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Adaptive neuro-fuzzy inference system (ANFIS) includes two novel GIS-based ensemble artificial 
intelligence approaches called imperialistic competitive algorithm (ICA) and firefly algorithm (FA).
This combination could result in ANFIS-ICA and ANFIS-FA models, which were applied to flood spatial 
modelling and its mapping in the Haraz watershed in Northern Province of Mazandaran, Iran. Ten 
influential factors including slope angle, elevation, stream power index (SPI), curvature, topographic 
wetness index (TWI), lithology, rainfall, land use, stream density, and the distance to river were 
selected for flood modelling. The validity of the models was assessed using statistical error-indices 
(RMSE and MSE), statistical tests (Friedman and Wilcoxon signed-rank tests), and the area under the 
curve (AUC) of success. The prediction accuracy of the models was compared to some new state-of-the- 
art sophisticated machine learning techniques that had previously been successfully tested in the study 
area. The results confirmed the goodness of fit and appropriate prediction accuracy of the two ensemble 
models. However, the ANFIS-ICA model (AUC =  0.947) had a better performance in comparison to 
the Bagging-LMT (AUC =  0.940), BLR (AUC =  0.936), LMT (AUC =  0.934), ANFIS-FA (AUC =  0.917), LR 
(AUC =  0.885) and RF (AUC =  0.806) models. Therefore, the ANFIS-ICA model can be introduced as a 
promising method for the sustainable management of flood-prone areas.

Flood is considered as one of the most destructive natural disasters worldwide, because of claiming a large num
ber of lives and incurring extensive damage to the property, disrupting social fabric, paralyzing transportation 
systems, and threatening natural ecosystems1,2. Each year flooding affects around 200 million people and causes 
economic losses of about $95 billion around the world3. In Asia, more than half of flood damages are economic 
and over 90% of all human casualties are the result of flood occurrence4. Iran has witnessed many devastat
ing floods recently, especially in the northern cities of Noshahr (2012), Neka (2013), Behshahr (2013), and Sari 
(2015), all located in the Haraz watershed5, Mazandaran, Iran. Arable lands of 28 villages with an area of 80 ha 
had been destroyed in Chahardangeh district, Sari city; Also, 150 hectares of agricultural lands were degraded in 
Klijan Restagh in the same city located in the study area5.

Although flood prediction models can be used for evaluation of floods that have occurred in the region, 
prevention of flooding may not be completely possible due to its complexity6. Hence, an important solution to 
reduce future flood damages is to develop models for flood susceptibility mapping based on the determination of
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Figure 1. Geographical situation of Haraz watershed and locations of flood and non-flood occurrences in the 
study area.

flood-prone regions5,7. Furthermore, flood susceptibility maps can display the potential of regions for develop
mental activities by categorizing the sensitivity of areas to flooding8.

Recently, some researchers have studied flood susceptibility mapping (FSM) by Remote Sensing (RS) tech
niques and GIS using different conventional and statistical models, including frequency ratio (FR )9, logistic 
regression (LR)10, spatial multi-criteria evaluation (SM CE)11, analytical hierarchy processes (AHP)12, weight of 
evidence (W O E)13, and evidential belief functions (EBF)14. In this regard, Cao et al.15 compared the FR and sta
tistical index (SI) approaches for flood modelling in the Xiqu Gully (XQG) of Beijing, China15. They found that 
the FR was more powerful in comparison to the SI method for spatial prediction of floods. Tehrany et al. (2017) 
observed that the W OE method outperformed the LR and FR methods. In addition to the above-mentioned 
models, recently, various machine learning approaches and their ensembles have also been applied to FSM 
including neuro-fuzzy16, artificial neural networks17,18, support vector machines19, Shannon entropy20, decision 
trees21, Naive Bayes22, random forest (RF)23, and logistic model tree3,21. Chapi et al? introduced a new hybrid 
artificial intelligence method called Bagging-logistic model tree (LMT) for flood mapping in Haraz watershed, 
Iran. They also compared the results of the new proposed model with several soft computing benchmark models 
including LR, Bayesian logistic regression (BLR), and RF. Their results indicated that the new proposed model 
outperformed and outclassed the other models. Additionally, the results revealed that the prediction accuracy 
o f BLR was greater than that of the LMT, LR and RF models3. Khosravi et al.21 compared some decision tree 
algorithms including LMT, Reduced Error Pruning Trees (REPT), NBT, and alternating decision tree (ADTree) 
for flood mapping in Haraz watershed21. The results suggested that the ADTree was a more powerful and robust 
algorithm compared to the NBT, LMT and REPT algorithms. Overall, these results of literature indicated that, 
one the one hand, the results of performance of all conventional, statistical and machine learning methods are 
different from a region to another due to the different geo-environmental factors. On the other hand, the results 
of flood modelling in a given region are also different for some models. This is due to the difference in the struc
ture and framework of the applied algorithms. Therefore, finding the most appropriate model for detecting the 
flood-prone areas through comparing different methods and also proposing a new model for every region is of 
great interest to environmental researchers. Among recent approaches on flood, ANFIS model which is a combi
nation of ANN and fuzzy logic, has become increasingly popular16,24. However, in some cases, it has not been able 
to predict the best weights in the modelling process25. Therefore, to address this challenge, it is better to use some 
evolutionary/optimization algorithms enabling us to re-weigh in order to obtain the maximum performance. 
Although there are some optimization algorithms with different structures and probability distribution functions 
(PDF) to find the best weights, selecting the best algorithm for the modelling process is a critical issue in the spa
tial prediction of natural hazard events such as floods. Hence, new hybrid algorithms should be examined to find 
the best weights and obtain more reasonable results. In this regard, the current study uses new hybrid algorithms 
including ANFIS-ICA and ANFIS-FA for spatial prediction of floods in Haraz watershed in the northern part of 
Iran. Although some optimization and machine learning algorithms have been applied to flood modelling around 
the world, our optimization methods have not been previously explored for flood assessment. For validation and 
comparison, several quantitative methods such as the Receiver Operating Characteristic (ROC) curve method as 
well as statistical analysis methods were selected. Computations were performed using Matlab 2016a and ArcGIS 
10.2 software.

Description of the Study Area
Located between longitudes of 51° 43; to 52° 36;E, and latitude of 35° 45; to 36° 22;N, Haraz watershed is situated 
in the south of Amol City in Mazandaran Province, Northern Iran. This watershed drains an area of 4,014 km2. 
Elevation of the watershed ranges from 328 m to about 5595 m at the highest point and its ground slope varies 
from flat to 66° (Fig. 1). The average annual rainfall is around 770 mm. The maximum rainfall occurs in January,
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Figure 2. Flood damages in Haraz watershed during recent years, Mazandaran Province taken from field 
surveys by the sixth author (K. K.).

February, March, and October with an average monthly rainfall o f 160 mm (Iran’s Meteorological Organization) 
during these four months. The climate in the study area is a combination of the mild humid climate of the Caspian 
shoreline area and the moderate cold climate of mountainous regions. The area is almost entirely encompassed by 
rocks from Mesozoic (56.4%), Cenozoic (38.9%), and Paleozoic (4.7%) eras. The rangeland covers around 92% of 
the study area. Other land use patterns present in the area include forest, irrigation land, bare land, garden land, 
and residential area.

The main residential centres located in Haraz watershed include Abasak, Baladeh, Gaznak, Kandovan, Noor, 
Polur, Rineh, Tashal, and Tiran5. The Haraz watershed was considered for the present study due to the many dev
astating floods that have occurred annually, claiming lives and incurring damage to the property in recent years. 
The major reason for flooding in these areas is high rainfall intensity within a short period of time, major land use 
changes specifically from rangelands to farmlands, deforestation, recent extensive changes from orchards to resi
dential areas, and the lack of control measures required to curb flooding. In the study area, floods lead to fatalities 
and damages to infrastructure, and disruption of traffic, trade and public services (Fig. 2).

Results and Discussion
Spatial relationship between floods and influential factors using SWARA model. The first step 
in this study was determining the sub-factor weights based on the SWARA algorithm, as presented in Table 1. In 
this study, 10 factors showing a significant impact on flood occurrence were selected based on literature review, 
the characteristics of watershed, and data availability5. One of the most significant factors in flood modelling is 
the slope angle. The slope map was developed and then classified into seven classes by the natural break classifi
cation method. The SWARA value was the highest for the class 0 -0 .5  (0.4). Hence, the results revealed that the 
higher the slope angle, the less the probability of flooding will be. Another important factor was elevation which 
was classified into nine classes. The results showed that the first class, 328-350 m, with a weight of 0.63, had the 
highest impact on flooding such that the higher the elevation, the lower the flooding probability will be. This was 
confirmed by Khosravi et al.5 and Tehrany et al.19 who explained that slope angle, elevation, and distance to river 
had higher impacts on flooding such that once the slope angle, elevation, and distance to river increased, the 
probability o f flooding diminished. Meanwhile, curvature is representative of topography of the ground surface. 
This factor was prepared and classified into three classes including concave, convex, and flat. For curvature, the 
highest SWARA value was found for concave followed by flat and convex.

The results of SPI revealed that the class of 2000-3000 (0.32) showed a higher impact on flood occurrence 
than other classes such that higher SPIs were associated with higher flood probability. In the case of topographic 
wetness index (TW I), the SWARA value showed a decreasing trend when the TW I value increased. The highest 
SWARA value belonged to the class of 6.96-11.5 (0.08). TW I indicates the wetness of land; wetness was higher in 
areas with lower slope than mountainous areas. This suggests that larger TW I values are associated with higher

S C IE N T IF IC  R E P O R T  | (2018) 8:15364 | DOI:10.1038/s41598-018-33755-7 3

http://www.nature.com/scientificreports/


www.nature.com/scientificreports/

Factors Classes

Comparative 
importance of average 
value Kj

Coefficient 
Kj =  Sj +  1

wj =  (X 
(j -  1))/kj

weight wj/ 
sigma wj

0 - 0 .5 - 1.00 1.00 0 .4 0

0 .5 - 2 0 .8 0 1 .80 0 .5 6 0.22

2 - 5 0.20 1.20 0 .4 6 0 .1 8

Slope
5 - 8 0 .6 0 1 .60 0 .2 9 0.11

8 - 1 3 1.15 2.15 0 .1 3 0 .0 5

1 3 - 2 0 1.50 2 .5 0 0 .0 5 0.02

> 3 0 2 .7 0 3 .7 0 0.01 0.01

2 0 - 3 0 0 .5 5 1.55 0.01 0.00

3 2 8 - 3 5 0 - 1.00 1.00 0 .6 3

4 0 0 - 4 5 0 3 .7 0 4 .7 0 0.21 0 .1 3

3 5 0 - 4 0 0 0 .3 5 1.35 0 .1 6 0.10

4 5 0 - 5 0 0 0 .5 5 1.55 0.10 0 .0 6

E lev atio n 5 0 0 - 1 0 0 0 0 .6 5 1.65 0 .0 6 0 .0 4

1 0 0 0 - 2 0 0 0 3.95 4 .9 5 0.01 0.01

2 0 0 0 - 3 0 0 0 0.00 1.00 0.01 0.01

3 0 0 0 -4 0 0 0 0.00 1.00 0.01 0.01

4 0 0 0  > 0.00 1.00 0.01 0.01

C on cave - 1.00 1.00 0 .4 6

C urvature F la t 0 .05 1 .05 0 .9 5 0.43

C on vex 3.00 4 .0 0 0 .2 4 0.11

2 0 0 0 - 3 0 0 0 - 1.00 1.00 0.32

8 0 0 - 2 0 0 0 0.10 1.10 0.91 0 .2 9

SP I
4 0 0 - 8 0 0 0 .3 0 1.30 0 .7 0 0.22

8 0 - 4 0 0 0 .7 0 1.70 0.41 0.13

0 - 8 0 3.70 4 .7 0 0 .0 9 0 .0 3

> 3 0 0 0 3.95 4 .9 5 0.02 0.01

6 .9 6 -1 1 .5 - 1.00 1.00 0 .0 8

5 .7 2 -6 .9 6 0.10 1.10 0.91 0 .0 7

T W I
5 .0 3 -5 .7 2 0 .65 1.65 0.55 0 .0 4

4 .4 7 -5 .0 3 2 .7 0 3 .70 0.15 0.01

3 .9 4 - 4.47 3 .5 0 4 .5 0 0.03 0.00

1 .9 -3 .9 4 0 .0 5 1.05 0.03 0.00

2 .6 7 -3 .6 6 - 1.00 1.00 0.00

3 .6 6 -7 .3 0.00 1.00 1.00 0.01

R iver d en sity
1 .9 2 -2 .6 7 0 .8 5 1.85 0 .5 4 0 .0 6

1 .1 7 -1 .9 2 2 .5 0 3 .50 0.15 0.20

0 .4 0 1 - 1 .1 7 3 .95 4 .9 5 0.03 0 .3 7

0 -0 .4 0 1 3.95 4 .9 5 0.01 0 .3 7

0 - 5 0 - 1.00 1.00 0 .5 9

5 0 - 1 0 0 1.75 2 .7 5 0 .3 6 0.22

1 0 0 -1 5 0 0 .8 5 1.85 0.20 0.12

D is ta n ce  to 1 5 0 -2 0 0 1.20 2.20 0 .0 9 0 .0 5

river 2 0 0 - 4 0 0 2 .7 0 3 .7 0 0.02 0.01

4 0 0 - 7 0 0 2 .7 0 3 .7 0 0.01 0.00

7 0 0 - 1 0 0 0 3 .0 0 4 .0 0 0.00 0.00

> 1 0 0 0 0.00 1.00 0.00 0.00

Teryas - 1.00 1.00 0.31

Q u a tern a ry 0 .5 0 1.50 0 .6 7 0.21

L ith o log y
P erm ain 0.00 1.00 0 .6 7 0.21

C retaceo u s 0 .4 0 1.40 0 .4 8 0.15

Ju rassic 1.10 2.10 0 .2 3 0 .0 7

T eratiary 0.10 1.10 0.21 0 .0 6

Continued
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Factors Classes

Comparative 
importance of average 
value Kj

Coefficient 
Kj =  Sj +  1

wj =  (X 
(j -  1))/kj

weight wj/ 
sigma wj

L an d  use

W ater b o d ies - 1.00 1.00 0 .7 5

R esid e n tia l area 3 .9 0 4 .9 0 0.20 0 .1 5

G ard en 1.55 2.55 0 .0 8 0 .0 6

F o re st land 2.00 3.00 0 .0 3 0.02
G rasslan d 0 .7 0 1.70 0.02 0.01
F a rm in g  L and 3.95 4 .9 5 0.00 0.00
B a rre n  land 0.00 1.00 0.00 0.00

R a in fa ll

1 8 8 -3 3 3 - 1.00 1.00 0 .4 0

3 7 9 - 4 0 9 1.20 2.20 0 .4 5 0 .1 8

4 0 9 - 4 4 8 0 .3 5 1.35 0 .3 4 0 .1 3

3 3 3 - 3 7 9 0.10 1.10 0.31 0.12
4 4 8 - 5 3 5 0 .0 5 1.05 0 .2 9 0.12
5 3 5 -4 7 1 1.15 2 .1 5 0 .1 4 0.05

Table 1. Spatial relationship between flood and conditioning factors of SWARA model.

Slope
angle Elevation Curvature TWI SPI Rainfall

Dis-
river

River
density Lithology

Land
use All

A N F IS -IC A
T ra in 0 .0 6 7 0 .0 6 5 0 .0 7 6 0 .0 7 4 0 .0 8 9 0 .0 5 3 0 .0 6 6 0 .0 7 6 0 .0 4 4 0 .0 4 8 0 .0 6 9

T est 0 .1 9 6 0 .1 4 1 0 .1 7 2 0 .1 4 5 0 .1 3 3 0 .1 4 3 0 .1 3 4 0 .1 7 2 0 .1 4 5 0 .1 3 4 0 .1 3 0

A N F IS -F A
T ra in 0 .0 8 4 0 .0 8 0 0 .0 9 4 0 .0 7 5 0 .0 7 8 0 .0 6 3 0 .0 8 0 0 .0 8 1 0 .0 5 2 0 .0 5 9 0 .0 7 8

T est 0 .2 6 9 0 .1 9 6 0 .2 5 7 0 .1 9 3 0 .1 7 3 0 .1 9 8 0 .1 7 1 0 .2 6 0 0.201 0 .1 7 1 0 .1 7 0

Table 2. Sensitivity analysis of flood modeling using ANFIS-ICA and ANFIS-FA models.

flood probability. River density results also showed that the river density values higher than 3.66 had the highest 
correlation with flood occurrence (0.37). The results o f the SWARA model revealed that as the river density grew, 
the probability of flood occurrence also increased. For distance-to-river factor, the results demonstrated that the 
first class of 0 -50  m (0.59) had a relatively higher susceptibility to flood occurrence. The farther the distance to the 
river, the less probable the flood occurrence was. For lithology, Teryas formations had the highest SWARA value 
(0.31) suggesting the highest probability of flood occurrence.

The land use map was constructed for seven types including water bodies, residential area, garden, forest land, 
grassland, farming land, and barren land. The water bodies demonstrated a higher impact on flood occurrence 
(0.75), followed by residential area (0.15), garden (0.06), forest land (0.02), grassland (0.01), farming land (0), and 
barren land (0). The highest SWARA value (0.4) was assigned to the lowest amount of rainfall (188-333), where 
the higher the rainfall level, the less the flood occurrence probability was. The reason why rainfall increase was 
still insignificant for flooding was that rainfall increased in areas where elevation increased and these areas were 
not prone to flooding5.

Sensitivity analysis of conditioning factors. The results of sensitivity analysis are reported in Table 2 . 
Based on the testing error values, the results indicated that in the ANFIS-ICA hybrid model, when the slope angle, 
elevation, curvature, TW I, SPI, rainfall, distance to river, river density, lithology, and land use were removed, the 
RMSE values were 0.196, 0.141, 0.172, 0.145, 0.133, 0.143, 0.134, 0.172, 0.145, and 0.134, respectively. It was 
observed that when all factors were considered in the modelling process, the error value was 0.130. It was also 
seen that all conditioning factors had a positive role in the flood modelling process. On the other hand, the results 
of sensitivity analysis for ANFIS-FA hybrid model concluded that with removing the slope angle, elevation, cur
vature, TW I, SPI, rainfall, distance to river, river density, lithology, and land use factors, the RMSE values were 
computed as 0.269, 0.196, 0.257, 0.193, 0.173, 0.198, 0.171, 0.260, 0.201, and 0.171, respectively. In this model, 
when all factors were introduced into the model, the error value was 0.170. Overall, the results suggested that all 
factors were also significant for flood modelling in ANFIS-FA hybrid model.

Application of AN FIS ensemble models. Using the MATLAB programming language, two hybrid 
models called ANFIS with complementary models of FA and ICA were developed, leading to ANFIS-ICA and 
ANFIS-FA, which were initially trained. The accuracy of training was then calculated using test data. To that end, 
the dataset related to flood and non-flood was segmented into 70% for training and 30% for testing. Then, the two 
methods started extracting and learning the relationship between the SWARA values for conditioning factors and 
flood ( 1) as well as non-flood (0) values.

Model results and validation. The results of the model prediction capacity were evaluated using Mean 
Squared Error (MSE) and Root Mean Squared Error (RMSE) for both modelling and validation25. Figures 3 and 
4 demonstrate the comparison between the training dataset as a target and estimated flood pixels as the output 
for modelling by ANFIS-ICA and ANFIS-FA. The MSE and RMSE values for ANFIS-ICA and ANFIS-FA models

S C IE N T IF IC  R E P O R T  | (2018) 8:15364 | DOI:10.1038/s41598-018-33755-7 5

http://www.nature.com/scientificreports/


www.nature.com/scientificreports/

Figure 3. ANFIS-ICA model. (a) Target and output ANFIS-ICA value of the training data samples; (b) MSE 
and RMSE value of the training data samples; (c) frequency errors of the training data samples; (d) target and 
output ANFIS-ICA value of the testing data samples; (e) MSE and RMSE value of the testing data samples; and 
(f) frequency errors of the testing data samples.

were 0.069 and 0.26 in the training, and 0.078 and 0.27 in the testing, respectively. Accordingly, ANFIS-ICA had a 
better performance compared to ANFIS-FA in the training due to lower MSE and RMSE. Note that the optimized 
model was the model that predicted the results of testing data with higher accuracy. The values of MSE and RMSE 
for ANFIS-ICA and ANFIS-FA were obtained as 0.41 and 0.35, and 0.169 and 0.129, respectively. Since MSE and 
RMSE of ANFIS-ICA were lower than of those of ANFIS-FA, it can be concluded that ANFIS-ICA was a more 
optimal model than ANFIS-FA, since ANFIS-ICA had higher accuracy in both the training and testing.

Preparation of flood susceptibility mapping using ANFIS ensemble models. In this study, the 
ensembles of ANFIS based on the ICA and FA algorithms were developed by the training dataset. The developed 
models were then applied for calculating the flood susceptibility index (FSI) which was assigned to all pixels of the 
study area to create flood susceptibility maps (FSM). In the first step, each pixel of the study area was assigned to a 
unique flood susceptibility index; then, these indices were exported in Arc GIS 10.2 format and used to construct 
the final flood susceptibility mapping.

There are different techniques for map classification in the Arc GIS 10.2 software including natural break, 
equal interval, geometrical interval, quantile, standard deviation, and even manual technique. They should be 
tested to select the most appropriate one to classify any map in the study area. Generally, selection of the classifi
cation methods is based on the distribution of flood susceptibility indexes26. For example, if  the distribution of FSI 
values is close to normal, to prepare an equal interval, FSM or standard deviation classification methods should be 
used. However, when FSI has positive or negative skewness, the best classification methods are quantile or natural 
break27. In the current study, the data distribution histogram revealed that quantile classifier was capable of gen
erating better results compared to other classifiers. Thus, the approach of quantile data classification was selected, 
and FSI was classified in four classes of susceptibility: low, moderate, high, and very high19. Finally, based on the 
hybrid model, the two maps of flood susceptibility were constructed, as depicted in Figs 5 and 6.

Validation and comparison of new hybrid flood susceptibility models. Validation o f  the proposed
ensemble models. The reliability and predictive power of these two new hybrid models for flood modelling were 
assessed using success and prediction rate curves. The outcomes of success and prediction rate were prepared 
for 70% (training data) and 30% (testing data that were not used in training) of data. Since the success rate curve 
was drawn using the training data, It was impossible to evaluate the predictive power of the models28. On the 
other hand, the AUC for prediction rate curve showed how well the model predicted floods29. The area under 
ROC curve was considered for evaluating the overall performance of the models. According to that, Larger AUC 
represented better performance of the model. The ROC method has been one of the most popular techniques to 
evaluate the efficiency of models, as this method quantitatively calculates the efficiency of models5. The results of 
success-rate showed that the AUC values for the two models of ANFIS-ICA and ANFIS-FA were 0.95 and 0.93, 
respectively (Fig. 7a). The prediction rate which was not used in the modelling was applied to the assessment 
o f the model capacity in predicting flood-prone areas. The values of area under the prediction-rate curve for
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Figure 4. ANFIS-FA model. (a) Target and output ANFIS-FA value of the training data samples; (b) MSE 
and RMSE value of the training data samples; (c) frequency errors of training the data samples; (d) target and 
output ANFIS-FA value of the testing data samples; (e) MSE and RMSE value of the testing data samples; and (f) 
frequency errors of the testing data samples.

ANFIS-ICA and ANFIS-FA were 0.94 and 0.91, respectively (Fig. 7b). Then, the highest predictive power for 
flood-prone areas in the Haraz watershed was provided by the new hybrid ANFIS-ICA model, which had also a 
lower standard error o f 0.35 compared to the ANFIS-FA (0.41) model. The results were compatible with those of 
the RMSE and MSE values in both the training and testing phases. These two new hybrid models had also a rea
sonable ROC; yet, the ANFIS-ICA model represented the best performance in predicting the flood susceptibility, 
followed by the ANFIS-FA model.

In addition to the success and prediction rate curves, Friedman and Wilcoxon signed-rank tests were also uti
lized for assessing the validity of the two new hybrid models (the performance of the models). They determined 
whether there were significant statistical differences between performances of the two hybrid models. The results 
of Freidman test reported in Table 3 indicated that the average ranking values for the ANFIS-ICA and ANFIS-FA 
hybrid models were 1.29 and 1.71, respectively. Although chi-square value was 35.945, due to having a significant 
level of less than 5%, the Friedman test was not applicable to assess the validity of models.
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Figure 5. Flood susceptibility mapping prepared via ANFIS-ICA model.

To overcome this challenge, the Wilcoxon signed-rank test was performed for determining the pairwise dif
ferences between the two flood hybrid models at the 5% significance level (Table 4). No significant difference 
was detected between the two flood hybrid models at the significance level of 5% when the null hypothesis was 
rejected. On the other hand, in this case their results were not the same. The results of Wilcoxon signed-rank test 
were specified based on the p-value and z-value. If the p-value was less than 5% (0.05), and z-value was larger 
than - 1 .9 6  and +1.96, the performances of the two models were significantly different30. The results of Wilcoxon 
signed-rank test, shown in Table 3, imply that there was a statistical difference between the two flood suscepti
bility models.

Comparison with some state-of-the-art sophisticated machine learning techniques. Chapi et al.3 introduced a 
novel ensemble data mining model called Bagging-logistic model tree (LMT) for mapping of flood susceptibility 
in this study area. Then, the results of this new model were compared with those of some state-of-the-art sophis
ticated machine learning models including LMT, Bayesian logistic regression (BLR), logistic regression (LR) and 
random forest (RF). Comparison in Fig. 8 reveals that the new proposed model outperformed all these models. 
For the validation dataset, the highest AUC was obtained for the new ensemble model (AUCBagging-LMT =  0.940),
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Figure 6. Flood susceptibility mapping prepared by ANFIS-FA model.
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Figure 7. Area under the curves of success rate (a) and prediction rate (b) o f new flash flood hybrid models.

No Flash flood models Mean ranks x2 Sig.

1 A N F IS -IC A 1.29
3 5 .9 4 5 0 .0 0 0

2 A N F IS -F A 1.71

Table 3. Average ranking of the two flash flood susceptibility hybrid models using Friedman’s test.

No
Pair wise 
comparison

Number of positive 
differences

Number of negative 
differences z-value p-value Significance

1
S -A -IC A  vs. 
S -A -FA

143 58 - 3 . 9 8 2 0 . 000 Yes

Table 4. Performance of the new flash flood hybrid models by Wilcoxon signed-rank test (two-tailed). (The 
standard p value is 0.05).

followed by BLR (AUC =  0.936), LMT (AUC =  0.934), LR (AUC =  0.885) and RF (AUC =  0.806). The evolution
ary algorithm, ANFIS-ICA (AUC =  0.947) outperformed all these models, but ANFIS-FA was unable to show 
a greater performance than the Bagging- LMT, BLR and LMT models. However, AUCANFIS-FA was better than 
the LR and RF models. Overall, the new proposed model, ANFIS-ICA, was a powerful ensemble model which 
improved the prediction accuracy among all models in this study area.
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Figure 8. Area under curve of the prediction rate using validation dataset.

Conclusions
The dynamic nature of floods will always necessitate new approaches and models for its management. This is 
the main reason that no one has been able to introduce the best model. Unpredicted spatial-temporal changes 
of this phenomenon have forced scientists to continuously seek for better approaches to generate better results 
and outcomes; sometimes new individual models and sometimes combinations of the individual models known 
as hybrid models. In the current study, two new hybrid models, ANFIS-ICA and ANFIS-FA, were applied to 
enhance the predictive power o f flood spatial modelling. A total of 10 conditioning factors were selected for 
the spatial modelling in the Haraz watershed, Northern Iran. The factors were divided into several classes using 
the SWARA model and their maps were generated for modelling purposes. The new hybrid models were then 
used for modelling spatial floods in the study area. The models’ outputs were compared to the results of several 
soft computing approaches that had been successfully used before in the study area whose accuracy had been 
approved. The ANFIS-ICA model was the most successful among all the models and its results provided the 
most appropriate congruence with reality. Although the results of ANFIS-FA were reasonable, the model was not 
ranked as the best. Accordingly, this study introduced a new model, ANFIS-ICA, for spatial prediction of floods 
in the study area and other similar watersheds. This model can be evaluated as a tool for more appropriate miti
gation and management of floods in Northern Iran.

Materials and Methods
Data collection and preparation. Flood inventory maps, which are generated in accordance with histor
ical flood data, are the cornerstones of spatial prediction of floods. The quality o f historical data is closely related 
to the accuracy of the prediction model31. Combined with field survey, flood records in 2004, 2008 and 2012 were 
employed to develop a flood inventory map for the study area. Additionally, DEM and geological maps in the 
Haraz watershed were also used in data collection and preparation. Eventually, 201 flood points and non-flood 
points were selected utilizing satellite images. In order to build spatial prediction models and to test the validity 
of model results, these data points were randomly divided into a training (70%; 141 locations) and a testing (30%; 
60 locations) set3. In the present study, 10 flood conditioning factors were adopted: curvature, distance to river, 
elevation, land use, lithology, rainfall, river density, SPI, slope, and TW I. These factors were extracted using DEM 
and geological maps by ArcGIS software.

Sensitivity analysis. The relative importance of different conditioning factors affecting the modelling 
process and outputs should be assessed using sensitivity analysis approaches32,33. Ilia and Tsangaratos (2016) 
reported that the sensitivity analysis is performed using three methods including: (i) Changing criteria values, (ii) 
Changing relative importance of criteria, and (iii) Changing criteria weights34. The current study adopted the sec
ond method, changing relative importance of criteria, such that each conditioning factor was firstly removed and 
then modelling was performed with other factors. Accordingly, the obtained results were compared with the con
dition taking all conditioning factors for the modelling into account by error estimation such as RMSE measure.

Theoretical background of the methods used. Stepwise Assessment Ratio Analysis (SWARA). The 
Step-wise Assessment Ratio Analysis (SWARA), which was first proposed by Kersuliene in 2010, is one of the 
Multi-Criteria Decision Making (MCDM) methods. Experts play an important part in calculating the weights in 
this method, and hence the SWARA method is called an expert-oriented method35. The expert assigns the highest 
rank to the most valuable and the lowest rank to the least valuable criteria. Subsequently, the average value of 
these ranks determines the overall ranks. The SWARA method follows these steps35:

Step 1: Criteria are developed and determined. The expert must develop decision-making models from the 
determined factors. Moreover, the criteria are arranged in accordance with their priority and the importance 
assigned by the expert’s viewpoint and then the influential criteria are sorted in a descending order.

Step 2: criteria’s weighting is calculated. Then, the weights are assigned to all criteria based on expert’s knowl
edge, information gained for the case study, and the previous experience as follows:
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The respondent expresses the comparative importance of the criterion j compared to the previous (j -  1) 
criterion starting from the second criterion, with the trend repeating the same way for each particular criterion. 
The trend, according to Kersuliene, determines the relative importance of the average value, Sj in this manner35:

shows the number of factors involved. The coefficient Kj is calculated as:
where, n represents the number of experts; Ai stands for the ranks suggested by the experts for each factor; and j

ent Kj is calcul

1 j  =  1

K  =  1

The recalculation of Qj is done by:

K =
j 1Sj  +  1 j  >  1 (2)

Xt- i  
Qj =  —

j

The relative weights of evaluation criteria can be expressed as:

w— -  Qj
— Qj (4)

where, Wj denotes the relative weight of the j-th  criterion, and m represents the total number of criteria.

Adaptive neuro-fuzzy inference systems (ANFIS). Adaptive Neuro Fuzzy Inference System (ANFIS) is a 
data-driven model belonging to the family of neuro-fuzzy methods. The ANFIS is a hybrid algorithm integrating 
neural network with fuzzy logic which generates input-output data pairs36. This algorithm, first proposed by Jang 
in37, is used in many fields such as data processing of landslides38, flooding25, and groundwater39. The fuzzy infer
ence system has two inputs x 1 and x2, one output z, the fuzzy set Aj, A2, Bj, B2, and pi, qi, and ri which are the con
sequence of output function parameters in a set of fuzzy IF-THEN rules based on the first-order Takagi-Sugeno 
fuzzy model40 as follows:

Rule 1: if  x1 is Aj and y  is B1, then f  =  plx l +  q y  +  rl (5)

Rule 1: if  x 2 is A2 andy2 is B2, th e n f  =  p2x2 +  q2y2 +  r2 (6)

The ANFIS is a feedforward neural network with a multi-layer structure41. The most important point is the 
parameters of ANFIS which must be optimized by other methods. In this study, the imperialist competitive algo
rithm (ICA) and the Firefly algorithm (FA) were used for optimization.

Firefly algorithm (FA). As an evolutionary algorithm, Firefly algorithm was first introduced by Yang in42. In 
recent years, many researchers have been using Firefly algorithm for optimization purposes43. The results of this 
algorithm for solving optimization problems have been more satisfactory than other algorithms including SA, 
GA, PSO, and HAS44. This meta-heuristic was inspired by firefly’s flashing and their communication42. There are 
about 2000 firefly species, and most of them produce rhythmic and short flashes45. Similar to other swarm intel
ligence algorithms whose details can capture a problem solution, in this algorithm each firefly is a solution to a 
problem. The light intensity also matches the objective function value. Notably, a firefly which has a brighter light 
is the solution and this firefly absorbs others.

Imperialist Competitive Algorithm (ICA). One of the novel evolutionary algorithms developed according to 
socio-political relations is the colonial competition, introduced originally by Atashpaz-Gargari and Lucas46. 
Nowadays, ICA is known as a rich meta-heuristic algorithm and is used for optimization47. As with other evolu
tionary algorithms, ICA is made up of a series o f components each indicating a solution to problems trying to find 
the best solution. A general flowchart of flood susceptibility mapping can be seen in Fig. 9.

Evaluation and comparison methods. Statistical error-index. Evidently, when a new hybrid model is 
introduced, the performance of models should be evaluated and compared for both training and testing datasets. 
Basically, the results of modelling using a training dataset represent the degree of fit of models, while the results 
of a testing/validation dataset indicate the predictive power of modelling28.

In this study, root mean square error (RMSE) and mean square error (MSE) were applied as statistical error 
evaluation criteria along with ROC curve for evaluating and comparing the performance of the two flood hybrid 
models. RMSE and MSE can be calculated as48:

RMSE =  J En=1(Xest -  Xobs)
V N (7)
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1 -  Specificity

Figure 9. A general flowchart for optimization modelling in the study area.

M SE= 1  £ (Xest -  Xobs)2
n i=1 (8)

where, Xest denotes the value estimated by a model, Xobs is the actual value (observed), and n shows the number 
of observations in the dataset.

Receiver operating characteristic curve. Receiver Operating Characteristic (ROC) is another standard technique 
to determine the general performance of models, which has been used in geoscience49. It is constructed by plot
ting the values of two statistical indexes, “sensitivity” and “100-specificity”, on the y-axis and x-axis, respectively50. 
Based on the definition, the number of positive cases (flood) which are correctly classified as positive (flood) class 
refers to sensitivity, while 100-specificity is considered as the number of negative (non-flood) cases correctly 
classified as negative (non-flood) class.

The area under the ROC curve (AUROC) quantitatively evaluates the models’ performance and their capa
bility of predicting an event’s occurrence or non-occurrence51. The AUROC represents how well a flood model 
generally performs. It ranges between 0.5 (inaccuracy) and 1 (perfect model/high accuracy), where the higher the 
AUROC, the better the model performance is52. The AUROC can be formulated as:

AUROC = £ T P  +  £ T N
P +  N  (9)

where, TP refers to the percentage of positive instances which are classified correctly. TN shows the percentage of 
negative instances which are classified correctly. Then, P denotes the total number of events (flood), and N is the 
total number of no-events (non-flood).

Non-parametric statistical tests. The performance of the two new hybrid models for flood modelling was 
assessed by parametric and non-parametric statistical tests3. If the data follows a normal distribution with an 
equal variance, parametric methods are applied53. Although non-parametric tests are free from any statistical 
assumptions, they are safer and their results are stronger than those of parametric tests, since the former do not 
assume normal distribution or homogeneity of variance54. Since the conditioning factors have been classified as 
categorical classes, non-parametric statistical tests should be used. For this reason, Freidman55 and W ilcoxon56 
sign rank tests were used to assess the differences between treatments of hybrid models. The objective of these 
tests was to reject or accept the null hypothesis stating that the performances of flood hybrid models were not 
different at the significance level of a  =  0.05 (or 5%).

The Friedman test was first used for the data to compare the significant differences between two or more 
models. Bui et al.52 reported that in the Friedman test, if  p-value is less than 0.05, then the result is not applicable 
and we are not able to judge the significant differences between two or more models52. Therefore, the Wilcoxon 
signed-rank test was applied to specify the statistical significance of systematic pairwise differences between the 
two flood hybrid models using two criteria including p-value and the z-value. Eventually, the null hypothesis 
was rejected according to the p-value <  0.05 and z-value exceeding the critical values of z (—1.96 and + 1.96). 
Accordingly, the performance of the susceptibility models differed significantly52.
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