
 
 

 
 

CHARACTERIZATION OF MULTIWALLED CARBON NANOTUBES BY DC 

ARC DISCHARGE IN METHANE UNDER MAGNETIC FIELD INFLUENCE 

ZULKIFLI BIN AZMAN 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Engineering (Electrical) 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

MARCH 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199243308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Specially dedicated to my wife, kids, parents and family. 

Thank you for your sacrifice, patient and dua’.   

May Allah grant all of us Jannah. 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

 
 

 

ACKNOWLEDGEMENT 

In the name of Allah, the Most of Gracious, and the Most of Merciful. 

Alhamdulillah, thanks to Allah with the strength and patience given, this research was 

successfully completed as planned. 

 

High appreciation to the key people in helping me completing this works 

especially my project supervisor, Assoc. Professor. Dr. Zokafle Bin Buntat, the one 

who always gives guidance, encourages, and helps from any aspects. I really 

appreciate that. To my family who always giving motivation, helps and dua’, 

especially my wife, Norain Binti Sahari, kids, parents and family from both sides. 

Thank you for your support and understanding. 

 

To all colleagues which helping either direct or indirectly. Piah, Alia, Izzah, 

Helmi, Bella, Yana, Zainab and others, all of you are really wonderful friends.  Thanks 

to IVAT’s technical staff for helping in experimental setup and always ensure the 

works run smoothly with highest safety precaution. Special thanks to UIRL’s and 

MiNT’s staff which helping in analysing the research outcomes. 

 

Finally, thanks to Dr. Abu Bakar Suleiman, Aizat, Dr. Feri, Kusnanto, Mr. 

Hisham Walat, lecturers and individuals which contribute ideas, material resources, 

motivations, as well as advise in completing this study. Thank you very much. May 

Allah bless and forgive all our sins and grant all of us His Jannah. Insha’Allah.



v 
 

 
 

ABSTRACT 

Carbon nanotubes (CNTs) have gained many interest among researchers over 

the last two decades due to its remarkable mechanical, electrical, optical and thermal 

properties. High quality CNTs are in demand especially for application in nano 

electronics where CNTs are required to be in high crystallinity, straight and aligned 

orientation, having uniform diameter and less impurities to achieve the best 

performance. Literally, hydrogen gas is reported as the best buffer gas in producing 

high crystallinity and less impurities attached to CNTs by arc discharge method. 

However, it is not suitable for large scale CNTs synthesis due to unstable plasma 

formation. Recently, methane gas which contains hydrogen atoms is being studied in 

producing multiwalled carbon nanotubes (MWCNTs). This leads to the opportunity 

of investigating methane as buffer gas in producing high quality CNTs. On the other 

hand, the usage of magnetic field in arc discharge has been reported to have the ability 

to enhance the quality of CNTs in terms of narrow and uniform diameter as well as 

reducing impurities. Thus, this work presents a comparative study on the effect of 

three different arc discharge configurations to the yield of MWCNTs in methane 

environment. The first configuration known as Configuration A where no magnetic 

field assistance during CNTs arc discharge synthesis. Configuration B utilises four (4) 

magnets which are placed surrounding inter electrode gap while two (2) magnets are 

placed at anode for Configuration C. Arc discharge is generated at fixed 750 mbar of 

chamber pressure and fixed current about 60 A in the voltage range of 30 ~ 32 V. As 

a result, needle like shapes with straight orientation of individual MWCNTs for all 

configurations is observed under Scanning Electron Microscope. Narrow diameters 

are observed in configuration B with standard deviation of 2.71 mm followed by 

configuration C of 5.7 mm and configuration A of 8.05 mm. The results show the 

influence of magnetic field in producing MWCNTs with narrow and uniform diameter 

compared to no magnetic field assistance. The diameter distribution trend is confirmed 

by X-Ray powder diffraction results. High crystalline MWCNTs is confirmed by 

Transmission Electron Microscope images for configuration B with uniform 

MWCNTs inner diameter at average 2 nm. Raman spectrum shows low ratio of D 

band intensity over G band intensity at 0.53 for configuration B while configuration 

A at 0.79 which suggest fewer wall defects of MWCNTs produced in configuration 

B. Therefore, magnetic field assistance in methane arc discharge is proved to produce 

smaller and uniform diameter of MWCNTs with less wall defects. MWCNTs 

produced in this study can be further investigated in nanoelectronics applications such 

as nanowires and conductive nanofiller 
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ABSTRAK 

Nanotiub karbon (CNTs) telah menarik minat di kalangan para penyelidik 
dalam tempoh dua dekad yang lalu disebabkan oleh ciri-ciri mekanikal, elektrik, optik 
dan termal yang luar biasa. CNTs berkualiti tinggi diperlukan terutamanya untuk 
aplikasi nanoelektronik di mana CNTs perlu mempunyai kehabluran yang tinggi, 
orientasi lurus dan sejajar, mempunyai diameter seragam dan kurang bendasing untuk 
memperoleh prestasi terbaik. Secara harfiah, gas hidrogen dilaporkan sebagai yang 
terbaik dalam menghasilkan kehabluran yang tinggi dan kurang bendasing yang 
melekat pada CNTs dengan kaedah discas arka. Walau bagaimanapun, ia tidak sesuai 
untuk sintesis CNTs berskala besar disebabkan pembentukan plasma yang tidak stabil. 
Baru-baru ini, gas metana yang mengandungi atom hidrogen mula dikaji dalam 
menghasilkan nanotiub karbon berbilang lapisan (MWCNTs). Ini membuka peluang 
kepada penyiasatan metana sebagai gas penampan dalam menghasilkan CNTs 
berkualiti tinggi. Sebaliknya, penggunaan medan magnet dalam discas arka dilaporkan 
mempunyai keupayaan untuk meningkatkan kualiti CNTs dari segi pengecilan 
diameter yang seragam serta mengurangkan bendasing. Oleh itu, kerja ini 
membentangkan perbandingan kesan medan magnet pada tiga konfigurasi berbeza 
terhadap penghasilan MWCNTs dalam persekitaran metana. Konfigurasi pertama 
disebut konfigurasi A di mana tiada sokongan medan magnet dalam penghasilan 
CNTs. Konfigurasi B menggunakan empat (4) magnet yang diletak sekeliling 
pembahagi antara elektrod sementara dua (2) magnet diletakkan pada anod sebagai 
Konfigurasi C. Discas arka dilakukan pada tekanan tetap 750 mbar dan arus tetap pada 
60 A dalam julat voltan 30 ~ 32V. Hasilnya, imej Scanning Electron Microscope 
menunjukkan MWCNTs dihasilkan berbentuk jarum dengan orientasi lurus untuk 
semua konfigurasi. Diameter kecil diperhatikan dalam konfigurasi B dengan sisihan 
piawai pada 2.71 mm. Diikuti konfigurasi C pada 5.7 mm dan konfigurasi A pada 8.05 
mm yang menunjukan pengaruh medan magnet dalam penghasilan MWCNTs dengan 
diameter kecil dan seragam berbanding tanpa medan magnet. Ianya juga dibuktikan 
dengan data X-Ray powder diffraction (XRD). Kehabluran MWCNTs yang tinggi 
dapat dilihat pada imej Transmission Electron Microscope untuk Konfigurasi B 
dengan diameter dalaman MWCNTs seragam pada purata 2 nm. Spektrum Raman 
menunjukkan nisbah intensiti jalur D terhadap intensiti jalur G yang rendah pada 0.53 
bagi Konfigurasi B berbanding tanpa medan magnet pada 0.79 bagi Konfigurasi A 
menunjukkan kurang kerosakan pada dinding MWCNTs yang dihasilkan dalam 
Konfigurasi B. Oleh itu, dengan sokongan medan magnet dalam discas arka metana 
telah terbukti menghasilkan diameter MWCNTs yang kecil dan seragam serta kurang 
kerosakan pada dindingnya. MWCNTs yang dihasilkan dalam kajian ini boleh dikaji 
lebih lanjut untuk aplikasi nanoelektronik seperti wayar nano dan pengisi nano yang 
bersifat konduktif. 
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CHAPTER 1 

 
 

 

INTRODUCTION 

 

1.1 Background of Study 
 

In modern science nowadays, extensive research on nanotechnology is 

rapidly growing. The application of nanotechnology is in wide areas such as 

agriculture, food processing, cosmetic, electronics, astronomy research, military 

technology for defence, etc. All electronic devices nowadays getting smaller yet their 

performance cannot be compromised. Thus, nanomaterial studies always become 

important among researchers to improve daily life routine by nanotechnology 

implementation especially in electronics application.  

 

Carbon nanotubes, (CNTs) often said as one of promising nanoscale material 

in electronics application to be used as nanowires, sensing element, optoelectronic 

devices, field emitter for display, and transistor channel [1-3]. CNTs being 

investigated in the past 20 years since founded by Japanese scientist, Sumio Iijima in 

1991 [4]. During that time, arc discharge was the first method known to produce 

CNTs. A few years later, CNTs was successfully produced by chemical vapour 

deposition and laser ablation method [5, 6]. Among  them, arc discharge is 

considered the best method in producing high crystalline CNTs with fewer defects 

whilst not producing hazardous toxic gas and considered  as an environmental 

friendly method in producing CNTs [7-9].  
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Basically, arc discharge is electrical breakdown phenomena which resulting 

the creation of hot plasma due to high current. In CNTs synthesis application, arc 

discharge system consists of two electrodes acting as anode and cathode, power 

supply and carbon precursor such as pure graphite which actually acting as anode for 

anodic arc discharge. It can be happening in tight chamber filled with certain gas at 

certain pressure as well as in liquid environment by submerged both anode and 

cathode. However, the large number of reports found to produced CNTs in tight 

chamber filled with certain gas [10]. 

 

In arc discharge method, both electrodes (anode and cathode) was brought to 

contact at initial stage allow for current flowing, causing resistive heating that 

increases electrode temperature [10]. Sudden change of interelectrode gap led to 

electrical breakdown in gaseous environment hence resulting the formation of 

plasma between electrodes. The stability of plasma corresponds to the stablity of 

anode and cathode voltage which related to interelectrode gap. This continuous hot 

plasma formation converts the carbon precursor into carbon vapour state. The basic 

fundamental of CNTs growth in arc discharge is the phase change of carbon 

precursor from solid to carbon vapour and then turn to liquid state before solidify 

again and stick at cathode tip which much cooler compared to anode. The carbon 

deposited at cathode tip usually contain CNTs. 

 

Several arc discharge parameters were taken into account in producing CNTs 

in better yield such as arc current, arc voltage, type of gas, chamber pressure, type of 

power supply, catalyst used, shape and type of electrodes as well as carbon precursor 

itself. The variation of these parameters has gone through along the past 20 years to 

understand the optimal condition in producing CNTs in high quality and high 

quantity. Until this report is written, both studies on the synthesis and application of 

CNTs still running in parallel however, there is still much more to be understood in 

the production of quality CNTs by arc discharge method. A lot of improvement has 

been achieved yet there is still a gap in academic research field to produce much 

better CNTs as required to be used efficiently in electronics application that need 

specific structure, diameter and length of CNTs. 
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In the beginning, CNTs was grown in Argon environment at 100 Torr of 

chamber pressure [4]. Since then, other types of gases being investigated to evaluate 

the yield of CNTs produce. Different types of gases have different ionization 

potential and have unique thermal characteristic which plays important role in 

achieving breakdown condition hence led to formation of plasma. Due to its highest 

thermal conductivity, Hydrogen is said as the best gas for promoting the growth of 

CNTs with less carbonaceous materials [7].  However, in large scale CNTs 

production, it was found that Hydrogen is difficult to control due to unstable plasma 

formation [11]. Thus, most of works later reported using Helium tested at various 

parameters. Other gases have been investigated including Nitrogen, Air, and 

hydrocarbon such as Methane, CH4 [12-14]. However, only a few works reported 

conducting arc discharge CNTs synthesis with hydrocarbon as buffer gas. Limited 

reports on the use of hydrocarbons in the production of CNTs by arc discharge 

method have opened up opportunity for researchers to explore more on the 

capabilities of hydrocarbon in producing good quality CNTs. 

 

 The external magnetic field introduced in arc discharge CNTs synthesis 

reported increases the yield of CNTs [15-17]. It has been confirmed that plasma 

confinement and other plasma parameters in arc discharge can be controlled by 

magnetic field [18]. Thus, the exploitation of magnetic field in assisting CNTs 

synthesis is worth to be expanded and understandable in combination with other arc 

discharge CNTs parameters such as type of gas and pressure, arc voltage and arc 

current as well as carbon precursor. Types of magnet, configuration and magnetic 

strength also play important role to the formation of stable confined plasma and 

hence producing better quality of CNTs. 

 

1.2 Problem Statement  

In electronics application, Single Walled Carbon Nanotubes (SWCNTs) often 

gets more attention due to its remarkable electronics properties where it can 

demonstrate both metallic and semiconducting behaviour depend on its chirality. 
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Multi Walled Carbon Nanotubes (MWCNTs) is said to always exhibit metallic 

behaviour. However, it also demanded for many applications such as flat panel 

display, electron source in cathode ray tube, individual nanoprobe, high brightness 

beam in electron microscope, nanoscale X-Ray source and nanoscale linear bearings 

[19-24]. 

 

Basically, there are three usually employed methods in synthesis MWCNTs. 

The three methods are chemical vapour deposition, laser ablation and arc discharge 

methods. Among three of them, arc discharge is said capable of producing well 

graphitized MWCNTs [25, 26] . Moreover, arc discharge does not require metal 

catalyst in synthesis MWCNTs. Previously, hydrogen was claimed by Zhao et al. as 

the best gas in producing high quality MWCNTs by arc discharge method [27]. 

However, it was not suitable for large scale production due to unstable plasma 

formation [28]. As option, Ando et al. suggested the use of CH4 in synthesising 

MWCNTs since the decomposition of hydrogen atom contained in CH4 molecules 

produces high crystallinity MWCNTs [29]. More recently, there is a work also uses 

CH4 as buffer gas at various chamber pressures with different arc currents [14].  

 

In order to fulfil demand for high quality MWCNTs to well suit to the 

application mentioned above, high crystallinity MWCNTs with uniform diameter 

formed in well-arranged and straight structure are required. Many reports have 

mentioned the use of magnetic field in arc discharge has improved the yield of 

SWCNTs in term of high crystallinity, high quantity, increasing the length and 

narrows down the diameter of SWCNTs [16, 17, 30-32]. A few works reported of 

producing less impurities in MWCNTs with magnetic field assistance [15, 33]. To 

the best of the author’s knowledge, there is no report on the production of high 

crystallinity MWCNTs with uniform diameter formed in well-arranged structure by 

arc discharge method. Thus, this work presents the effect of combination magnetic 

field and CH4 to the diameter distribution, quantity, high crystallinity, structural 

defect, shape and orientation as well as impurity level of MWCNTs produced. 
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1.3 Research Objectives 

Based on problem statement and current situation, three research objectives 

have been defined as in the following: 

 

 

i. To investigate the effect of magnetic field in different configurations to 

diameter distribution of MWCNTs grown by DC arc discharge in CH4. 

ii. To investigate the influence of combination of magnetic field and CH4 in 

producing high crystallinity and less defect of MWCNTs structure. 

iii. To learn the ability of magnetic field in controlling the shape and orientation 

of MWCNTs produced in CH4 environment. 

 

1.4 Scope of Project 

In order to fulfil project timeline while successfully achieving all three 

objectives, the research parameters are confined as mention in the following:  

 

i. MWCNTs grown in CH4 environment at fixed 750 mbar of chamber 

pressure. 

ii. Arc discharge controlled at fixed 60A of DC current for all configurations 

(with and without magnetic field assistance). 

iii. The magnets used are Neodymium, (NdFeB) permanent magnet in grade 

N52 with axially magnetized direction. 

iv. All CNTs synthesis experiment last at approximately 60 seconds.  

v. Interelectrode gap distance maintained manually by Pulse Width 

Modulator, PWM linear motor controller. 

vi. High purity graphite (99.99%) were used as anode and cathode. 

vii. CNTs were characterized by Scanning Electron Microscopy, 

Transmission Electron Microscopy, X-Ray powder diffraction, Raman 

Spectroscopy. 
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1.5 Thesis Layout 

This thesis consists of five chapters which explained as follows: 

 

Chapter 1 starts with the background study to introduce briefly about the 

subject under study. The problem statement described in this chapter to highlight the 

gap in recent works related to synthesis of CNTs by arc discharge method, the effect 

of magnetic field in CNTs formation as well as the gas has been used as buffer gas. 

This chapter also highlights the objectives of study as well as research scopes. 

 

Chapter 2 explaines the introduction of CNTs to give understanding about the 

core material which being under study. Three main methods in producing CNTs also 

described. In this chapter, previous works from other researcher related to synthesis 

of CNTs by arc discharge method with magnetic field assisted, growth of CNTs in 

various buffer gas as well as the effect of buffer gas in CNTs production by arc 

discharge method are presented. As additional, common characterization methods of 

CNTs in also included.  

 

In Chapter 3, the research methodology is presented. The detail on 

experimental setup, magnetic field configuration study, equipment used as well as 

the experimental procedure are described. The overall research works are graphically 

illustrated in a process flow chart for ease of understanding. Preparation and steps 

taken for CNTs characterization and analysis are also discussed. 

 

Experimental results are presented in Chapter 4. In this chapter, 

characterization of CNTs produced are explained and discussed. The results were 

including morphology of CNTs analysed by Scanning Electron Microscopy, and 

TEM, spectroscopic analysis by Raman Spectrometer and crystalline structure study 

analysed by XRD method.  

 

Finally, Chapter 5 gives the conclusion of the findings in Chapter 4. It also 

highlights the contribution of the research work based on results achieved as well as 

recommendation related to this topic for future research. 
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