

FUNCTIONAL VERIFICATION TEST TIME

REDUCTION THROUGH BEHAVIORAL

FUNCTIONAL MODEL

By

Lee Chee Keng

A Dissertation submitted for partial fulfilment of the

requirements for the degree of

Master of Microelectronic Engineering

June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/199243956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ACKNOWLEDGEMENTS

Along the progress of completing this project, a number of people have been giving

me a helping hand therefore making this project a success. Advices from those people have

been really helpful and make this project flows smoothly. I owe a thousand of appreciation

to those who have been helping me all this while and I would like to take the chance to

thank them here.

 First of all, I would like to send me greatest gratitude to my supervisor Dr. Nor

Muzlifah Mahyuddin and co-supervisor Dr. Bakhtiar Affendi. With his personal

experience and guidance, this project can be completed successfully within the given time.

He has been really helpful while I am having a struggle in conducting this project. Honestly,

his guidance was an asset for me. It was really my pleasure to be under his supervision.

 Not to forget that I would like to thank all my fellow course mates and colleagues

that given me a helping hand during my hardship in accomplishing this project. Moreover,

they have given me plenty of brilliant ideas and with encouragement that given endless

motivation to complete this project.

 Finally, I wish to send my love and appreciation to my family for their support

throughout my life which have made me walked this far.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

TABLE OF CONTENTS ..ii

LIST OF TABLES ... v

LIST OF FIGURES .. vi

LIST OF ABBREVIATIONS ... viii

ABSTRAK .. x

ABSTRACT ... xi

CHAPTER 1 ... 1

INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 3

1.3 Objectives ... 4

1.4 Project Scopes .. 5

1.5 Project Contribution ... 5

1.6 Thesis Outline .. 6

CHAPTER 2 ... 8

LITERATURE REVIEW ... 8

2.1 Introduction .. 8

2.2 Methods of Enhancing Design Verification Time ... 9

2.2.1 Coverage Directed Test Generation using Bayesian Networks for Functional

Verification 9

2.2.2 Matlab and Simulink in a SystemC Verification Environment 11

2.2.3 Common Reusable Verification Environment for Bus Cycle Accurate

(BCA) Model and RTL ... 13

2.2.4 BFM in Verification Environment .. 15

2.3 BFM Implementation ... 17

iii

2.3.1 Very High Speed Integrated Circuit Hardware Description Language

(VHDL) 18

2.3.2 Verilog .. 19

2.3.3 System Verilog.. 19

2.3.4 Open Verification Methodology (OVM) .. 20

2.4 NAND Architecture Overview... 25

2.5 Summary .. 26

CHAPTER 3 ... 28

METHODOLOGY .. 28

3.1 Introduction .. 28

3.2 BFM Development for NAND IP .. 30

3.2.1 Data transfer Initiated by BFM targeting NAND 31

3.2.2 Response Handling for Data Transfer from NAND targeting BFM......... 32

3.2.3 Developing OVM components of the BFM.. 34

3.3 Integration of BFM into Existing Verification Environment 38

3.4 NAND IP validation with the BFM ... 39

3.5 Summary .. 40

CHAPTER 4 ... 41

RESULTS AND DISCUSSION .. 41

4.1 Introduction .. 41

4.2 BFM Data Transfer Accuracy .. 42

4.2.1 Data Transfer Initiated by BFM .. 42

4.2.2 Responses from BFM ... 50

4.3 Test Simulation Time ... 56

4.4 Discussion .. 58

4.5 Summary .. 58

CHAPTER 5 ... 60

CONCLUSION AND RECOMMENDATION 60

5.1 Conclusion .. 60

iv

5.2 Recommendation for Future Study .. 61

REFERENCE ... 62

APPENDIX A ... I

APPENDIX B .. III

APPENDIX C .. V

APPENDIX D .. VI

APPENDIX E ... VII

v

LIST OF TABLES

Table 4.1 Performance comparison of the verification environment with BFM and existing

verification environment ... 57

vi

LIST OF FIGURES

Figure 1.1 Existing testing environment which consists of multiple blocks of RTL and

NAND IP RTL .. 3

Figure 1.2 Proposed validation environment for NAND IP ... 3

Figure 2.1 Verification process with CDG (Fine & Ziv, 2003) .. 10

Figure 2.2 Bayesian Network of CDG (Fine & Ziv, 2003) .. 11

Figure 2.3 MATLAB and SystemC Verification Framework (Boland et al., 2005) 12

Figure 2.4 Complete verification flow (Falconeri et al., 2005) .. 14

Figure 2.5 Typical architecture for verification of bus interfaces (Chonnad &

Needamangalam, 2000) .. 17

Figure 2.6 Simple OVM verification environment (Cadenas & Todorovich, 2009) 21

Figure 2.7 Feature by feature comparison between VHDL, Verilog and System Verilog

(Bailey, 2003) ... 22

Figure 2.8 Feature by feature comparison between VHDL, Verilog and System Verilog

(Bailey, 2003) ... 23

Figure 2.9 Feature by feature comparison between VHDL, Verilog and System Verilog

(Bailey, 2003) ... 24

Figure 2.10 Top level block diagram of NAND IP architecture 25

Figure 3.1 Major development phases of the BFM for NAND IP 29

Figure 3.2 The direction of the BFM development .. 30

file:///C:/Users/clee79/Documents/MscMicroE/EEE555%20Dissertation/microE_Draft%20(Autosaved).docx%23_Toc390248760
file:///C:/Users/clee79/Documents/MscMicroE/EEE555%20Dissertation/microE_Draft%20(Autosaved).docx%23_Toc390248760
file:///C:/Users/clee79/Documents/MscMicroE/EEE555%20Dissertation/microE_Draft%20(Autosaved).docx%23_Toc390248761

vii

Figure 3.3 Transactions initiated by the BFM .. 32

Figure 3.4 Transaction from NAND and responses by BFM ... 33

Figure 3.5 OVM components of the BFM .. 34

Figure 3.6 BFM integration flow .. 38

Figure 3.7 Validation flow of NAND IP .. 39

Figure 4.1 Memory write request from BFM to NAND ... 43

Figure 4.2 Memory write request from functional RTL to NAND 44

Figure 4.3 BFM memory write request to NAND .. 45

Figure 4.4 Functional RTL memory write request to NAND ... 46

Figure 4.5 Memory read request from BFM to NAND .. 47

Figure 4.6 Memory read request from functional RTL to NAND 48

Figure 4.7 Completion with data from NAND to BFM.. 49

Figure 4.8 Completion with data from NAND to functional RTL 50

Figure 4.9 Completion without data response from BFM to NAND 51

Figure 4.10 Completion without data response from functional RTL to NAND 52

Figure 4.11 Completion with data response from BFM to NAND................................... 53

Figure 4.12 Completion with data response from functional RTL to NAND 54

Figure 4.13 Update response from BFM to NAND .. 55

Figure 4.14 Update response from functional RTL to NAND ... 56

viii

LIST OF ABBREVIATIONS

AHB Advanced High Performance Bus

AMBA Advanced Microprocessors Bus Architecture

ATLM Arbitrated Transaction Level Modelling

BCA Bus Cycle Accurate

BFM Bus Functional Model

CDG Coverage Directed Test Generation

DSP Digital Signal Processing

DUT Design Under Test

FIFO First In First Out

HDL Hardware Description Language

 IP Intellectual Property

MPSoC Multiprocessor System on Chip

OOP Object Oriented Programming

OVM Open Verification Methodology

PCI Peripheral Component Interconnect

RAL Register Abstraction Level

ix

RTL Register Transfer Level

SoC System on Chip

SV System Verilog

TLM Transaction Level Modelling

USB Universal Serial Bus

VCS Verilog Compiler Simulator

VHDL Very High Speed Integrated Circuit Hardware Description Language

x

PENGURANGAN MASA UJIAN VERIFIKASI FUNGSI MELALUI

KELAKUAN MODEL BERFUNGSI

ABSTRAK

Proses verifikasi reka bentuk adalah satu langkah penting dalam setiap proses reka bentuk

untuk jaminan kualiti. Walau bagaimanapun, proses verifikasi sentiasa berada dalam

masalah cerutan dan mengambil 60% daripada keseluruhan tempoh penciptaan reka bentuk.

Tahap kesukaran reka bentuk semakin meningkat lalu memanjangkan masa yang

diperlukan untuk verifikasi dan kemudiannya membawa kepada kegagalan reka bentuk

untuk memasuki pasaran. Salah satu faktor utama yang melambatkan proses verifikasi reka

bentuk adalah masa simulasi yang lambat semasa ujian fungsi pra-silikon. Masa simulasi

yang lambat dapat dilihat semasa ujian dijalankan untuk verifikasi pra-silikon NAND Harta

Intelek (IP). Oleh itu dalam projek ini, model bas berfungsi (BFM) diimplimentasikan

untuk NAND IP bagi memendekkan masa simulasi ujian. BFM telah berjaya direka untuk

verifikasi NAND IP. Simulasi ujian dengan scenario verifikasi yang sama telah

dilaksanakan pada NAND IP dalam persekitaran ujian sedia ada dan verifikasi dalam

persekitaran ujian bersama BFM. Keputusannya, BFM didapati memiliki kelakuan dengan

tepat berbanding dengan aras pemindahan daftar (RTL) yang sedia ada untuk verifikasi

NAND IP. Perbandingan masa simulasi ujian telah menunjukkan melalui persekitaran

ujian dengan BFM dengan menggunakan Verilog Compiler Simulator (VCS) telah

menunjukkan purata peningkatan yang ketara sebanyak 92.8%. Oleh itu, BFM yang

diimplementasi adalah sesuai digunakan untuk verifikasi NAND IP.

xi

FUNCTIONAL VERIFICATION TEST TIME REDUCTION

THROUGH BEHAVIORAL FUNCTIONAL MODEL

ABSTRACT

Design verification is an essential step in every design development process for quality

assurance. However, the verification portion is the bottleneck in most of design

development which takes up 60% of the overall design development period. As the

complexity of the design increases, it increases the verification lead time which will then

lead to potential failure of the design to meet market on time. One of the key factor in

slowing down the design verification flow is the long simulation time during the pre-silicon

functional testing. The long test simulation time issue is seen in NAND Intellectual

Property (IP) pre-silicon validation. Therefore in this project, a behavioral Bus Functional

Model (BFM) is implemented for NAND IP to improve the test simulation time. The BFM

has been successfully implemented to validate NAND IP. Simulation of test with similar

functional testing scenarios have been exercised on NAND IP in existing verification

environment and in verification environment with BFM integrated. As a result, the BFM

is found to have behaved accurately comparing with the existing functional Register

Transfer Level (RTL) to validate NAND IP. Comparison has also shown the test simulation

time through the environment with BFM integrated using Verilog Compiler Simulator

(VCS) had shown significant average improvement of 92.8%. Therefore the implemented

BFM is justified to be a suitable use on NAND IP validation.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The fast growth of technology and the increasing complexity of system-on-chips

(SoCs) and also with the pressure coming from time to market, circuit level simulation is

way too slow to be used for functional verification (Gaj et al., 1997). Moreover, most of

the cost spent is on the verification process and the verification of the register transfer level

(RTL) could take up to 60% work of the entire design cycle (Song, 2007). This is because

testing design to ensure a bug free operation is a very complex and effort-consuming task

(Lahti & Wilson, 1999).

Today, a single chip could probably have several different Intellectual Properties (IPs)

and each block would have specific bus protocols to communicate with each other (Song,

2007). This shows that there will be multiple different bus protocols to control each block

of the circuit within the chip which increase the difficulty to verify the result of RTL

verification (Becker, 1996).

There are several types of verification methodologies which can be divided into two

major groups. The two groups are verification with and without simulation. Formal

verification belongs to the verification without simulation group while simulation-based

2

verification, functional verification, assertion-based verification and symbolic-based

verification belong to the other group (Song, 2007).

In doing the verification with simulation, one of the most important parts of the

testing process is the simulation time. Under pre-silicon testing environment, simulation of

fully functional RTL which contain all the internal structures of actual device will consume

much more simulation time and it is less efficient in driving stimulus (Pesavento & Privett,

1999).

One of the methods to reduce the simulation time and maintaining the testing

coverage is by implementing a transaction-level model (TLM) where the details of

communication of the blocks are separated and modeled (Yeh et al., 2011). This TLM can

speed up simulation time and is a design validation alternative at the higher level of

abstraction (Cai & Gajski, 2003) and (Velev & Gao, 2011). One of the TLMs that can be

used for design validation which is the bus-functional model (BFM). This project will show

the reduction of NAND IP pre-silicon validation simulation time using BFM. Figure 1.1

shows the existing testing environment which consists of multiple blocks of RTL and

NAND IP RTL while Figure 1.2 shows the proposed validation environment for NAND

IP.

3

1.2 Problem Statement

In producing a healthy design, design validation plays a very important role. The

validation process has to be started during the front part of design. It will be too late to

Proposed BFM NAND

 NAND UNIT 1

UNIT 3

UNIT 2

 Figure 1.2 Proposed validation environment for NAND IP

Figure 1.1 Existing testing environment which consists of multiple blocks of RTL

and NAND IP RTL

4

check on the complex design blocks at system level (Pesavento & Privett, 1999). Quality

simulation has to be done at the unit level design.

However, the functionality verification of a single unit will require other design block

as well during the test simulation. By having multiple design blocks in a simulation will

cause the simulator to process more logic. This will lead to the need of more memory used

to do the simulation. Hence the simulation of these multiple functional RTLs will consume

a very long simulation time (Stehr & Eckmuuller, 2010).

One method to verify the functionality of a particular unit block design with shorter

simulation time is by validating that unit design using a BFM. In (Gaj et al., 1997), the

simulation time for a circuit using a BFM is found to be shorter. Therefore in this project,

a BFM for NAND IP will be developed to shorten the test simulation time for NAND IP

validation.

1.3 Objectives

The objectives of this project are as follows:

1. To reduce the NAND IP pre-silicon validation test simulation time.

2. To implement a BFM for NAND and integrate into the testing environment for

validation.

5

1.4 Project Scopes

The scopes of this project are:

1. Design and development of a BFM for NAND IP where the NAND IP is already

exist.

2. Integration of the BFM into the existing NAND testing environment.

3. NAND IP validation is performed by using the developed BFM.

4. Evaluation of pre-silicon test simulation time of NAND in the existing testing

environment compared to the proposed testing environment.

1.5 Project Contribution

`

 The completion of this project has brought to the pre-silicon test time reduction of

NAND IP. Large portion of test time is consumed during the NAND model compilation

and it is due to the existing of other multiple blocks RTL. With the implementation of the

BFM for NAND IP to replace the other RTL blocks that are linked to NAND, the

compilation and simulation time can be reduced. More time can be saved by then giving

more time to develop more tests to increase the coverage.

6

1.6 Thesis Outline

This thesis consists of five chapters:

In chapter one, some research background and problems that are aimed to be solved

by this project are highlighted here. The objectives and research scopes of this project are

stated as well.

 Chapter two gives a literature review on several main research areas related to this

dissertation, such design validation methodologies, implementation of BFMs of other IPs,

and numerous methods used for BFM implementations. Open Verification Methodology

(OVM) and System Verilog (SV) are explained briefly so that readers can have a better

understanding on the methods to develop the BFM. Information on various BFMs that were

implemented by other researchers in the verification process of certain designs are

discussed here and also how these BFMs are being developed in different methods by the

researchers.

 Chapter three consists on the development flow of this research. This project has

been divided into three development phases. The first phase of this project is the

development of the BFM for NAND IP functional verification. Second phase of the project

is the integration of the BFM into the existing NAND IP test environment. Next phase is

the validation process of the NAND IP using the BFM. Test simulation is carried out and

evaluation is performed between the before and after the usage of the BFM.

7

In chapter four, several types of tests are carried out and comparison is made

between the original testing environment and the one with the BFM integrated. Simulation

time and results are compared and discussed.

 Finally is chapter five which gives the overall conclusion regarding this research.

Possible problems and issues in this research are being discussed in this chapter and some

recommendations for future works are also being stated as well.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

After development of a design, a verification environment will be implemented. The

main idea of the verification environment is to verify the correctness design under test of

the design functionality (Ke et al., 2007). With the complexity of current SoCs design keep

increasing and time to market is shorten, the functional verification is a bottleneck

(Falconeri et al., 2005) and (Abraham, 1998). Functional verification of such complex

design starts with the definition of verification test plan which consists of the set of events

that the validation team are expecting from the design (Fine & Ziv, 2003) and then proceed

with the implementation of the tests according to the test plan. Hence many ways and

methods have been introduced by many research to improve the verification bottleneck.

This chapter will discuss a few improvement methods in enhancing design verification

process and the most suitable way for this project will be discussed further. In addition, the

chosen method to be used in this project will be implemented in OVM approach. A brief

explanation of the NAND IP architecture will be given before concluding this chapter.

9

2.2 Methods of Enhancing Design Verification Time

 The functional verification has been the bottleneck for most of the design

development flow. (Shen & Abraham, 2000) has mentioned that the current validation

capabilities have to be improved to sustain with the rapid growth of semiconductor industry.

There are a number of ways or efforts that have been proposed and implemented to improve

the verification methodology and environment for certain design.

2.2.1 Coverage Directed Test Generation using Bayesian Networks for Functional

Verification

A new way for generating coverage test is proposed by (Fine & Ziv, 2003).

Coverage events or called as testing requirements is a major part in a verification plan of

certain design. Coverage directed test generation (CDG) is defined as a technique to

automate the feedback from coverage analysis to test generation. CDG can help to improve

the coverage progress rate, reaching uncovered tasks and have multiple ways to reach given

coverage tasks. Figure 2.1 shows the basic idea of verification process with CDG. It can

be seen from Figure 2.1 that the tests are random generated through CDG will provide a

coverage analysis which then will be feedback to the test generator.

10

Figure 2.1 Verification process with CDG (Fine & Ziv, 2003)

The main goal of the approach is to model the relationship between the coverage

information and the directives to the test generator using Bayesian networks. Bayesian

network is a directed graph whose nodes are random variables and whose edges represent

direct dependency between their sink and source nodes (Heckerman, 1998). A set of

parameters representing its conditional probability given the state of its parent are linked

to each node of the Bayesian network. In short, coverage directed test generation process

is done in two steps. The first step is the learning of the Bayesian network parameters that

models the relationship of coverage information and test directives through a training set.

Then proceed to the second step where Bayesian network is used to provide most probable

directives that lead to a given coverage. Figure 2.2 illustrates a simple Bayesian network

which includes a small part of CDG setup. The network shows the relationship between

the directives that affect the type of command generated (cp_cmd_type), active cores

(cp_core_enable), coverage attribute command (cmd), its response (resp) and the core

generated (core).

11

Figure 2.2 Bayesian Network of CDG (Fine & Ziv, 2003)

(Fine & Ziv, 2003) has concluded that CDG using Bayesian networks shows that

hard coverage cases can be reached easier and also reduced coverage test development time.

However it did not show any improvement on test simulation time which is the main focus

of this project.

2.2.2 Matlab and Simulink in a SystemC Verification Environment

A verification framework which is based on SystemC verification standard that uses

Simulink and also MATLAB to speed up the testbench development is proposed by

(Boland et al., 2005). The MATLAB and SystemC verification framework can be seen in

Figure 2.3. (Boland et al., 2005) put the focus on digital signal processing (DSP)

applications verification using algorithmic modeling in MATLAB and Simulink

environment. The verification specification is first written and then the algorithm is

12

implemented with MATLAB and Simulink. A variety of algorithm optimization can be

done at this stage. The result of this step will then be the main reference for the system

level verification modeling with SystemC and C++ languages.

Figure 2.3 MATLAB and SystemC Verification Framework (Boland et al., 2005)

13

The proposed framework by (Boland et al., 2005) has shown that the hardware

verification bottleneck has been greatly improved where a more complete testbench can be

developed in a shorter period of time than with the traditional HDL. With the framework,

verification environment can be connected to multiple levels of abstraction and verification

can be started at early stage of development cycle. However, there are no improvement on

test coverage and also no reduction on test simulation time by using the proposed

framework.

2.2.3 Common Reusable Verification Environment for Bus Cycle Accurate (BCA)

Model and RTL

 The common verification methodology and environment can be used for RTL and

BCA models are shown by (Falconeri et al., 2005). BCA model is one type of BFM (Cai

& Gajski, 2003) and the fast simulation of BCA model compared to RTL model allows

fast finding on optimized configuration in terms of bandwidth, area and power

consumption (Falconeri et al., 2005) with the BCA model functionality constraints have to

be similar as the RTL model.

Since BCA and RTL models has the similar functionality, therefore the

requirements for functional verification have to be similar as well. (Falconeri et al., 2005)

proposed to use a common verification environment for both BCA and RTL model and it

can save effort by not duplicating work in developing the verification environment for the

14

two different models. Figure 2.4 shows the complete verification flow from functional

specification to bus accurate comparison.

Figure 2.4 Complete verification flow (Falconeri et al., 2005)

Having the common verification environment is not a new idea (Vaumorin &

Romanteau, 2004) and this strategy has shown high gain in terms of development time and

improved verification accuracy. It is also shown that the simulation time with the BCA

model is faster compare to the simulation time of the RTL model.

15

2.2.4 BFM in Verification Environment

 As mentioned by (Yu et al., 2004) and (Song, 2007), time to write testbench can be

reduced and functional coverage can be increased using the system level verification

methodology. Modern design flow is moving at a higher pace which made traditional

simulation-based verification method cannot keep track with the flow (Song et al., 2005).

A system level function will be partitioned into several parts, and be implemented at the

same time (Sayinta et al., 2003).

 BFM is also one of the transaction-based verification methodology strategy to

improve functional verification efficiency of RTL using simulation (Labs et al., 2000).

BFM basically is a model of bus interface of certain design units (Pesavento & Privett,

1999). The bus interface signals of interconnect between the DUT and BFM will be

captured by the BFM. Behavior of the BFM data can be scheduled and captured in a relax

manner so that computation of data can be grouped and incremented in chunks with time

rather than on a per-transaction basis (Pasricha et al., 2010). This relax scheduling permits

the capture of only required data details which means reduction in details of data captured.

Correspondingly it will reduce the modeling time and also improve on the simulation speed.

BFM in general needs about one-fifth to one-tenth of the effort required for RTL modeling

and BFM is one hundred to five hundred times faster than RTL simulation (Pasricha et al.,

2010).

 (Song, 2007) and (Falconeri et al., 2005) uses the BFM as one of the verification

tools used in the system level assertion based verification environment. The BFM used is

for the Peripheral Component Interconnect (PCI). As mentioned in (Yu et al., 2004), with

16

the usage of BFM and also other verification tools in the verification environment, the

design under test (DUT) can be tested completely in more complex situations which is

useful to validate the robustness of the DUT protocol. In addition, the test simulation time

also has been shown to be reduced with the usage of BFM in the test environment (Song,

2007).

 In (Schirner & Rainer, 2006), an abstract communication modelling study had been

done on Advanced Microprocessors Bus Architecture (AMBA) Advanced High

Performance Bus (AHB). Three models were implemented: BFM, arbitrated transaction

level model (ATLM) and transaction level model (TLM). BFM shows the best accuracy in

both operating modes of AHB while TLM and ATLM shows errors in one of the operating

mode of AHB. It is also shown that all three models had improvement in test simulation

time.

 Implementation of a BFM for the Pentium Processor is proposed by (Hunt et al.,

1993). The BFM that were implemented had provided an accurate representation and can

be represented in behavioral simulation which is useful for Pentium processor based

platforms and system validation and design. While in (Petkov et al., 2005), BFM of a

Multiprocessor System on Chip (MPSoC) had been developed in accelerating the hardware

or software prototype generation for MPSoC. By using the BFM, (Petkov et al., 2005)

shows a time reduction in systematic design process and software integration.

 Implementation of USB BFM has been shown in (Chonnad & Needamangalam,

2000). The USB BFM implemented is inherently reusable and it is easier to maintain as it

contains the Object Oriented Programming (OOP) features. Randomization of tests has

increased the functional coverage. This is possible if and only the BFM is coded using the

17

modern verification language that supports randomization and the implementation of the

BFM has shown reduction in simulation time (Chonnad & Needamangalam, 2000). Figure

2.5 shows the typical architecture for verification of bus interfaces. The BFM in Figure 2.5

will be connected to the device under test and the connection bus will be monitored by a

bus monitor.

Figure 2.5 Typical architecture for verification of bus interfaces (Chonnad &

Needamangalam, 2000)

2.3 BFM Implementation

Usage of BFM is found to be the most suitable in reducing test simulation time and

therefore BFM is implemented. There are multiple methods of coding the BFM in the

validation environment. BFM can be coded using many types of HDLs such as VHDL,

Verilog, System Verilog, C++, System C and etc. The purpose of BFM implementation

not only will improve the verification flow in term of reduced simulation time but also

18

capability to debug, randomization testing, and overall of improved total validation time

(Sudhish et al., 2011). The focus in this project is on validation simulation time reduction

hence only the key features of HDL on verification process will give an advantage. Only

VHDL, Verilog and System Verilog language capabilities will be discussed in this chapter.

2.3.1 Very High Speed Integrated Circuit Hardware Description Language

(VHDL)

VHDL is a general purpose digital design language which is supported by multiple

verification and synthesis tools. (Smith et al., 1996) has discussed on the comparison on

VHDL and Verilog and it is shown that VHDL can do concurrent procedure calls and also

design reusability where functions and tasks can be placed in a package to be reused.

VHDL also support user-defined types and enumerated types (Maginot, 1992) which is

suitable in defining verification data types.

One disadvantages of using VHDL is that it has no simulation control or monitoring

capabilities (Bailey, 2003) where this capability is an important feature in verification

process and hence VHDL is very dependent on tool environment for debugging activities.

VHDL also does not support name based events which is useful in validation. Class

inheritance feature (reusable class module) is also not supported by VHDL.

19

2.3.2 Verilog

Verilog is a HDL used design and verification of digital circuit design at the RTL.

(Gordon, 1995) mentioned that Verilog is widely used to model the behavior of digital

systems building blocks to complete systems. Verilog can support continuous assignments

with delay which makes the verification more realistic and it also has the blocking and non-

blocking statements which is able to control the transport delay of certain behavior.

Concurrent tasks and functions are also supported by Verilog. A set of basic simulation

control capabilities or the system tasks are defined within Verilog.

However, Verilog has its disadvantages too. It does not support user defined data

types and enumerated types unlike VHDL and System Verilog. This will be a limitation in

improving the validation process. Interface abstraction is also not supported which reduces

flexibility in port mapping. In general, (Bailey, 2003) stated that Verilog has limited

verification targeted capabilities.

2.3.3 System Verilog

Parenting from Verilog, SV benefited its advantages and adding user defined data

types (Bailey, 2003) as well as strong data typing capabilities (Fitzpatrick, 2004). SV is

backward compatible with Verilog by retaining weak data typing for the built in Verilog

types (Bailey, 2003). The OOP feature of SV can greatly enhance the reusability of the

verification environment components (Ke et al., 2007). There are a few more verification

features which SV can provide such as dynamic memory, constrained random data

20

generation, dynamic processes and also assertions to improve the quality of verification. It

is concluded in (Fitzpatrick, 2004) that SV is built on the Verilog language with many

features were derived from proven VHDL features and extended to be more powerful.

Figure 2.7, Figure 2.8, and Figure 2.9 show the overall comparison of VHDL, Verilog and

System Verilog.

2.3.4 Open Verification Methodology (OVM)

In (Cadenas & Todorovich, 2009), OVM is described as a framework for functional

verification of digital hardware using System Verilog in simulating environment. OVM is

defined as a library of verification components (Glasser, 2009). OVM offers TLM

interfaces, a class factory for dynamic selection of instantiated object type, verification

components classes such as drivers, monitors, and scoreboards and also mechanism for the

construction of complex stimulus for a DUT using sequencers and sequences (Poikela et

al., 2012). The library also includes its own first in first out (FIFO) which can be directly

connected to the TLM ports. These OVM components are written as System Verilog

classes.

(Cadenas & Todorovich, 2009) has mentioned that the idea of OVM is to replace

the conventional HDL approach in testbench writing and by OVM, it is a more robust

methodology based on reusable verification environment. Figure 2.6 shows the simple

OVM verification environment.

21

Figure 2.6 Simple OVM verification environment (Cadenas & Todorovich, 2009)

22

Figure 2.7 Feature by feature comparison between VHDL, Verilog and System Verilog

(Bailey, 2003)

23

Figure 2.8 Feature by feature comparison between VHDL, Verilog and System Verilog

(Bailey, 2003)

24

Figure 2.9 Feature by feature comparison between VHDL, Verilog and System Verilog

(Bailey, 2003)

