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Abstract
The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering 
this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, 
because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, diffi-
culties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all 
structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements 
is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the 
capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden 
layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at 
different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain val-
ues both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the 
unseen input data set.
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Introduction

Sudden collapses of bridges worldwide have increased the 
attention of researchers to the integrity assessment of in-ser-
vice structures. While visual inspections and non-destructive 
tests have been widely employed for the safety assessment 
of structures, because of their shortcomings, many advanced 
damage identification methods have been developed in the 
recent decades (Shahsavari et al. 2017; Janeliukstis et al. 
2017). In general, these damage identification methods 

can be categorized into the time and frequency domain 
approaches. While time domain approaches make use of 
structural responses (e.g., displacements and accelerations), 
frequency domain methods take advantage of the change 
in modal parameters (e.g., natural frequencies and mode 
shapes). Because of their proven capabilities in pattern rec-
ognition and feature extraction, artificial neural networks 
(ANNs) have been extensively employed by researchers both 
in the time domain (Vafaei et al. 2011, 2013) and the fre-
quency domain (Vafaei et al. 2015; Vafaei and Alih 2017) 
damage identification methods. When ANNs are trained, 
they are able to produce reasonable outputs for the unseen 
inputs during their training. So far, different types of input 
and output parameters have been used for the training of 
ANNs (de Lautour and Omenzetter 2009; Vafaei et al. 2014). 
In this study, ANNs have been utilized to estimate the strain 
values in reinforcements and concrete of a full-scale RC 
frame. When strain values are measured at critical locations 
of structures, they can be directly related to the intensity of 
imposed damages. Therefore, strain value can be considered 
as an important parameter for structural health monitoring. 
The conducted research in this study is an effort for reduc-
ing the number of installed strain gauges on structures by 

 *	 Mohammadreza Vafaei 
	 vafaei@utm.my

1	 Center for Forensic Engineering, Faculty of Civil 
Engineering, Universiti Teknologi Malaysia, Johor Bahru, 
Johor, Malaysia

2	 Institute of Noise and Vibration, Faculty of Civil 
Engineering, Universiti Teknologi Malaysia, Johor Bahru, 
Johor, Malaysia

3	 Department of Civil Engineering, Hakim Sabzevari 
University, Sabzevar, Khorasan Razavi, Iran

4	 Faculty of Civil Engineering, Universiti Teknologi Malaysia, 
81310 Johor Bahru, Johor, Malaysia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199243475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40091-018-0178-0&domain=pdf


30	 International Journal of Advanced Structural Engineering (2018) 10:29–35

1 3

estimating the value of strains at required locations through 
ANNs. In addition, this study is a solution for estimating the 
strain values in locations where installation of strain gauges 
is not possible or is very difficult and costly.

Experimental test

Test structure

As shown in Fig. 1, the test structure is a full-scale one-bay 
planer RC frame. The beam of the frame has a rectangular 
cross-section with the dimensions of 0.3 × 0.2 m. The length 
of the beam is 3.6 m. Columns are 3.3 m in length and have 
a square cross-section with the dimensions of 0.35 × 0.35 m. 
The beam is reinforced by two 16 mm ribbed bars at the 
top and bottom of its cross-section. Columns are longitu-
dinally reinforced by eight 16 mm ribbed bars. The trans-
verse reinforcements of the beam consist of 8 mm ribbed 
bars installed at the distances of 0.06 and 0.12 m as shown 
in Fig. 1. Columns are transversally reinforced with 8 mm 
ribbed bars with the distance of 0.15 m along their length. At 
the beam-to-column joints, the distance between transverse 
reinforcements of columns is reduced to 0.07 m. The com-
pressive strength of the concrete used for the construction 
of the frame is 30 MPa. The yield stress of reinforcements is 
570 MPa. As shown in Fig. 2, the frame is loaded gradually 

by a hydraulic jack using a 2-point loading configuration. 
The load is applied to the beam gradually and its intensity 
at each step is measured by a load cell. The beam-to-column 
joint rotations are measured at each loading step for both end 
corners of the beam. The vertical displacements of the beam 
are recorded via two LVDTs located at mid-span and 1/3-
span. As can be seen from Fig. 2, strain values on the surface 
of concrete are measured at three locations. The first strain 
gauge (see SC1 in Fig. 2) was installed at the top side of the 
left corner of the beam, 0.1 m away from the column face. 
The other two strain gauges were installed at the bottom side 
of the beam at mid-span (see SC2 in Fig. 2) and 1/3-span 
(see SC3 Fig. 2). In addition to the strain values in concrete, 
strains are also measured at three locations along the longi-
tudinal reinforcements of the beam. Two strain gauges that 
are referred to as SR1 and SR2 measure the strain values of 
top reinforcements of the beam, respectively, 0.1 m away 
from the left and right columns’ face. The third strain gauge 
that is referred to as SR3 measures the strain values of rein-
forcements at the bottom of the beam at mid-span.

Experimental test results

The frame was loaded gradually in 110 steps until the 
beam reached to its ultimate capacity. At each loading step, 
the values of applied load, vertical displacements, and the 
beam’s end corner rotations were recorded. Figure 3a, b 

Fig. 1   Details of RC frame tested in this study
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display the obtained relationships between the applied load 
and the vertical displacements measured at the mid-span 
and 1/3-span, respectively. As can be seen from these fig-
ures, the ultimate load capacity of the beam is 119 kN. 

Figure 3b shows that the beam reaches its yield strength 
when the applied load is around 106 kN and its corre-
sponding displacement at mid-span is 16 mm. Figures 3c, 
d display the relationships between the applied load and 

Fig. 2   Test set-up and instru-
mentation
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Fig. 3   Force–displacement and force–rotation relationships. a 1/3-span, b mid-span, c rotation at the left end corner of the beam, d rotation at 
the right end corner of the beam
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the obtained rotations (i.e., rotation of beam plus rotation 
of column) for the left and right end corners of the beam, 
respectively. These figures show that at the ultimate load 
of the beam, the rotations at the left and right end corners 
are 0.036 and 0.031 radians, respectively. Moreover, at 
the yield strength, rotations at the left and right end cor-
ners of the beam reach to 0.008 and 0.011 radians, respec-
tively. Figure 4 shows the obtained relationships between 
the applied load and strain values of the concrete. It can 
be seen that the measured strains at the mid-span show 
higher values compared to those measured at the 1/3-span. 
This can be also seen that the measured strains at the top 
left end corner of the beam (i.e., SC1) are significantly 
lower than those measured at the mid-span and 1/3-span. 
The graphs shown in Fig. 4 indicate that the relationships 
between the applied forces and the measured strains on 
the surface of the concrete are highly nonlinear. As shown 
in Fig. 5, similar nonlinear relationships can be observed 
between the applied forces and the measured strains for 
reinforcements. Figure 5 shows that strain values meas-
ured at the top left end corner of the beam are larger than 
those measured at the right end corner which correlates 
with the obtained rotations for the both end corners. It is 
noteworthy that strain values measured for the reinforce-
ments at the mid-span are smaller than those measured at 
the both end corners.

Estimation of strain values

Neural network design

As Figs. 4 and 5 showed, there were highly nonlinear 
relationships between the applied load and the measured 
strain values. Neural networks have demonstrated their 
capability in dealing with such nonlinear relationships. In 
this study, two neural networks with a similar architecture 
were designed to examine their capability in estimating the 
values of strains in the concrete and reinforcements. As 
shown in Fig. 6, the employed neural network is a super-
vised feed-forward multi-layer neural network with a fully 
connected configuration. The number of hidden layers and 
their neurons depend on the complexity of problems and 
often are determined by trial and errors. It has been shown 
in many damage identification studies that the usage of 
one hidden layer is adequate for accurate feature extrac-
tion and pattern recognition (Yam et al. 2003; Zang and 
Imregun 2001). Therefore, as can be seen from Fig. 6, 
both neural networks made use of one hidden layer. The 
numbers of neurons in the hidden layer were determined 
through trial and errors considering the performance of 
the neural networks which was calculated by the mean 
squared error (MSE). It should be noted that there are 
some rules of the thumb to estimate the number of neurons 
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Fig. 4   Measured strain values on the surface of concrete. a Top left, SC1. b Bottom 1/3-span, SC2. c Bottom, mid-span, SC3
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Fig. 5   Measured strain values for the longitudinal reinforcements of the beam. a Top left end corner, SR1. b Top right end corner, SR2. c Bot-
tom mid-span, SR3
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inside the hidden layer of a neural networks like the one 
proposed by Kermanshahi (1999). However, the rule of 
thumb has no theoretical background and may not be gen-
erally applicable (Parhi and Dash 2011). Therefore, similar 
to other researchers (Xu et al. 2004; Pandey and Barai 
1995), herein, the trial and error method was adopted. 
As can be seen from Table 1, the best performance was 
achieved when the hidden layer had 20 neurons. It should 
be mentioned that, Table 1 displays the obtained results 
for the first neural network; however, similar results were 
obtained for the second network. The input layer of the 
both networks had 4 neurons and included the measured 
vertical displacements at mid-span and 1/3-span together 
with the rotations of the beam at its both end corners. 
The output layer of the neural networks had 3 neurons. 
For the first network, strain values measured at the three 
locations of concrete were considered as the output vector. 
However, for the second network, the measured strains of 
reinforcements at the three locations were considered as 

the output layer. Totally, 110 data sets were obtained from 
experimental tests. The early stopping method was used 
for training of neural networks. According to this method, 
data should be divided into three groups of training, test-
ing and validation. Herein, 70% of data was randomly allo-
cated to training and the rest were equally divided between 
validation and testing data. In addition, out of 110 data, 10 
data sets were selected from the linear and nonlinear part 
of the load–displacement relationships as unseen data. The 
unseen data set were not included in the training of neural 
networks. They were employed to check on the generaliza-
tion capability of the trained neural networks and unbiased 
split of data for linear and nonlinear part of load–displace-
ment relationships (Reitermanova 2010).

The Levenberg–Marquardt (LM) backpropagation 
algorithm was employed for training the neural networks. 
Moreover, the Gradient descent weight/bias learning func-
tion was used. The hyperbolic tangent function was also 
used as the activation function of both neural networks. 
To avoid the saturation of neural networks, the input and 
output data were scaled to [− 1, 1]. Moreover, 70% of 
data were allocated to the training and 30% were equally 
assigned to testing and validation. The performance of the 
neural networks was monitored by validation samples to 
avoid over-fitting. Testing samples were used to check on 
the generalization ability of the trained neural networks.

Results of the trained neural networks

The obtained results from the trained neural networks are 
presented in Figs. 7 and 8. As can be seen from correlation 
coefficients (R2) shown in Fig. 7, the first neural network 
has accurately estimated the values of strains on the sur-
face of concrete for the three measured locations. These 
results imply that the trained neural network not only has 
been able to predict the strain values accurately for the lin-
ear range of the beam’s force–displacement relationship, 
but it has also successfully predicted the strain values for 
the nonlinear range. The maximum prediction errors for 
SC1, SC2 and SC3 are, respectively, 11.1, 12.7 and 27.5%. 
The correlation coefficients obtained for Fig. 8 indicate 
that the second neural network has also accurately pre-
dicted the strain values in reinforcements for all the three 
studied locations. The maximum prediction errors for SR1, 
SR2 and SR3 are, respectively, 12.1, 28.7 and 12.4%. Fig-
ure 9 displays the obtained results for the unseen data set. 
It is evident from this figure that the trained neural net-
works have successfully predicted the strain values on con-
crete and reinforcements demonstrating the generalization 
capability of the trained neural networks. In short, this can 
be concluded that ANNs are potential tools for estimation 
of strains in structures.

Fig. 6   Architecture of the employed neural network

Table 1   Performance of trained neural networks considering different 
neurons for the hidden layer

No. of neurons 10 15 20 25 30

MSE of learning 0.012 0.008 0.004 0.007 0.009
MSE of testing 0.010 0.012 0.007 0.009 0.007
MSE of validation 0.023 0.019 0.009 0.012 0.0011
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Fig. 7   Comparison between predictions of the neural network and the targets for strain values obtained for concrete surface. a SC1, b SC2, c 
SC3
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Fig. 8   Comparison between predictions of the neural network and the targets for strain values obtained for reinforcements. a SR1, b SR2, c SR3
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Conclusions

In this study, artificial neural networks were used to esti-
mate the value of strains on the surface of concrete and in 
reinforcements. A full-scale RC frame was constructed and 
loaded gradually until reaching to its ultimate capacity. The 
vertical displacements were measured at 1/3-span and mid-
span of the beam of the frame. Moreover, the rotations of the 
end corners of the beam were measured at each loading step. 
The values of strains were also measured at three different 
locations for concrete and reinforcements. From experimen-
tal tests, totally 110 data sets were obtained. Two supervised 
feed-forward multi-layer neural networks were designed. 
The neural networks had one hidden layer with 20 neurons. 
The input layer of the neural networks had four nodes, while 
the output layer had three nodes. Vertical displacements and 
end corner rotations were considered as the input parameters 
to the neural networks, while the strain values in the selected 
locations were considered as the output parameters. The neu-
ral networks were trained using 100 data set obtained from 
the experimental tests. Results indicated that the values of 
strains at all selected locations were accurately estimated by 
the trained neural networks both for concrete and reinforce-
ments. In addition, the trained neural networks predicted 
the value of strains accurately for 10 unseen data sets which 
were not included in their training procedure.
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