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ABSTRACT

The extraction of dehulled ground palm kernel using supercritical carbon dioxide (SC-CO,)
as a solvent at temperatures of 40 and 80°C and pressures of 20.7, 27.6, 34.5, 41.4 and 48.3
MPa was studied. Continuous extraction was fractionated into four fractions and each
fraction was collected for every 10 minutes. Thus the total extraction process was
performed for 40 minutes extraction time. Solubility of palm kemel oil (PKO) increased
and iotal use of carbon dioxide (CO,) decreased with increase in femperature from 40 to
80°C and pressures at 34.5, 41.4 and 48.3 MPa. At lower pressures of 20.7 and 27.6 MPa
solubility of oil decreased and use of CO, increased with increase in temperature (80°C)
and this was due to the retrogradation characteristic of supercritical fluid at lower pressure.
The highest yield was obtained at 48.3 MPa and 80°C with minimum CO, used. For
fractionations the first fraction gave the highest yield and then gradually decreased till to
the last fraction for both temperatures 40 and 80°C. That was due to the low solubility of
PKO in the later fraction. This trend had béén observed for all the pressures except 20.7
and 27.6 MPa. At 20.7 and 27.6 MPa the yield was found to be almost the same for all
fractions. This is due to lower amount of oils were extracted at 20.7 and 27.6 MPa. The
three-way analysis of variance (ANOVA) on the yield as a function of pressure,
temperature and fractionation showed that the yields were found to be significantly
different at different pressures and temperatures indicating a significant difference between
the population means (p value < 0.01). Also the yield at different fractions was significantly

different (p < 0.01).

The different fatty acid compositions caprylic (C8), capric (C10), lauric (C12), myristic

(C14), palmitic (C16), stearic (C18:0), oleic (C18:1) and linoleic (C18:2) acid in the SC-

XXX



CO, fractionated PKO were found to be different at various pressures and temperatures.
More C8, C10, C12 extracted in the first fractions, which gradually declined as extraction
period extracted into second, third and fourth fractions. C14 remained unvaried over the
extraction period showing no remarkable difference among the fractions but at 48.3 MPa
and 80°C it reduced remarkably in the last fraction. On the other hand more C16, C18 and '
unsaturated C18:1 and C18:2 were present in the latter fractions. This trends were found to
increase with increase in pressures and temperatures but the difference were not remarkable
at lower pressure 20.7 and 27.6 MPa for both temperatures. However, the compositions
were found to be statistically significant for pressure and fraction times by type of fatt;/

acid.

Blending of palm oil (PO), 4™ fraction of palm kernel oil extracted using SC-CO, at 48.3

MPa and 80°C (PKO-SC4), palmac 98-18 (C18 based) and palmac 760 (C18:1 based) at
different ratios were carried out to obtain blends of cocoa butter replacers (CBR). There
were 13 blends performed through out the ;tudy.‘Blends 1 to 10 were recommended as
cocoa butter substitutes (CBS) and blends 11 to 13 were referred as cocoa butter equivalent
(CBE) fats. The slip melting point (SMP) for blends 11, 12 and 13 were found to be 33.3,
35.1 and 35.3°C, respectively, whereas for the CB it is 35°C. Also the solid fat content
(SFC) of these CBE were found to be higher at 20°C and 0 percent within 37.5°C. This
trend is quite similar to commercial cocoa butter (CB). The iodine value, saponification
value and acid value of these CBE were found quite similar to CB. Thus it proposed to
substitute CB at maximum level of substitution. However, the physicq-chemical properties

of blends 1 to 10 were not found to be as close as CB but it could be proposed as CBS for

low level of substitution of CB.
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ABSTRAK

Pemeringkatan Lampau Genting Karbon Dioksida Minyak Isirung Sawit Dan

Formulasi Lemak Pengganti Mentega Koko

Kajian ke atas pengekstrakan isirung sawit tanpa testa hancur menggunakan lampau
genting karbon dioksida (LG-CO,) sebagai pelarut pada suhu 40 dan 80°C dan tekanan
20.7, 26.7, 34.5, 41.4 dan 48.3 MPa. Pengekstrakan berterusan dipemeringkatkan kepada
empat pemeringkat dan setiap pemeringkat dikumpul selama 10 minit dengan jumlah
proses pengekstrakan dibuat selama 40 minit masa pengekstrakan. Kelarutan minyak
isirung sawit (PKO) meningkat dan jumlah karbon dioksida (CO,) yang digunakan
menurun dengan meningkatnya suhu dari 40 ke 80°C dan tekanan pada 34.5, 41.4 dan 48.3
MPa. Pada tekanan rendah 20.7 dan 27.6 MPa kelarutan minyak menurun dan penggunaan
CO, meningkat dengan meningkatnya suhu (80°C) dan ini disebabkan oleh ciri kesan undur
(retrogradation) bendalir lampau genting pada tekanan rendah. Penghasilan minyak

tertinggi diperolehi pada 48.3 MPa dan 80°C dengan penggunaan CO, yang minima.

Pemeringkatan untuk pemeringkat pertama memberikan hasil yang tertinggi dan kemudian
perlahan-lahan menurun pada pemeringkat yang terakhir untuk kedua-dua suhu 40 dan
80°C. Ini disebabkan oleh kelarutan PKO yang rendah dalam pemeringkat yang terakhir.
Tren ini diperhatikan pada kesemua tekanan kecuali tekanan 20.7 dan 27.6 MPa. Didapati
pada 20.7 dan 27.6 MPa hasil yang diperolehi adalah sama pada kesemua pemeﬁngkat, ini

disebabkan oleh kurangnya amaun minyak yang diekstrak pada 20.7 dan 27.6 MPa.
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Analisis varian ‘three-way’ (ANOVA) ke atas hasilan sebagai fungsi tekanan, suhu dan
pemeringkatan menunjukkan bahawa hasilan berbeza seca signifikan pada tekanan berbeza
dengan suhu di antara min populasi (p value < 0.01). Begitu juga hasilan pada pemeringkat

berbeza berbeza secara signifikan (p value < 0.01).

Didapati komposisi asid lemak kaprilik (C8), kaprik (C10), laurik (C12), miristik (C14),
palmitik (C16), stearik (C18:0), oliek (C18:1) dan linoliek (C18:2) berbeza di dalam
pemeringkatan PKO LG-CO; pada tekanan dan suhu berbeza. Asid lemak C8, C10 dan C12
banyak diekstrak pada pemeringkat pertama dan semakin perlahan-lahan berkurangan pada
pemeringkat kedua, ketiga dan keempat. Komposisi asid lemak C14 kekal tidak berubah
pada kesemua pemeringkat sepanjang tempoh pengekstrakan tetapi pada tekanan 48.3 MPa
dan suhu 80°C ianya berkurangan dengan banyak pada pemeringkat terakhir. Sebaliknya,
terdapat peningkatan C16, C18:0 dan C18:1 dan C18:2 tidak tepu pada pemeringkat
terakhir. Tren ini meningkat dengan meningkatnya tekanan dan suhu tetapi perbezaannya
tidak begitu ketara pada tekanan rendah 20.7 dan 27.6 MPa pada kedua-dua suhu. Walau
bagaimana pun, didapati komposisi signifikan secara statistik untuk tekanan dan masa

pemeringkat mengikut jenis asid lemak.

Adunan minyak sawit (PO), PKO-SC4, palmac 98-18 (asas C18) dan palmac (asas C18:1)
pada nisbah berbeza dibuat untuk memperolehi adunan pengubah mentega koko (CBR).
Terdapat 13 adunan yang dibuat untuk kajian ini. Adunan 1 hingga 10 dicadangkan sebagai
gantian mentega koko (CBS) and adunan 11 hingga 13 dirujuk sebagai lemak setara

mentega koko (CBE). Takat cair lolos untuk adunan 11, 12 dan 13 ialah masing-masing
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33.3, 35.1 dan 35.3°C manakala untuk mentega koko (CB) ialah 35°C. Begitu juga
kandungan lemak pepejal (SFC) gantian mentega koko ini tinggi pada 20°C dan 0 peratus
diantara 37.5°C dan tren ini adalah hampir menyamai mentega koko komersial. Nilai iodin,
nilai saponofikasi dan nilai asid gantian mentega koko ini juga hampir menyamai mentega
koko. Oleh itu ianya dicadangkan untuk gantian mentega koko pada paras maksima
penggantian. Walau bagaimana pun, cirri fisiko-kimia adunan 1 hingga 10 didapati tidak
menghampiri mentega koko tetapi ianya dicadangkan sebagai gantian mentega koko pada

paras terrendah penggantian mentega koko.
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CHAPTER 1

INTRODUCTION

11 Preamble

Supercritical fluid extraction (SFE) is a new and powerful technique in separation
processes and an alternative processing method. Carbon dioxide (CO,) is employed as a
supercritical fluid because it has a low critical temperature (31.1°C) and critical pressure
(7.28 MPa), which makes it an ideal solvent for extracting thermally sensitive materials.
CO, is also nontoxic, nonflammable, and easily available and relatively low cost. In
Malaysia the laboratory grade CO, is costs about US$ 0.66/ liter (dm?). In addition,
products obtained by SC-CO, extraction are completely free of solvent residues. On the
contrary, conventionally solvent-extracted products must be desolventized before they are
suitable for consumption. SC-CO, defatted meal can therefore be directly used in low-
calorie foods. Also, crude oils obtained by SC-CO; extraction are generally more easily
refined than conventionally extracted oils as they contain fewer impurities (Devittori et al.,
2000, Bruno & Ely, 1991 & de Castro et al., 1994). The low critical temperature (31°C),
non-toxicity and low cost have long rendered SC-CO,; a suitable solvent for food products
(McHugh & Krukonis, 1994 & Saldana et al., 1999). There has been renewed interest in the
use and development of supercritical fluid extraction (SFE) methods for industrial
applications. Several investigations have been made in recent years on probable industrial
applications of the SFE, which offer some preferences over the conventional methods, such
as separation by extractive solvents by distillation, especially in the areas of the food,

pharmaceutical, chemical and oil industries (Bruno & Ely, 1991).




Several researchers have studied SC-CO, extraction of seed oil from a wide range of seed
species such as corn germ (List et al., 1984a), cottonseed (List et al., 1984b), canola seed
(Fattori et al., 1988), evening primrose (Lee et al., 1999), dehulled and undehulled ground
palm kernels (Hassan et al., 1999 & Hassan et al., 2001) and palm kernel meal (Anuar,
2002). Palm kernel is a by-product of palm oil industry. It constitutes about 45 percent of
palm nut of palm oil Elaeis guineensis. On a wet basis, the kernel contains about 45-50
percent of oil. Although it lies within the palm nut, palm kernel oil and palm oil differ
greatly in their characteristics and properties. Palm kernel oil is rich in lauric acid, C12
(48.3%) and other major fatty acids are myristic, C14 (15.6%) and oleic acids, C18:1
(15.1%) (Rossell et al., 1985, Goh, 1993 & Omar et al., 1998). This gives the fats a solid
consistency at cool ambient temperatures, but they nevertheless melt below 30°C (Rossell,
1985). Although SC-CO; extraction of lipids has been extensively studied in the laboratory
very few studies were reported on solubility of palm kernel oil (PKO) in SC-CO,. Hassan
(2000), Hassan et. al. (2000) and Anuar (2002) measured the solubility of PKO in SC-CO,
within the pressure range of 27.6-48.3 MPa and the temperature range of 40-80°C. It is
expected that the solubility of palm kernel oil will increase significantly higher at 27.6
MPa. In this study it is envisaged that palm kernel oil solubility of 4% could be achieved at
a pressure of 34.5 MPa, which is lower than the pressure required in the extraction of non-
lauric oils such as soyabean oil, and cottonseeds oil as conducted by Friedrich (U.S. Pat.

No. 4,466,923) where a pressure of at least 55.2 MPa is required.

Palm kernel oil (PKO) is regarded as high quality oil for food use. It is a valuable
component of margarine formulation, giving rapid melting character in the mouth. Its high

solid content at 15-20°C, together with rapid melting point, makes it particularly useful in



confectionary products. It is commercially fractionated into liquid olein and solid stearin,
the latter being a premium product. Fractionation increases the lauric (C12) and muyristic
(C14) acid concentration in the resulting stearins, and leads to a corresponding fall in the
levels of short-chain (C6-C10) and unsaturated (C18:1 and C18:2) fatty acids (Hassan et
al., 2000). But there are no others alternative convenient and environmental friendly
process available to reduce the short chain (C8 and C10) and medium chain (C12 and C14)
and increasing the long chain (C18:0, C18:1 and C18:2) fatty acids in PKO which can be
used in a large amount as cocoa butter replacers (Nik Norulaini et al., 2002a & 2003a) or
confectionary fat as it is an expensive fat. Moreover, composition of the triglycerides with
short and medium chain fatty acids (C8-C12) decreases with fraction of oil collected, while
long chain triglycerides (C16-C18:2) increases (Hassan, 2000). The amount of the total
extracted PKO using SC-CO, at 34.5-48.3 MPa and 40-80°C is higher than the total oil
extracted through conventional method (screw press) and the process removes free fatty
acids (FFA) and deodorizes the oil (Hassan et al., 2000), and better quality palm kernel
meal can be achieved as a by-product of PKO which can be used as poultry diet due to the

reduced fiber content of the kernels using SC-CO; (Anuar, 2002).

Blending of single or straight chain oils and fats usually is unable to fulfill the complex
technical specifications prescribed for a particular product application. O’Brien (1998)
mentioned that vegetable oils are blended to meet both the composition and analytical
consistency controls identified by the product developers and quality assurance. The
consistency controls frequently include analytical evaluations for solids fat index, iodine

value, melting points, fatty acid composition, and so on.



All the fats, which replace cocoa butter either partially or wholly in chocolate products, are
generally known as cocoa butter replacer (CBR). It should also be cheaper than cocoa
butter (CB) and it must serve the purpose of CB. Likewise, it would be able to be processed
and it has to meet the legal requirements (some countries forbid the use of animal or
synthetic fats in chocolate products). It should be based on easily available raw materials
(Kheiri, 1982). CBR are further classified into the following three groups namely; cocoa
butter equivalent (CBE), cocoa butter substitute (CBS) and cocoa butter extender. Cocoa
butter equivalents (CBE) are fats, which behave like cocoa butter in all respects and are
able to mix with cocoa butter in any proportion without altering the melting, rheological
and processing characteristics similar to cocoa butter. There are no 100 percent CBE
available in the market. It is designed to contain glyceride composition similar to that of
cocoa butter. Their properties therefore are expected to be similar and are compatible with
cocoa butter in mixtures for chocolate manufacture. Cocoa butter substitutes (CBS) are fats,
which can be mixed with cocoa butter to a limited extent, without significantly altering its
melting, rheological and processing properties. They do not necessarily have physico-
chemical characteristics similar to cocoa butter. The amount of the CBS used depends on
its degree of compatibility with cocoa butter and/or cocoa butter and vegetable fat blends.
This degree of compatibility determines the quality and hence the price of the extender.
Vegetable fats are used as extenders in those countries where partial replacement of cocoa
butter is permitted. A good quality CBS is hard at ambient temperature, has sharp melting
characteristics like cocoa butter and has a high degree of compatibility with cocoa butter
and/or cocoa butter- milk fat blends. CBS are mainly used to make imitation products
where the fat phase. CBS are fats, usually based on lauric acid, i.e. either originating from

PKO or coconut oil. They have snap and melting properties similar to cocoa butter but



differ in chemical composition. They are therefore not compatible with cocoa butter. Cocoa

butter extender are fats which can not tolerate cocoa butter except in a very limited amount

as mixing of these with cocoa butter adversely affects the rheological, melting and

processing characteristics of the product.

1.2

Objectives of Research

To study the extractability and solubility of palm kernel oil (PKO) and its
components from palm kernel using supercritical carbon dioxide (SC-CO,) at

various temperatures and pressures.

To fractionate the fatty acid components based on solubility at various pressures
and temperatures and to identify the fraction, which has both the lowest lauric acid

and the highest oleic acid content.

To formulate blending ratios of the extracted fraction of PKO (with lowest lauric
and highest oleci acid content) with palm oil and fatty acid supplements (stearic
and oleic acids) to achieve the properties of some confectionary fats having cocoa

butter quality.

To analyze the physico-chemical properties i.e. fatty acid profiles, slip melting
point, solid fat content, iodine value, acid value and saponification value etc of the

components before and after blending compromising the cocoa butter quality fats.



CHAPTER 2

LITERATURE REVIEW
2.1 Historical Background of Supercritical Fluid Extraction
2.1.1 Discovery of supercritical fluid extraction

Buchner (1906) carried out studies over a wide range of temperatures and determined the
solubilities of several solutes in supercritical fluid. He was the first to investigate the
solubility of naphthalene in supercritical carbon dioxide and ethylene. Due to considerable
experimental problems associated with working in the supercritical fluid region, further
investigations on naphthalene solubility in supercritical fluid were hindered until Diepen &
Scheffer (1948) began their extensive publications on the phase behaviour of naphthalene-
supercritical ethylene system in late 1940s. For example, Diepen & Scheffer (1948)

published the solubility and phase behaviour data of naphthalene in supercritical ethylene.

Phase behaviour and solubility of naphthalene in various other supercritical fluids were
studied extensively in the early 1960s (McHugh & Krukonis, 1986). In 1954, Francis
(1954) reported an extensive study on the phase behaviour of ternary systems containing
liquid CO, and determined the solubility of 261 compounds in near-critical liquid carbon
dioxide in a single paper. It is possible to formulate general rules on the solubility
behaviour of compounds in supercritical carbon dioxide (SC-CO,) using his data that is

also applicable to the supercritical region.



In the last 30 years, there has been a tremendous interest in the use of supercritical fluid as
solvents for extraction or separation purposes. Intensive study on extraction of food
components using supercritical fluid began in the early 1970s. Many patents resulted from
these studies such as for the extraction of hops, decaffeination of coffee and tea, tobacco

and spices.

The first symposium on supercritical fluid (Stahl et al., 1988) was held in Essen, which was
the result of rapid development of the SFE and separation methods. Stahl et al. (1988)
initiated this symposium under the theme 'Extraction with Supercritical Gases' and since
then supercritical fluid has been receiving increasing interest as a solvent for extraction of

solids and liquids.

2.1.2 Development of supercritical fluid solvent technology

A supercritical fluid is a fluid that exists above its critical temperature and pressure. Figure
2.1.2.1 shows the schematic pressure-temperature phase diagram for a pure component
(Rizvi et al., 1986). The supercritical region is denoted by the crosshatched area in the
diagram. The region is above the critical temperature and pressure of the component. In this
region, there is no phase change and there is continuous transition from liquid to
supercritical fluid by increasing the temperature at constant pressure or from gas to

supercritical fluid by increasing the pressure at constant temperature.

In the past decade or so, numerous industrial and academic research and development

laboratories have investigated the underlying principles and process applications of



supercritical fluids as solvents. This interest was due to the possibility of separation of

multi-component mixtures using supercritical fluid solvents.
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Figure 2.1.2.1 Typical Pressure-Temperature phase diagram for a pure compound showing

the supercritical region, A (Rizvi et al., 1986)

Many gases were observed to exhibit enhanced solvent power when compressed to
conditions above their critical parameters. The reasons for the motivation for development
of supercritical fluids as solvents for viable extraction and separation are given below

(McHugh & Krukonis, 1986):

(a) Cost of energy has increased sharply over the years and resulted in increased

cost of traditional, energy -intensive separation techniques such as distillation.



(b)

(c)

@

(©

Increased awareness on environmental safety, which led to, increased governmental
scrutiny and regulation of common industrial solvents such as the halogenated
hydrocarbons, which made non-toxic, environmentally acceptable supercritical fluid

solvents such as CO,, very attractive as alternative industrial solvents.

Pollution-control legislation has become more stringent which led to industries

having to consider alternative means of waste treatments.

Joint Association for the Advancement of Supercritical Fluid Technology (JAAST)
was formed in the United States to develop and disseminate knowledge regarding

the application of supercritical fluids for cleaning purposes in 1990 (Taylor, 1996).

Increased demand for better performance materials, which traditional/conventional

separation or extraction techniques cannot meet.

However, in truth, supercritical fluid technology has become an interdisciplinary field,

utilized by chemical engineers, chemists, food scientists, materials scientists, agronomists,

and researchers in biotechnology and environmental control. The last ten years have seen

the emphasis in supercritical fluid expand from commodity chemicals and synthetic fuels

toward more complex, highly specialized, and more valuable substances. Today

supercritical fluids are being touted for sample preparation prior to trace analysis and for

mobile phases in analytical and preparative scale supercritical fluid chromatography. In

summary, the extensive use of supercritical fluid in both science and engineering

laboratories in the near future is certain.



2.2 Properties of Supercritical Fluids

221 Density consideration with pressure and temperature

A phase diagram, as shown in Figure 2.2.1.1, described the physical stage of a substance of
fixed composition. In this pressure-temperature (PT) diagram for CO, there are three lines
describing the sublimation, melting, and boiling processes. These lines also define the
regions corresponding to the gas, liquid, and solid states. Points along the lines (between
the phases) define the equilibrium between two of the phases. The vapor pressure (boiling)
starts at the triple point (TP) and ends at the critical point (CP). The critical region has its
origin at the critical point. At this point we can define a supercritical fluid as any substance
that is above its critical temperature (T;) and critical pressure (P). The critical temperature
is therefore, the highest temperature at which a gas can be converted to a liquid by an
increase in pressure. The critical pressure is the highest pressure at which a liquid can be
converted to a traditional gas by an increase in the liquid temperature. In the so-called
critical region, there is only one phase and it possesses some of the properties of both a gas
and liquid. Subcritical (liquid) CO; is found in the triangular region formed by the melting
curve, the boiling curve and the line that defines the critical pressure (Brogle, 1982).
Superecritical and liquid CO; can both be used as solvents. In contrast to sub critical CO,
(i.e., liquid), the solvating power of the supercritical fluid is highly dependent on its
temperature and pressure. Figure 2.2.1.2 illustrates that at low pressure solvent power of
CO; surprisingly decreases with rising temperature; whereas at high pressures it increases

in a straightforward fashion as measured by naphthalene solubility Figure 2.2.1.3. If the

10



parameter "pressure” is replaced by the parameter "density," the solubility-temperature

relationship becomes much simpler, as shown in Figure 2.2.1.4. This anomaly comes about
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Figure 2.2.1.1 Phase (pressure-temperature) diagram for CO,: CP=critical point,
TP=triple point, P.= critical pressure, T.= critical temperature (Brogle, 1982)

because density decreases dramatically with an increase in temperature at low pressure;
whereas at higher pressure, changes in temperature have much less effect on density. Thus
density, not pressure, to a first approximation is proportional to the solvent power of the
supercritical fluid. Figure 2.2.1.5 shows the density of CO, as a function of pressure at
different temperatures (Fattori et al., 1988). This figure indicates that an increase in

temperature results in a decrease in the density of carbon dioxide at a constant pressure. On

11
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because density decreases dramatically with an increase in temperature at low pressure;
whereas at higher pressure, changes in temperature have much less effect on density. Thus
density, not pressure, to a first approximation is proportional to the solvent power of the
supercritical fluid. Figure 2.2.1.5 shows the density of CO, as a function of pressure at
different temperatures (Fattori et al., 1988). This figure indicates that an increase in

temperature results in a decrease in the density of carbon dioxide at a constant pressure. On
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For a material at temperatures just above the critical temperature of the substance,
liquid-like densities are rapidly approached with modest increases in pressure, (i.e.,
approximately 0.7-2 times the critical pressure). Higher pressures are required to attain
liquid-like densities for temperatures further above the critical temperature. However,
Brogle (1982) stated that Supercritical fluid technology would be better served if all

scientists-discussed experiments in terms of density rather than pressure.
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Figure 2.2.1.2 Solubility (mole fraction) of Naphthalene in CO, as a function of

temperature at various pressures (Brogle, 1982)
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Figure 2.2.1.5 Density of carbon dioxide as a function of pressure at different temperatures.

The critical point (Cp) of the CO; is indicated on the diagram (Fattori et al., 1988)

Table 2.2.1.1 Supercritical fluid carbon dioxide (SFC)/supercritical fluid extraction (SFE)

pressure unit conversion factors (Taylor, 1996)

To convert

pressure in one

of these units...... ... to pressure in one of these units, multiply by:

atm bar MPa psi kg/em”

atm. 1 1.0132 0.10132 14.696 1.0332
bar 0.98692 1 0.1 14.504 1.0197
MPa 9.8692 10 1 145.04 10.197
psi 0.068046 0.068948 0.0068948 1 0.7030
ke/CM™ 0.96784 0.98067 0.098067 14.224 1

Source: Provided by Dionex Inc., Sunnyvale, CA.

@ Strictly, kg/em? is not a pressure unit. It use assumes standard acceleration of gravity
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Table 2.2.1.1 contains conversion factors for other pressure units used in Supercritical Fluid

Carbon dioxide (SFC)/Supercritical Fluid Extraction (SFE).

Table 2.2.1.2 Density-temperature-pressure (bar) relationship (Taylor, 1996)

Density Temparature

(gmL) 40°C 50°C 60°C 70°C 80°C 90°C 100°C 110°C 120°C
1.00 526 618

0.95 383 463 544 644 680

0.90 281 350 420 489 518

0.85 211 269 329 401 447

0.80 164 213 264 314 365 416 467

0.75 134 175 218 261 305 348 392 436 510
0.70 115 150 187 223 260 297 334 372 425
0.65 104 133 165 196 227 259 290 . 322 354

0.60 97 122 149 176 203 229 256 284 311
0.55 93 115 138 161 183 206 230 252 276
0.50 91 109 129 148 168 188 207 227 246
0.45 89 104 122 138 155 172 188 205 221
0.40 87 100 115 129 143 - 157 171 185 197
0.35 84 96 108 120 132 144 155 167 178
0.30 81 90 101 111 121 130 140 149 158
0.25 77 84 93 100 108 116 123 130 137
0.20 - 70 75 82 88 94 99 105 110 116

Source: Adapted from Hewlett Packard Co. (Wilmington, DE) literature.

Table 2.2.1.2 gives a more detailed listing of the pressure (in bar) requirements necessary to

achieve specific CO, densities at various temperatures (Figure 2.2.1.4). The listing once
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again emphasizes the need for higher pressures at higher temperatures to achieve a

specified density.
2.2.2 Diffusivity/Viscosity consideration

Taylor (1996) also stated that supercritical fluid exhibits physicochemical properties
intermediate between a liquid and a gas. In addition to its relatively high, liquid-like density
at high pressure, which affords good solvent power, mass transfer relative to a liquid is
rapid in SFs. For pressures between 50 and 500 atm, diffusivity of supercritical CO, varies
between 10™* and 107 cm*/sec. Similarly the viscosities of supercritical fluids mirror their
diffusivities being 10-1000 times lower than liquids. The values for viscosity and
diffusivity are dependent on temperature and pressure. The viscosity and diffusivity of the
SF approach of a liquid as pressure is increased. Whereas an increase in temperature leads
to an increase in viscosity of a gas, the opposite is true in the case of SFs. Diffusivity, on
the other hand, will increase with an increase in temperature. The properties of gas-like
diffusivity and viscosity, coupled with liquid-like density, combined with the pressure-
dependent solvating power of SFs have provided the impetus for applying SF technology to
analytical separation problems (Mc Hugh & Krukonis, 1986). Finally, the low (essentially
zero) value of surface tension of SFs allows better penetration into the sample matrix
relative to liquid solvents. As evidenced by Figures 2.2.3.1 and 2.2.3.2, changes in viscosity
and diffusivity are most pronounced in the region about the critical point (McHugh and
Krukonis, 1986). Taylor (1996) found that at fixed density viscosity decrease and
diffusivity increase with increase in temperature and at fixed temperature diffusivity

decrease and viscosity increase with increase in density (McHugh and Krukonis, 1986).
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Even at high pressures (300-400 atm), viscosity and diffusivity of SFs differ by 1-2 orders

of magnitude from normal liquids. A review of these important points follows:
o Tixed density, temperature T, Diffusivity Iviscosity l

o Density ? fixed temperature, diffusivity£ viscosityT

10-2 T r — T T T
Pressure
(atm)
Saturated .70
— 80

vapor

10-3 |- 10Q.
Critical 150
point 200
Saturated
liquid -
104 — —]

Diffusivity {cm@/sec)

! ! I 1 1

1
(@] 20 40 (S18) 80 100
Temperature (°C)

Figure 2.2.2.1 Diffusivity of CO, versus temperature at various pressures (McHugh &
Krukonis, 1986)
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Figure 2.2.2.2 Viscosity behaviour of CO; at various temperatures and pressures
(McHugh and Krukonis, 1986)

Table 2.2.2.1 Physical properties of gas, liquid and supercritical fluid, SFC (Rizvi et al.,

1986)
Properties Gas SCF Liquid
Density (0.6-2.0) 0.2-0.9 0.6-1.6
(gem™) X1-01
Diffusivity 0.1-04 (0.2-0.7) (0.2-2.0)
(CM?sec™) | X10-1 X10-1
Viscosity (1-3) (1-9) (0.2-3.0)
(gemsec™) XIQO"4 X10* X167
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