engine and the test

pattern merging engine. The greedy algorithm based search engine is illustrated in Figure

2.2. The weight was generated by sorting the tests based on test time and the weight was

14

distinguished by number of faults detected if there were tests that had same test time. The

test with shortest test time will have the minimum weight. The minimum weight test was

put into solution set using the greedy approach and removed from test set. The fault

detected for the minimum weight test was also removed from fault set. This step was

continued until fault set was empty. The final solution set was the reduced test set. Thus,

this heuristic TTR algorithm could identify the redundant test patterns, suggested a proper

test list and provided the correlation between the test items. The results of the study

showed the overall test time reduction about 19.5% without reducing the fault coverage

on an industrial DRAM chip on a DRAM tester. However, it is challenging to obtain the

accurate fault-detected table as input parameter file for this TTR tool implementation,

especially on the new or in-mature process technology.

Figure 2.2: The proposed greedy algorithm (Yeh et al., 2005)

15

Furthermore, a novel architecture for test time reduction in March-based algorithms

was proposed by enabling in parallel more than one words of the RAM during the write

operations (Voyiatzis et al, 2012). The recommended architecture needed additional write

drivers in the driving logic, the gates required to enable the outputs of the decoder in

parallel and additional flip-flops in address generator. Figure 2.3 illustrates the general

structural of SRAM and the modification on driving logic. The results of the study showed

the reduction in test time, ranges from 25% to 60% depending on the March algorithm

with an increase of less than 2,5% in hardware overhead for 1Kbyte SRAM. There were

few advantages of the proposed approach, such as it did not have much impact on the cell

arrays of the RAM, which was carefully optimized with respected to area and delay as

well as not affecting on normal RAM operation.

Figure 2.3: (a) General structural of SRAM; (b) Modified driving logic
(Voyiatzis et al, 2012)

16

2.3 Memory test algorithms analysis

Throughout the years, there are lots of researches and developments of memory

test algorithms such as SCAN, March C-, March SR, MATS++, PMOVI, Hammer,

GALPAT, GalCol, and so on (Nisha & Siva, 2014). The performance and effectiveness

of heuristic test algorithms are confirmed through simulation. In the high volume

manufacturing environment, an efficient selection of memory test algorithms is crucial to

accomplish high fault coverage and low test time at the same time.

A comprehensive study on memory test algorithm in industry had been presented.

In the study, 12 well-known and 3 fault-primitive-based memory test algorithms were

performed at INTEL, which is listed in Table 2.1 (Hamdioui et al., 2006). The “n” denoted

the size of memory cell array, C was the number of columns and R was the number of

rows. (^) and (v) were the increasing or decreasing address order. An operation applied to

a cell can be “w0” (write 0), “w1” (write 1), “r0” (read 0) or “r1” (read 1). The results of

the study showed that the tests with most promising fault coverage in theory had similar

highest fault coverage in real silicon practice. However, the results revealed that some

algorithms, such as GALPAT and Walking 1/0 detected faults that cannot be explained

with existing fault models and lacked of fault models.

The 12 sets of traditional algorithms that selected in the case study had most

promising fault coverage and unique faults detected. March C tests have become the

dominant type of tests in memory testing due to their high fault coverage and linear

complexity in test application time (Dharma et al, 2013). Many different flavor of March

tests had been introduced, including the fault-primitive March SS, March Raw and March

SL algorithms (Zaid et al., 2008)

17

Table 2.1: Description list of the used algorithm tests (Hamdioui et al., 2006)

Algorithms Test Length Description/Short notation

Fault-primitive algorithms
March SS
(Hamdioui et al.,
2002) 22n

^(w0); ^(r0,r0,w0,r0,w1);^(r1,r1,w1,r1,w0);
v(r0,r0,w0,r0,w1);v(r1,r1,w1,r1,w0);^(r0)

March RAW
(Hamdioui et al.,
2002) 26n

^(w0);^(r0, w0,r0,r0,w1,r1);
^(r1,w1,r1,r1,w0,r0);v(r0,w0,r0,r0,w1,r1);
v(r1,w1,r1,r1,w0,r0);^(r0)

March SL
(Hamdioui et al.,
2004) 41n

^(w0);^(r0,r0,w1,w1,r1,r1,w0,w0,r0,w1);
^(r1,r1,w0,w0,r0,r0,w1,w1,r1,w0);
v(r0,r0,w1,w1,r1,r1,w0,w0,r0,w1);
v(r1,r1,w0,w0,r0,r0,w1,w1,r1,w0)

Traditional algorithms
SCAN (Abadir &
Reghbati, 1983) 4n ^(w0);^(r0);^(w1);^(r1)
MATS+
(Nair, 1979) 5n ^(w0);^(r0,w1);v(r1,w0)
MATS++ (Breuer
et al., 1976) 6n ^(w0);^(r0,w1);v(r1,w0,r0)
March C-
(Marinescu, 1982) 10n ^(w0);^(r0,w1);^(r1,w0);v(r0,w1);v(r1,w0);v(r0)
PMOVI (Jonge et
al., 1976) 13n v(w0);^(r0,w1,r1);^(r1,w0,r0);v(r0,w1,r1);v(r1,w0,r0)
March SR
(Hamdioui et al.,
2000) 14n

v(w0);^(r0,w1,r1,w0);^(r0,r0);^(w1);
v(r1,w0,r0,w1);v(r1,r1)

March G
(Suk et al., 1981) 23n

^(w0);^(r0,w1,r1,w0,r0,w1);^(r1,w0,w1);
v(r1,w0,w1,w0);v(r0,w1,w0);^(r0,w1,r1);^(r1,w0,r0)

Hammer10 (Van et
al., 1999) 49n

^(w0);^(r0,10*w1,r1);^(r1,10*w0,r0);
v(r0,10*w1,r1);v(r1,10*w0,r0)

GalColumn (Breuer
et al., 1976) 6n + 4nR

^(w0);^b(w1b, col(r0,r1b), w0b);
^(w1);^(w0b,col(r1,r0b),w1b)

GalRow (Breuer et
al., 1976) 6n + 4nC

^(w0);^(w1b, row(r0,r1b), w0b);
^(w1);^(w0b,row(r1,r0b),w1b)

WalkColumn (Van
et al., 1999) 8n + 2nR

^(w0);^(w1b, col(r0),r1b,w0b);
^(w1);^(w0b,col(r1),r1b,w0b)

WalkRow (Van et
al., 1999) 8n + 2nC

^(w0);^(w1b, row(r0),r1b,w0b);
^(w1);^(w0b,row(r1),r1b,w0b)

 March SS was developed based on fault simulation, which targets all simple static

memory faults (Hamdioui et al., 2002). Simple faults are the faults which cannot influence

the behavior of each other. Fault masking cannot happen as the behavior of a simple fault

18

cannot change the behavior of another one. This algorithm initializes the entire memory

cell. Each cell is then read twice, written back to data, read again and then write inverse

data before moving to next cell. The operations occur for both data and data complement

in both incrementing and decrementing addresses. A last read at the end verifies the last

read happens correctly.

March RAW was also developed based on fault simulation (Hamdioui et al., 2002).

The fault model used for the test development was the single port, simple dynamic fault

and the test detects read after write (RAW) failures. The algorithm will write the array to

initial data and then perform a read data, write the data, read the data again twice, write

the inverse of the data and then read it before changing to the next address. The read and

write operation happen for both data and data complement in both increment and

decrement address sequences.

Furthermore, March SL algorithm which developed based on fault simulation is

used to detect all simple linked faults (Hamdioui et al., 2004). The faults that will influence

the behavior of each other are defined as linked faults. Fault masking can occur as the

behavior of certain fault can change the behavior of another, which causes complexity in

linked fault testing as compared to simple fault testing.

The GALPAT (galloping pattern) algorithm with fast X-addressing and solid data-

background can detect and locate all address faults, stuck-at-faults, transition faults and

coupling faults in memory cells. This test is a robust non-linear algorithm, with test

complexity of 4n2 (Arvind, 2012). Thus, the test time for this algorithm is also larger than

other traditional algorithm, as test time is driven by the memory size and test length or

complexity. The galloping algorithms begin by initializing the entire array to a known

19

data background. The galloping action starts by writing the base cell to data complement

followed by a read of all target cells. Finally the base cell is restored to original value.

Once the entire set of cells selected as targets have been validated, the base cell is

incremented and the galloping action begins again. This sequence will continues until all

the cells selected to be base cells have been tested (Prasanna & Saroja, 2014). For a full

galloping pattern, the target set of cells include all other cells in a given block other than

the base cell.

Due to test complexity and test time constraint of GALPAT algorithm, galloping

column (GalCol) and galloping row (GalRow) algorithms that are less complexity are also

used in memory testing. The GalCol algorithm behaves exactly similar as full gallop

except the read action is restricted to only the cells in the same column as the base cell

instead of galloping through entire memory. Figure 2.4 illustrates the test sequences of the

GalCol algorithm. The reduction of the target cells shorten the test time compared to the

GALPAT and makes it production test program worthy. The GalCol algorithm has been

a reliable test for active minimum voltage searches and frequency maximum searches for

data collection. This algorithm can detect same detects as GALPAT but some coupling

faults can be missed.

20

Figure 2.4: Galloping column algorithm

Similar comprehensive research on test algorithm effectiveness and classification

had also be performed (Michael et al., 2013). However, the number of test algorithms was

restricted to 29 linear marching algorithms, which did not include the complex and non-

linear algorithms such as GALPAT, GalCol, GalRow and Walking I/0. Reason was

because the Memory BIST (MBIST) used in the experiment only supported marching

algorithms. The objectives of the study was to obtain high fault coverage with low test

21

time through classification of algorithms. In this study, the authors discussed about

statistical data analysis in term of fault coverage, efficiency and similarity, classification

and grouping of the algorithms. The percentage of faults that are detected by algorithm in

relation to the total number of faults are defined as fault coverage (FC). If the fault

coverage is high, an algorithm is characterized as effective test. However, the higher fault

coverage of specific algorithms is not necessary related to many complex faults discovery,

but can also detect the simple faults and more different types of faults. The efficiency and

similarity of test algorithms in a set was measured by taking the ratio of intersection and

union of faults detected. The groups of similar algorithms were allocated to the functional

fault model (FFMs), which helped in combining the test algorithms efficiently. The results

of the study showed that at least 13 test algorithms would be needed to detect all the faults,

such as the simple static single-cell faults, simple static coupling faults, linked faults and

dynamic faults. However, this will require huge effort for HVM testing because MBIST

needs to be reconfigured for each algorithm in the test set. Thus, this approach is suitable

when only few test algorithms can be used to meet limited test time budget and high fault

coverage goal.

2.4 BISTs for memory test algorithm

There are lots research being performed to study on the design for test (DFT)

implementation for memory testing and validation strategy. Built-in-self-test (BIST) is

one of the most extensively used for DFT technique. It offers full speed test application,

high fault coverage, extensive diagnostics and less sophisticated in tester hardware

(Neelima & RangaCharyulu, 2014).

22

Programmable built-in-self test (PBIST) is a key evolution from hard-wired BIST.

A study have been carried out to discuss on comprehensive array DFT strategy to achieve

extremely low defect per million (DPM) for entire arrays by (David et al., 2004). In the

study, PBIST was used to test large array in Level 2 (L2 Data, Tag, LRU and State arrays),

which is shown in Figure 2.5. PBIST is small micro-code machine connected to fairly

sophisticated address generation logic, distributed data generation and comparison logic.

PBIST is accessible and programmed using JTAG controller that can be applied with

nearly any test platform for at-speed production testing, including functional or structural

ATE testers, burn-in drivers, or even on a system board that has JTAG access. Besides,

PBIST is also a powerful DFT to generate all the algorithmic tests and to raster memory

data at-speed for fault diagnosis, memory repair and yield improvement. Furthermore,

PBIST is capable of looping and repeating a set of instructions continuously while

instructing the address generation logic to modify the address through each loop. A few

programming code in PBIST (normally less than 16) are used to construct long and

complex algorithms. Thus, the PBIST discussed by the author can be widely used in

production memory testing due to its flexibility in generating all algorithmic tests with

different data background and addressing, at-speed testing to detect subtle faults, high

fault-coverage and low area overhead. It also helps in test time reduction and management

because different set of algorithms can be implemented at different phases of test, such as

wafer sort, package and burn-in test.

23

Figure 2.5: The PBIST architecture (David et al., 2004)

Another new multiple-buffer BIST methodology was proposed, which capable to

concurrently test a set of memory with different sizes that is shown in Figure 2.6 (Jone et

al., 2002). The RSMarch algorithm was investigated to enable all buffers to share the same

BIST controller. The fundamental concept of RSMarch algorithm was to tolerate

redundant inputs and output responses in order for all buffers to receive the same control

and data signals from the BIST controller even if the buffer sizes were different.

Nevertheless, this redundant operations do not affect the fault coverage obtained by the

non-redundant operations. With this new method, the test requirements of low hardware

overhead, short test time and high fault coverage can be achieved. This proposed approach

can be implemented on the SOC design that consists of various memory with different

sizes.

24

Figure 2.6: The proposed BIST architecture for multiple RAMs

(Jone et al., 2002)

Programmable memory BIST (MBIST) is another commonly used DFT for

memory test, which can be classified into two main categories: FSM-based and micro-

based (Kamran & Shambhu, 1999). Pre-selected elements representing different

combination of memory operations from conventional March algorithms are encoded in

an FSM-based programmable MBIST, which supports mostly linear algorithms and has

less area overhead. Whereas, micro-code based programmable MBIST only encodes the

basic memory operations instead of encoding March elements, which provides flexibility

to program any linear and non-linear algorithms but with a higher area overhead.

A full-speed field programmable MBIST (FP-MBIST) controller was

implemented for March algorithms and also some non-linear algorithms, such as

Galloping, Walking, Sliding Diagonal and Butterfly algorithms (Du et al., 2005). Figure

2.7 illustrates the top-level architecture of FP-MBIST, which consists of instruction

