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A B S T R A C T

A sensitivity enhanced optical temperature sensor has been investigated and developed based on a silicon
oxynitride (SiON) waveguide microring resonator (MRR). The broadband supercontinuum (SC) output from a
fiber laser cavity is injected into the input port of the MRR, where the output was detected at the drop port of
MRR. The results can be useful for the sensor-based waveguide devices, where the applications such as the
temperature sensors can be realized. The temperature sensor has been fabricated in an MRR-silicon base
structure. Experimental characterization of inserting the SC as input source into the MRR as the temperature
sensors were carried out. The advantage of using the SC as input source is that the sensor covers a wide range of
wavelengths, thus sensing the temperature changes in the wide wavelength ranges which can extend the sensing
device applications. This study opens a way to apply optical sensors by using broadband SC as a source for
manufacturing temperature environments sensors within the MRR waveguide structures. This will enhance the
ability of the current temperature sensors to function at different and long wavelength band.

Introduction

Various applications in material and laser processing, range finding,
fiber sensor, medicine, and long-range optical communications can be
realized by the usage of large energy pulsed lasers. Q-switching is a kind
of optical modulation in the laser cavity. An effective way to deliver
large energy pulses can be indicated by the quality factor (Qfactor),
where it is a result of releasing of the energy stored in an active medium
within a very short time [1]. Q-switched lasers can be generated and
presented in both passive and active systems, where there are ad-
vantages of using active Q-switching than passive cases such as con-
trollable repetition rate and long-term stability [2]. For the device ap-
plications such as modulators and acoustic sensors, the active Q-
switching has drawbacks of low damage threshold, expensive and low
peak power than the active cases [3,4]. The advantages of, low cost,
flexibility, simple design and compactness can be achieved by passive
Q-switching [5]. Yu Chen et al., investigated Q-switched erbium-doped
fiber laser for the applications of broadband and tunable lasers [6] (see
Fig. 1).

In order to generate the femtosecond pulses, the technique as

nonlinear polarization rotation (NPR) can be utilized [7]. This tech-
nique is applicable in mode-locked fiber lasers. Other applications of
the technique can be as amplitude-equalization and suppression of
super-mode noise in the mode-locked laser systems [8]. The suppress
super-mode noise in a multiwavelength mode-locked laser system has
been reported by Ran et al. using the NPR technique [9]. Current in-
vestigation focusses on solitary wave applications in fiber lasers [10].
The soliton formation occurs due to the mechanism governed between
the nonlinear optical Kerr effect and the anomalous system dispersion
[11–14]. In a system with normal dispersion, soliton can be generated
due to the mutual interaction, where the laser gain effective bandwidth
filtering is of importance [15].

There are different soliton shaping mechanism which can differ-
entiate between different solitons which different properties and fea-
tures, where the kind of solitons achieved in an anomalous dispersion
show optical spectrum with clear sidebands. The other solitons gener-
ated in normal dispersion experience a steep spectral edge. Several
investigations have carried on multiwavelength cavity lasing in the
room temperature medium using mode-locked erbium-doped fiber ring
laser (ML-EDFRL). In these investigations, the gain filtering mechanism
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[16,17], multiple gain media [18,19], temporal-spectral multiplexing
[20] and interchannel multiple four-wave mixing [16] have been uti-
lized to perform the experiments. The main challenges of the mentioned
laser systems were the poor tunability and complicity of the designs.
S.L. Shapiro and R.R. Alfano have demonstrated the use of Super-
continuum (SC) in the 1970 s, where the broadening of laser spectrum
has attracted many researchers [21,22]. The SC has found many ap-
plications in telecommunications [23], optical coherence tomography
[24], spectroscopy [25], frequency metrology [24], and device char-
acterization [26]. The SC generation undergoes complicated classical
nonlinear optical and physical phenomenon which involves cross-phase
modulation (CPM), self-phase modulation (SPM), stimulated Raman
scattering (SRS) and four-wave mixing (FWM) [27].

The optical sensors have been investigated in many years due to
several interests such as immunity to electromagnetic interference, and
compact size compared with the traditional electric types [28]. Most of
the used optical sensors are based on optical fibers such as Bragg
gratings. These have many advantages such as high sensitivity and low
cost, where there are limitations for the sensors in integrated devices
[29]. To overcome the problem, new sensing devices have been built up
and developed such as the polymer bending waveguides [30], mi-
croring resonator (MRR) [13,31–34] and multimode interferometer
[35]. The MRR is desired due to their compact size, and also great
wavelength-selective capacities. These are highly sensitive to the en-
vironment refractive index changes in the vicinity of the structure and
are very practical use in integrated photonics circuits for the applica-
tions such as temperature sensors [36,37].

Compared to the traditional sensors, MRRs have a faster response
due to owing smaller size and compact designs. MRRs can be either
attached or embedded in different mediums enable to improve the real-
time monitoring and control. These are resonance structures for the
input power provided the circumference of the MRR is equal to an in-
teger number of the center wavelength. The steady state relation of the
input and output powers of the MRRs can be found in references [38].

The SC generation requires a mode-locked pulse laser as the seeding
source [39–41]. It is interesting to investigate the potential of a single
pulse seed laser to produce multiple SCs. Multiple SCs generation based
on single pulse seed laser offers a further reduction in the im-
plementation cost, thus introduces substantial simplification in size
compared to the standard SC setup. The broadband spectra as SC can be
generated by applying the mode-locked laser pulse and input into the
waveguide structures [42,43]. Wide bandwidth SC generation has been
demonstrated in microstructured fibers [44], highly nonlinear chalco-
genide planar waveguide [45], periodically poled lithium niobate [46],
and Si [47]. MRRs are a key component in modern optical networks
[48–50]. Their size allows high-density integration in optical photonic
circuits due to the use of high index contrast. MRR based filters in
wavelength division multiplexing are considered as effective devices in
this technology [51–53]. Many types of selective filters have been in-
vestigated and utilized such as those with very small channel spacing
suitable for the integration systems [54]. These filters can be fabricated
using different materials such as glass [54], glass–polymer [55], Si-SiO2
[56], SiON [57], and GaInAsP/InP [58–61].

The MRRs exabit high contrast waveguides, where a higher re-
fractive index contrast causes lower bending losses and higher free
spectral range of the filtered input spectrum. The scattering losses and
the tolerance sensitivity are the major drawbacks of the MRR wave-
guides. These can be managed and reduced by using the plasma-en-
hanced chemical vapor deposition technique which can be used to
fabricate waveguides such as SiON. This technique can fabricate wa-
veguides with lower losses, therefore it is desired for design and fab-
rication of compact devices in an integrated circuit system for the ap-
plication of wavelength-division multiplexing [62]. MRRs which are
made based on silicon wafers have been used in several applications
such as bandpass filters, wavelength-division multiplexing systems, and
add/drop filters [63]. In reference [64], the authors have investigated

Fig. 1. Single coupler MRR.

Fig. 2. Experimental set-up of the temperature sensor with MRR.

Fig. 3. The micro-stage experiment set up with waveguide loaded on the
middle stage so that it is coupled to fibers as input (SC) and output (OSA).
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the generation of signals with 0.4 nm bandwidth. The MRRs can be
utilized as an integrated device in a fiber laser setup or they can be
outside of the setup. To generate polarization independent multi-
wavelength or dual wavelength the use of the MRRs outside of the laser
cavity is recommended. This configuration has other advantages such
as the tunability and stability of the generated output wavelengths,
where it makes the MRRs most ideal choices for the wavelength se-
lective filter devices. In reference [65], Amiri et al. has presented a
similar experiment setup to filter out the input supercontinuum pulse
generated from the fiber laser setup for the tunable dual-wavelength
applications within the ranges 1520 and 1640 nm, while in the pre-
sented work, the fabricated SiON-MRR with 1.27mm diameter is uti-
lized as a temperature sensor.

Generation of mode-locked laser and supercontinuum

The experiment setup of the temperature sensor has been shown in
Fig. 2. The fiber laser system is divided into two main stages. The first
stage consists of a ring cavity to induce mode-locking operation. A
50 cm length of Erbium-doped fiber (EDF) is performed as the gain
medium in the cavity. The EDF is pumped by a 980 nm laser diode
through a 980/1550 nm wavelength division multiplexer (WDM). The
EDF is then connected to polarization dependent isolator (PDI) and
followed by a polarization controller (PC). The function of the PDI is to
ensure unidirectional propagation in the cavity and act as a polarizer,
while the function of the PC is to control the polarization state in the
ring cavity. The incorporation of the PDI-PC induces the NPR effect in
the cavity. The ring cavity is completed by using a 90/10 tap coupler in
which 90% of the generated laser power oscillates in the cavity whilst
the remaining 10% is extracted as an input to the Erbium-doped fiber
amplifier (EDFA). The amplified laser emission then propagates
through a 100m long HNLF to induce the SC effect. The results have
been analyzed by using an optical spectrum analyzer with 0.02 nm
resolution, a 12.5 GHz wideband photodetector (covering the operating
wavelength range from 1.5 µm to 2.1 µm), a 500MHz oscilloscope, an
autocorrelator resolution, and a radio-frequency (RF) analyzer. An MRR
is then connected to the output port of the HNLF to slice the SC spec-
trum. Compared to the superluminescent diodes, the SC owning a
broader spectrum and shorter coherent length. The coherent length of
SC is 3–7 μm, while it is 20 μm for the superluminescent diodes, thus
improvement of temperature measurement accuracy is expected for SC
applications. The micro-stage that has been used for waveguide align-
ment was precise so that it could make sure the coupling of light could
be more efficient. The middle stage has the feature that can put the
ceramic positive temperature coefficient (PTC) heater and thermometer
for verification of the exact changes of temperature so that the desired
temperature was measured by thermometer to be sure the thermometer
sensor was touching the waveguide to measure the correct temperature.

A strong peak due to the pump frequency can be observed at the
through port of the microring resonator. The peak is often 20 dB above
the adjacent comb lines, therefore the power transfer to the comb is
poor [66,67]. To avoid this issue, the silicon nitride microring resonator
could be fabricated with a drop port, thought a drop port geometry has
been widely used in optical add/drop filters [68].

Fig. 3 illustrates the whole setup from the stage side and by referring
the source (SC) that could produce the wide wavelength spectrum so
that the study of temperature on changing the MRR resonance could be
possible by this technique.

The PTC heater can be used in this experiment by controlling the
voltage so that the desired temperature would be issued. The thermo-
meter was the great help to check and register all the changes base on
the live data. The source (SC) was producing a wide range spectrum so
that the changes in resonance would be novel and more effective in this
case. This application of MRR is very interesting in case of industrial
and in communication methods. The sensitivity of the waveguides
(MRR) went under the evaluation where the source of the heat never
engages with waveguide directly (for example heating source doesn’t
place above the waveguide holder).

Results and discussion

A stable passively mode-locked seed spectrum is attained at a
threshold pump power level of 65 mW, based on the NPR effect from
the ring cavity. Fig. 4(a) shows the mode-locked fiber laser spectrum at
the 10% port of the optical tap-coupler at a pump power level of 130
mW, where the Fig. 4(b) shows the generated supercontinuum output
from the HNLF after the mode-locked pulse input into the HNLF.

The OSA1/YOKOGAWA AQ6370B is utilized for the spectrum
analysis. A 3 dB coupler is used to couple the output from the MRR to
the OSA. It has a 10 cm length single mode fiber (SMF). The OSA is used
to show and monitor the generated frequency comb from the MRR
which has a refractive index of 1.513 and footprint of 3×5mm2. As
can be seen from the Fig. 5, the SC is filtered by the MRR through the
wavelength range 1519 to 1650 nm. The FSR shows a wavelength range
of 0.39 (48.7 GHz) to 0.45 nm (56 GHz).

Free spectral range (FSR)

An important parameter that characterizes the MRR structure for
sensing applications is the free spectral range (FSR). The FSR parameter
determines the spacing distance between two resonance peaks of the
micro-resonator structure, and it is defined as below (Eq. (1)):

=FSR
λ

n πR(2 )
res

eff

2

(1)

where λres represents the resonance wavelength, neff is the effective

Fig. 4. (a) Mode-locked spectrum generated by the laser cavity, (b) the supercontinuum generated at the output of the HNLF.
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refractive index of the MRR and R is the radius dimension of the MRR.
The 2πR term is the circumference of the MRR structure. Clearly, the
FSR value will vary as different regions of the spectrum. A narrow FSR
distance will exist at shorter wavelengths, such as in the visible spec-
trum (at 700–800 nm) compared to the wider FSR values found at a
longer wavelength region (e.g. In the Near Infrared (NIR) region be-
tween A=800–2500 nm).

Effective refractive index (neff)

The effective refractive index plays a major role in the MRR optical
sensing. There are several software packages that are commercially
available to calculate the effective refractive index of a system. The
effective refractive index is defined as:

= =n
βλ
π

n
β
k2

oreff eff (2)

In Eq. (2), β represents the propagation constant, λ is the

Fig. 5. Advanced frequency combs in SiON-MRR. Sub-100 GHz spacing SiON-MRR. Micrographs of the (a) 48.7 (b) 50, (c) 51.2, (d) 52.4, (e) 53.7 and (f) 56.2 GHz
FSR.
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wavelength (nm), k is the reciprocal of wavenumber. In this work, fi-
nite-difference-time-domain (FDTD) technique simulation Lumerical
was utilized as a tool to determine the effective refractive index of
waveguide structures. This fundamental can be used in case of sensing
within optical MRR. The interaction between the surface of the MRR
can make the change in the effective index of the material. This change
influences the resonance wavelength peak place. The sensing equation
can be defined as below:

=
λ

λ
n

n
Δ Δ eff

eff (3)

where λΔ is the resonance wavelength shift or displacement; λis the
resonance wavelength for a particular mode; nΔ eff is the effective re-
fractive index changes, and neff is the effective refractive index of the
MRR [69–71]. According to the Eq. (3), the resonance wavelength shifts
linearly, dependent on changes in the effective index of the MRR. Losses
and coupling coefficients are relevant to the width at half maximum
(FWHM) in the spectrum of resonance in the all-pass MRRs. The FSR
can be expressed by:

=FSR λ
n Lg

2

(4)

where the round-trip length is defined by L and ng is the group index.
The dispersion of the waveguide can be considered by the group index
and is defined by

= −n n λ
dn
dλg eff

eff
0 (5)

The ratio of FSR and resonance width is defined as finesse whereas,

=Finesse FSR
FWHM (6)

Spacing is a key factor to describe the sharpness of resonances. The
sharpness of the resonance within the relative to the central frequency
can define the Qfactor which is described by:

=Q λ
FWHMfactor

res
(7)

The number of round-trips made by the energy in the resonator can
define the finesse and Qfactor before being lost due to the bus wave-
guides and internal loss. Table 1 is illustrating the important parameters
in 23.4°c such as FSR, FWHM, Qfactor, finesse, and Δf. The FSR and Δf
trend is increasing by the increase of wavelength also the FWHM fol-
lowing this trend. Qfactor would decrease by the increasing the wave-
length. In Table 2 it has been shown the effect of the changes in tem-
perature, the Qfactor increase by the increase of the temperature through
the FSR is almost same and finesse has decrees till 27 °c then in 28 °c it
increased.

The variation of temperature due to the variation of heat produced
by the PTC ceramic heater has been measured by a thermometer. This
measurement indicates a linear change of the temperature from a
starting point of 24 °C with the step of 1°Celcius per 30 s invervals. The
spectrum after the MRR and splicing showing an insensitive wavelength
shifting within the increase of temperature, where the ampliture
changes dramatically. The wavelength shifting occurs if the high tem-
perature variation applied. It is considerable as a sensitive temprature
sensor in case of using the SC as the source and splicing by MRR in SiON
material. By increasing the temprature the power decreases as almost
10 dBm. In Fig. 6 the power fluctuation has been illustrated.

The power coupling coefficient between the waveguide and the ring
can be estimated from the bandwidth double-notch feature of the re-
sonant spectrum cause by the weak split of resonances and it is a weak
reflection inside the MRR so that the surface roughness also can be
affected by the back reflections [72].

Conclusion

A temperature sensor base on SiON-MRR presented by launching SC
laser pulses as the input source. Moreover, the MRR has a small foot-
print of 3×5mm2. The FSR achieved was between 0.39 till 0.45,

Table 1
Important parameters calculated in the SiON-MRR within injecting super-
continuum as a source within the 23.4°c temperature.

Temp 23.4°c Wavelength

1520 nm 1540 nm 1570 nm 1590 nm 1615 nm 1630 nm

FSR(nm) 0.39 0.39 0.41 0.42 0.43 0.45
FWHM 0.07 0.085 0.095 0.1 0.105 0.105
Qfactor ×2.2 104 1.8× 104

×1.6 104
×1.5 104

×1.5 104
×1.5 104

Finesse 5.57 4.6 4.31 4.2 4.09 4.2
Δf(GHz) 48.7 48.7 51.2 52.4 53.7 56.2

Table 2
Important parameters calculated in the SiON-MRR within injecting super-
continuum as a source within different temperature.

Wavelength Temperature

25 °c 26 °c 27 °c 28 °c

FSR(nm) 0.42 0.4 0.42 0.4
FWHM 0.1 0.1 0.15 0.075
Qfactor ×1.5 104 1.5× 104

×1.03 104
×2.06 104

Finesse 4.2 4 2.8 5.3
Δf(GHz) 52.4 49.95 52.44 49.94

Fig. 6. The amplitude variation between (a) 1550–1575 nm (b) 1550–1555 nm due to the temperature variations.
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where the Qfactor of the MRR with diameters of 1.27mm ranges from
×1.5 104 to ×2.2 104. The Qfactor increase by the increase of the tem-

perature, though the FSR is almost same and finesse has decrees till
27 °c then in 28 °c it increased. The temperature sensor shows in-
sensitive wavelength shifting as the temperature increases but it shows
a significant change in the output power even if the temperature
changes are very small. The sensor shows a high sensitivity to the
temperature variation by the output power changes which means it can
detect a very small change in the output power due to the small changes
in the temperature.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.rinp.2018.05.004.
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