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ABSTRACT 

 

 

 

The gear system is a critical component in the machinery and predicting the 

performance of a gear system is an important function. Unpredictable failures of a 

gear system can cause serious threats to human life, and have large scale economic 

effects. It is necessary to inspect gear teeth periodically to identify crack propagation 

and, other damages at the earliest. This study has two main objectives. Firstly, the 

research predicted and classified specific film thickness (λ) of spur gear by Artificial 

Neural Network (ANN) and Regression models. Parameters such as acoustic 

emission (AE), temperature and specific film thickness (λ) data were extracted from 

works of other researchers. The acoustic emission signals and temperature were used 

as input to ANN and Regression models, while (λ) was the output of the models. 

Second objective is to use the third generation ANN (Spiking Neural Network) for 

fault diagnosis and classification of spur gear based on AE signal. For this purpose, a 

test rig was built with several gear faults. The AE signal was processed through pre-

processing, features extraction and selection methods before the developed ANN 

diagnosis and classification model were built. These processes were meant to 

improve the accuracy of diagnosis system based on information or features fed into 

the model. This research investigated the possibility of improving accuracy of spur 

gear condition monitoring and fault diagnoses by using Feed-Forward Back-

Propagation Neural Networks (FFBP), Elman Network (EN), Regression Model and 

Spiking Neural Network (SNN). The findings showed that use of specific film 

thickness has resulted in the FFBP network being able to provide 99.9% 

classification accuracy, while regression and multiple regression models attained 

73.3 % and 81.2% classification accuracy respectively. For gear fault diagnosis, the 

SNN achieved nearly 97% accuracy in its diagnosis. Finally, the methods use in the 

study have proven to have high accuracy and can be used as tools for prediction, 

classification and fault diagnosis in spur gear. 
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ABSTRAK 

 

 

 

Sistem gear ialah komponen penting dalam sesebuah jentera manakala 

meramal prestasi sistem gear merupakan fungsi utama. Kegagalan sistem gear yang 

tidak diduga boleh menyebabkan ancaman berat kepada kehidupan manusia dan 

membawa kesan ekonomi skala besar. Adalah perlu untuk memeriksa gigi gear 

secara berkala bagi mengenal pasti perambatan retak dan kegagalan lain pada 

peringkat awal. Kajian ini mempunyai dua objektif utama. Pertama sekali kajian ini 

meramal dan mengelaskan ketebalan saput tertentu (λ) gear taji dengan Rangkaian 

Neural Buatan (ANN) dan Model Regresi. Parameter seperti pengeluaran akustik 

(AE), suhu dan data ketebalan saput tertentu (λ) disaring daripada hasil kajian 

penyelidik lain. lsyarat pengeluaran akustik dan suhu digunakan sebagai input bagi 

ANN dan model Regresi manakala (λ) merupakan output model tersebut. Objektif 

kedua adalah untuk menggunakan generasi ketiga ANN (Rangkaian Neural 

Berpaku) bagi mendiagnosis kegagalan dan pengelasan gear taji berdasarkan isyarat 

AE. Rig ujian dibina dengan beberapa kegagalan gear bagi tujuan ini. lsyarat AE 

diproses melalui pra-pemprosesan, penyarian sifat dan pemilihan kaedah sebelum 

diagnosis ANN dan pengelasan model dibangunkan. Proses-proses tersebut 

bertujuan untuk meningkatkan ketepatan sistem diagnosis berdasarkan maklumat 

atau sifat yang dibekalkan ke dalam model. Kajian ini mengkaji kemungkinan untuk 

meningkatkan ketepatan pemantauan keadaan gear taji dan diagnosis kegagalan 

dengan menggunakan Suapan-Depan ke Belakang Rangkaian Neural Perambatan 

(FFBP), Rangkaian Elman (EN), Model Regresi dan Rangkaian Neural Berpaku 

(SNN). Dapatan kajian ini menunjukkan bahwa penggunaan ketebalan saput tertentu 

menghasilkan rangkaian FFBP yang mampu memberikan ketepatan pengelasan 

sebanyak 99.9% manakala ketepatan pengelasan bagi model regresi dan regresi 

berganda masing-masing hanya mencapai 73.3% dan 81.2%. Bagi diagnosis 

kegagalan gear pula SNN mencapai ketepatan hampir 97% dalam diagnosisnya. 

Akhir sekali kaedah yang digunakan dalam kajian ini membuktikan bahawa terdapat 

ketepatan yang tinggi dan dapat digunakan sebagai alat ramalan, pengelasan dan 

diagnosis kegagalan gear taji. 

 

 

 

 

 

 

 



vii 

  

 

 

 

 

 
TABLE OF CONTENTS 

 

 

 

CHAPTER                                           TITLE                                                   PAGE 
 

 

DECLARATION         ii 

DEDICATION                   iii 

ACKNOWLEDGEMENT       iv 

ABSTRACT          v 

ABSTRAK                    vi 

TABLE OF CONTENTS                 vii 

LIST OF TABLES                  xii 

LIST OF FIGURES                 xiv 

LIST OF ABBREVIATIONS             xviii 

LIST OF SYMBOLS                xix 

LIST OF APPENDICES                 xx 

 

 

 

1                INTRODUCTION                                                                               1 

1.1 Problem Statement         4 

1.2 Research Objective         5 

1.3 Scope of Study         6 

1.4 Significance of Study         6 

1.5 Thesis Outline          7 

 

2  LITERATURE REVIEW         8 

2.1 Introduction          8 

 



viii 

  

 

2.2 Gear Faults Monitoring Using Acoustic  

Emission              8 

 2.3 Acoustic Emission (AE) and lubricant               11 

2.4 Artificial Intelligence  (AI)      12 

 2.4.1 Artificial Neural Networks (ANN) Based Fault  

Diagnosis       13 

  2.4.2 Genetic Algorithms (GA) Based Fault Diagnosis  17 

  2.4.3 Fuzzy logic (FL) Based Fault Diagnosis   18 

  2.4.4 Support Vector Machine (SVM)    20 

2.5 Regression Model in Condition Monitoring    22 

2.6 Evaluation of Literature Review     26 

 

3                THEORETICAL BACKGROUND     28 

3.1 Introduction        28 

3.2 Acoustic Emission (AE) Sources Technology     28 

3.2.1 Acoustic Emission Sensors     30 

3.2.2 AE Measuring       32 

3.3 Artificial Neural Network (ANN)                 33 

3.3.1 Architecture of networks     37 

3.3.2 Multi-layer Perceptron     37 

3.3.3 Dynamic networks and recurrent neural  

Network       38 

  3.3.4 Mathematical statement of recurrent neural  

Network       39 

  3.3.5 Back propagation in recurrent networks   41 

  3.3.6 Function approximation     42 

  3.3.7 Optimization by ANN      43 

3.4 Features Extraction       44 

 3.4.1 Time domain analysis      44 

 3.4.2 Frequency domain analysis     45 

 3.4.3 Time-frequency domain analysis    45 

3.5 Features Selection       45 

3.6 Regression        46 

 



ix 

  

 

4                RESEARCH METHODOLOGY AND EXPERIMENTAL 

SETUP                                                48 

4.1 Introduction        48 

4.2 Research Methodology on Oil Film Thickness  

Prediction and Classification      51 

4.2.1 Experimental Data from Hamza             52 

4.2.2 Experimental Setup and Data Acquisition  

System        52 

  4.2.3 Specific Oil Film Thickness (λ)    56 

  4.2.4 Artificial Neural Network (ANN) Models Based  

on Acoustic Emission (AE) and Temperature  58 

4.2.4.1 Architecture of ANN model    59 

4.2.4.2 Feed Forward Back Propagation  

Neural Networks (FFBP)    60 

   4.2.4.3 Elman Network (EN)     61 

   4.2.4.4 Training and Testing Strategies.   62 

   4.2.4.5 Data Preparation and Simulation   63 

  4.2.5 Multiple Linear Regression Model (MLRM)  

Based on Acoustic Emission (AE)and Temperature  64 

  4.2.6 Artificial Neural Network (ANN) Models Based  

on Acoustic Emission (AE) only    66 

   4.2.6.1 Feed Forward Back Propagation  

Neural Networks (FFBP)    66 

   4.2.6.2 Linear Regression Model Based on  

Acoustic Emission (AE) only    67 

  4.2.7 Statistical Error Analysis.     68 

   4.2.7.1 Mean Squared Error (MSE).    68 

   4.2.7.2 Mean Absolute Percentage Error  

(MAPE)      69 

   4.2.7.3 Mean Absolute Error (MAE)    69 

4.3 Research Methodology on Gear Fault Diagnoses and  

 Classification        70 

4.3.1 Acoustic Emission (AE)     70 

4.3.2 Pre-processing Stage      71 



x 

  

 

 4.3.2.1 Slantlet Transform (SLT)         71 

4.3.3 Features Extraction      73 

4.3.4 Features Selection      75 

 4.3.4.1 Information Gain (IG)     75 

4.3.5 Fault Diagnosis Method     76 

 4.3.5.1 Spiking Neural Network (SNN)   76 

            4.3.5.2 Graphical User Interface of Spur Gear  

                         Failure (GUI).                            78 

                     4.4  Experimental Setup and Procedure                     81 

           4.4.1 Test Rig       81 

 4.4.1.1 Gears       82 

 4.4.1.2 Load Control      83 

 4.4.1.3 Voltage regulator     84 

 4.4.1.4 Electrical Motor     84 

 4.4.1.5 Speed control                 84 

 4.4.2   Acoustic Emission (AE) System               84 

 4.4.2.1 AE Sensors                 85 

 4.4.2.2 AE Data Acquisition (DAQ)               86 

            4.4.2.3 AE-win software                87 

 4.4.3   Experimental Procedure                87 

 4.4.3.1 Hsu-Nielsen Test                88 

 4.4.3.2 Noise Measurement                90 

 4.4.3.3 Seeded Defect Tests                90 

 

5                 RESULT AND DISCUSSION                 95 

5.1 Introduction                   95 

5.2 Result and Discussion Based on Acoustic  

Emission signal and Temperature                          95 

5.2.1 Neural network                 95 

 5.2.1.1 FFBP Result                 96 

 5.2.1.2 Elman Network Result             100 

 5.2.1.3 Comparison between FFBP and  

Elman Networks              104 

5.2.2 Multiple Regression Model              107 



xi 

  

 

5.2.3 Comparison between artificial neural  

network (ANN) and multiple regression                   115 

5.3 Result and Discussion Based on Acoustic Emission  

Signal                  117 

5.3.1 Artificial Neural Network (ANN)             117 

5.3.2 Regression Model               125 

5.3.3 Comparison between artificial neural  

network (ANN) and regression                        132 

5.4       Models Performance and Classification Accuracy in  

Predicating  the Specific Film Thickness.                             134 

5.5 Fault Diagnostics and Classification Result and  

Discussion                              135 

 

6                CONCLUSIONS AND RECOMMENDATIONS             142 

6.1 Introduction                 142 

6.2 Conclusions                 142 

6.3 Contributions                    144 

6.4 Future Work                 145 

 

 

REFERENCES                   146 

Appendices A - D           161-200  

                         

 

 

 

 

 

 

 

 

 

 

 



xii 

  

 

 

 

 

 
LIST OF TABLES 

 

 

 

TABLE NO.                                         TITLE                                                   PAGE 

 

2.1  Literature review summary        25 

4.1  Speed and Load conditions Abbreviations     52 

4.2  Test gears specifications       53 

4.3  Lubricant properties        54 

4.4   Various ANN structures were carried out to find  

appropriate model.        59 

4.5  Multiple regression analysis model      65 

4.6  Regression analysis model       67 

4.7  Features extraction from time domain     74 

4.8  Features extraction from frequency domain     75 

4.9  Experimental test gears specifications     83 

4.10  Seeded fault                    91 

5.1  Statistical error value in training and testing                96 

5.2  FFBP performance                   97 

5.3  Elman network performance                101 

5.4  Best validation performance for FFBP and Elman  

networks during training                104 

5.5  Networks classification success results              106 

5.6  ANOVA table                  108 

5.7  Multiple regression models summary                              111 

5.8  Multiple Regression model performance and  

classification success results                115 

5.9  FFBP neural network and multiple regression performance            116 

 



xiii 

  

 

5.10  Networks and multiple Regression model classification  

success results                  116 

5.11  Network validation performance, number of iteration  

and regression performance                                                      117 

5.12  FFBP performance in training and testing              118 

5.13  FFBP Network classification success results              119 

5.14  ANOVA table                  125 

5.15  Simple regression models summary                   128             

5.16  Simple regression model performance and classification  

success results                  131 

5.17  FFBP neural network and simple regression performance            132 

5.18  Networks and simple regression model classification success  

results                   133 

5.19  Performance of SNN error in order to select threshold value            136 

5.20  SNN Performance and accuracy classification             138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

  

 

 

 

 

 
LIST OF FIGURES 

 

 

 

FIGURE NO.                                        TITLE                                                  PAGE 

 

2.1  Branches of Artificial Intelligence (AI)     13 

2.2  Genetic algorithm cycle [36]       17 

3.1  Schematic of the Acoustic Emission principle [93]    29 

3.2  Example of Kaiser Effect [94]      30 

3.3  Schematic diagram of a typical acoustic emission PZT  

sensor mounted on a test object [96]      31 

3.4   Different AE signal types [22]      32 

3.5   The typical AE signal features [95]      33 

3.6   (a) Schematic of biological neuron. (b) Mechanism of signal  

transfer between two biological neurons [99]                35 

3.7   Representation of McCulloch-Pitts neuron y with threshold θ  36 

3.8   Diagram of a neuron using the sigmoid function    37 

3.9   Multi-layer perceptron       38 

3.10   Recurrent neural network       40 

4.1   Research methodology flowchart      50 

4.2   Back-to-back test gearbox arrangement [118].    53 

4.3   AE sensor and thermocouple location on test pinion gear [118]  55 

4.4  The Stribeck curve and specific film thickness [121]    57 

4.5  ANN structure and transfer function types of FFBP    61 

4.6  ANN structure and transfer function types of Elman network  62 

4.7  Multiple regression model schematic [90]     66 

4.8  Simple regression model schematic [90]     68 

4.9  (a) Two-scale iterated filter bank DWT.  

(b) Equivalent form using the SLT [137].     72 



xv 

  

 

4.10  Spiking neural network [140]       77 

4.11 GUI of spur gear failure front window, raw data reading 79 

4.12 GUI feature extraction                                                                    80 

4.13                GUI feature selection by Information Gain                                      80 

4.14                GUI fault diagnoses by SNN                     81 

4.15  Test rig arrangement        82 

4.16   Load mechanism        83 

4.17  AE sensor location on spur test pinions                85 

4.18  Calibration certificate for AE sensor                 86 

4.19  Waveform and frequency spectrum for natural frequency  

of the test rig and gear- bearing assembly                88 

4.20  Hsu-Nielsen source test                  88 

4.21  Pencil break and sensor location during Hsu-Nielsen test              89 

4.22  Comparison between electrical and surrounding noise  

level from one of the tests                  90 

23.4   Partial tooth breakage.                  92 

4.24   Pitting fault.                    92 

4.25   Full missing tooth.                   93 

4.26   Half missing tooth                   93 

4.27   Crack on the root.                   94 

1.5   FFBP network training output and the target                97 

5.2   FFBP network testing output and the target                98 

5.3   Validation performance for FFBP Network (a) S1L3  

(b) S2L3                    99 

4.5   FFBP network regression performance  

on its targets and outputs                100 

5.5   Elman network training output and the target             101 

5.6   Elman network testing output and the target              102 

5.7   Validation performance for Elman Network (a) S1L1  

(b) S2L1                  103 

5.8   Comparison between Elman and FFBP network testing  

Error (A)S1L1, (B)S1L2, (C)S1L3, (D)S2L1,  

(E)S2L2, (F)S2L3                 105 

 



xvi 

  

 

5.9   Rlation between specific film thickness, acoustic emission  

signal and oil temperature [118 ]               107 

5.10   Testing of Regression – Histogram               109 

5.11   Testing of Regression - P-P Plot               109 

21.5   Multiple Regression model output and the target Lambda  

(a) S1L1, (b) S1L2, (c) S1L3, (d) S2L1, (e) S2L2, and  

(f) S2L3.                  112 

31.5   Comparison between multiple regression errors.S1L1,  

S1L2, and S1L3                 113 

5.14   Comparison between multiple regression errors.S2L1,  

S2L2, and S2L3                 114 

5.15   S1L1 FFBP network training output and the target             120 

5.16   S2L3 FFBP network training output and the target             120 

5.17   S1L1 FFBP network testing output and the target             121 

5.18   S2L3 FFBP network testing output and the target             121 

5.19   Validation performance for FFBP Network (a) S1L1Tr  

(b) S2L3Tr                  122 

20.5   Network regression performance on its targets and outputs  

Network (a) S1L1Tr (b) S2L3Tr               123 

21.5   Comparison between network training and testing error.  

(a) S1L1, (b) S1L2, (c) S1L3, (d) S2L1, (e) S2L2, and  

(f) S2L3.                  124 

5.22   Testing of Regression – Histogram               126 

23.5   Testing of Regression - P-P Plot               127 

24.5   Regression model output and the target Lambda  

(a) S1L1, (b) S1L2, (c) S1L3, (d) S2L1, (e) S2L2, and  

(f) S2L3 .                 129 

5.25   Comparison between regression errors.S1L1, S1L2, and S1L3       130 

5.26   Comparison between regression errors.S2L1, S2L2 and S2L3        130 

5.27                 Models performance                                                  134 

5.28                 Models classification accuracy                              135 

5.29   Information Gain (IG) technique result                         136 

5.30   Scatter plots of extracted Features               137 

5.31   SNN accuracy for S1L1condition                138 



xvii 

  

 

5.32  SNN performance: mean square error for S1L1condition             139 

5.33   Performance of SNN training for spur gear fault  

diagnoses and classification for S1L1condition with (1) Healthy,  

(2) Partial tooth breakage, (3) Pitting fault, (4) Missing tooth,  

(5) Half missing tooth and (6) Root crack.                                        140 

5.34   Performance of SNN testing for spur gear fault  

diagnoses and classification for S1L1condition with (1) Healthy,  

(2) Partial tooth breakage, (3) Pitting fault, (4) Missing tooth,  

(5) Half missing tooth and (6) Root crack.                                        140 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xviii 

  

 

 

 

 

 
LIST OF ABBREVIATIONS 

 

 

AE   -  Acoustic Emission 

CM          -           Condition Monitoring 

RMS       -           Root Mean Square AE signal 

ANN   -  Artificial Neural Network 

GUI        -           Graphical User Interface  

SLT       -           Slantlet Transform 

SNN       -           Spiking Neural Network 

BL  -  Boundary Lubrication  

EHL  -  Elastohydrodynamic Lubrication  

HL  -  Hydrodynamic Lubrication  

AI           -          Artificial Intelligence  

TEMP    -          Temperature 

ANOVA   -  Analysis of Variance 

MSE        -           Mean Squared Error 

MAE       -           Mean Absolute Error 

MAPE     -           Mean Absolute Percentage Error 

S             -           Speed 

L           -  Load 

WD         -          Wideband 

ADC       -          Analogue-to-Digital Converter. 

FFBP   -  Feed-Forward Back-Propagation Neural Networks  

EN  -  Elman Network 

LM         -           Levenberg and Marquardt  

Tr          -          Training  

Ts           -           Testing  

IG           -           Information Gain  

DAQ   -  Data Acquisition 



xix 

  

 

 

 

 

 
LIST OF SYMBOLS 

 

 

 

λ              -           Specific Film Thickness  

η  -  Dynamic Viscosity of the Lubricating oil 

µ  - Coefficient of Friction  

v  -  Rotational Velocity  

R  -  Surface Roughness 

h              -           Film Viscosity 

𝜎rms        -           Composite Surface Roughness 

ηo          - Dynamic Viscosity  

µ            -           Entraining Velocity 

R            -           Equivalent Radius 

w           -           Load Applied Along the Line of Contact 

α            -           Pressure Viscosity Coefficient  

E           -           Modulus of Elasticity  

α           -           Constant 

β            -           Coefficient of RMS and Temp 

µ           -           Stochastic Error 

 

 

 

 

 

 

 

 

 

 



xx 

  

 

 

 

 

 
LIST OF APPENDICES 

 

 

 

APPENDIX         TITLE         PAGE 

 

A                               GEAR                                                                            161 

B   SLT Properties and Equations                                        181 

C   Oil Film Thickness Prediction and Classification  

by ANN               185 

D   Spur Gear Fault Diagnostics and Classification  

by SNN               192 



 

 

 

 
CHAPTER 1  

 

 

 

INTRODUCTION 

 

 

 

The gearboxes are very important part of any rotating machine. It is a type of 

transmission mechanism which provides the torque and the speed conversions from 

the rotating power source (e.g., electric motor) to the devices with respect to their 

gear ratio. A lot of research has been conducted on the field performance of the 

gearbox, which is characterized by its availability, reliability, and its maintainability, 

due to the numerous challenged faced by the industry regarding the design of the 

gearbox and its operation and maintenance [1].  

 

In the current commercial production industries, there is an increasing trend 

towards the need for a higher availability equipment that can work nonstop which 

means 24/7. Thus, any type of failure, even minor, cannot be accepted as it can 

greatly affect the cost and the production. Hence, a very accurate monitoring of the 

machine condition and a proper fault diagnosis of the machine failure is necessary. 

The machine fault diagnosis has seen a vast improvement since the time when the 

maintenance was provided only after the machine had developed a fault and affected 

the production. Thereafter it developed into preventive maintenance in the past few 

years before all the industries started using the condition-based maintenance, and still 

used. Preventive maintenance can be defined as providing maintenance before the 

machinery faces any faults. On the other hand, condition-based maintenance can be 

defined as providing maintenance depending on the data obtained from target 

measurements. The efficacy of this technique is measured depending on the accurate 

diagnostic tactics which are fulfilled.  
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For surviving in the current competitive market, the industries need to 

improve their product reliability and also reduce their production costs. The product 

reliability is more important for certain industries like the aviation, nuclear and the 

petrochemical industries where any failure can lead to very serious environmental 

disasters. For instance, the typical lifespan of a wind turbine is approximately 23 

years [2], however, there is a lot of commercial pressure to increase the lifespan and 

the productivity of the machine which can greatly require a better monitoring of its 

gearbox. Currently, industries have shifted from using the condition-based 

(predictive) approach to the maintenance-based approach depending on the trending 

and the data analysis from one or more parameters that indicate the development or 

the presence of known failures or faults. This can be managed by gathering 

information regarding the process parameters (pressure, temperature, power 

consumption, flow rate, etc.), along with other indicators like the Acoustic emission 

(AE), Noise, Vibration, and Current signature [3]. 

 

The effective machine condition monitoring technique must be able to 

determine the onset of any fault in its early stages and also provide an accurate 

diagnosis regarding the type of the fault and its location. Ideally, the condition 

monitoring technique must give an overall and a detailed accurate health assessment 

of the equipment. This technique usually applies advanced technology, however 

conventionally, it would include the aural and the visual inspection (applying all the 

human senses), temperature monitoring, oil analysis (known as the wear debris 

analysis), airborne sounds and the AE analysis, measurement of the vibrations and its 

analysis, and the motor current signature analysis. This also included the non-

destructive testing.  

 

The oil analysis can be very effective for using with many types of machinery 

like the bearings and the gear boxes of the wind turbines. A measurement of the 

amounts of the ferrous and the non-ferrous particles present in the lubricant provides 

useful information regarding the equipment condition. Also, trending helps in 

predicting the faults before the machine fails completely [4]. Using a correct type of 

lubricant helps in the smooth-running and a longer lifespan of the gear boxes. A gear 

box is a very vital component of the wind turbine and it is noted that using a proper 

lubricant helps in saving costs to the tune of $5,000 annually for every turbine that is 
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used. In one report, the author observed that experts who were working on different 

plants noted that an average of around 23 % of the gear box failures could be 

accredited to either a lack of any lubricant or using a wrong type of lubricant [2].  

 

Furthermore, Ribrant and Bertling surveyed the failures in the wind power 

plants in Sweden for 8 years ranging between1997-2004. They collected a huge 

amount of data which indicated that the gear boxes caused several of the breakdowns 

of the wind turbines. Generally, 20% of the wind turbine downtime was because of 

the gearbox failure, and the gearbox repairs tool on an average around 256 h [5]. All 

the different surveys published in the public domain have stated that a gearbox 

consists of the highest downtime for every failure for the onshore wind turbine sub-

assemblies [6]. Furthermore, state that the gearbox faults are responsible for around 

30% of the lost available onshore wind turbines.  

 

Since the past few years, use of AE has been increased for the monitoring of 

the gearbox condition. It has been seen to be very effective in the detection and the 

diagnosis of the fault formation at the rolling contact. This technique has a very high-

frequency content, which is higher than the background signals it is insensitive to 

background noise and is also very sensitive to any change in the machine conditions 

[7]. The condition indicators provide a very accurate data with respect to the 

different components at various damage levels (i.e., either initial, heavy or growing) 

[8]. 

 

Many researchers are still exploring the various techniques and their 

strengths, several of the researchers and scientists are not satisfied with only 

diagnosing the problem but also provide a prognosis regarding the remaining life 

span of the machine [9-10]. All these techniques help in creating new dimensions for 

the diagnosis of the machine faults for improving the reliability of the rotary 

machines. For detecting the failure of these machines, the technique of vibration 

monitoring is generally used [11-13]. It is seen that the acoustic emission level 

magnitude increases proportionally to the degradation of the machine. The acoustic 

emission signal is then analyzed using the signal processing. All the features of the 

acoustic emission signal are extracted through the time, frequency and the time-

frequency domains. Several of the parameters can be extracted by the processes like 



4 
 

the maximum, minimum, kurtosis, Root Mean Square (RMS), variance, skewness, 

and the crest factor [14]. Nevertheless, it is seen that not all the features are 

significant for representing the machine failure and machine degradation 

information. Hence, it is imperative to choose only the essential features and 

disregard the others. This is known as the feature selection process.  

 

 

1.1    Problem Statement  

 

The gear system is a crucial component for most of machine. Unpredictable 

failures to the gear system often produce terrible circumstance that could be the 

source of large disaster in financial and human losses. The modern machines are very 

complex and therefore they are known to produce several vibrations along with other 

noises [15]. It is necessary to identify the correct signals above the background noise 

for detecting the faults early, also lacking knowledge of neural networks and huge 

number of data and weak features lead to inaccurate fault diagnosis. 

 

The efficient, accurate condition monitoring (CM) and diagnosis of faults that 

are responsible for degrading the performance of gearbox are highly significant tools 

to guarantee good productivity and safe machine functionality. This mechanism 

possibly saves human and industries form catastrophic failures. Recently, there is a 

rising interest and need for high quality condition monitoring and speedy fault 

diagnosis in the gears for decreasing the downtime required for the production 

machines that can be due to failures. Hence, several studies have been conducted for 

condition monitoring and detecting the faults as soon as possible by analyzing their 

vibrational and acoustic emission signals.  

 

In this thesis, AE signals used the for prognosis, condition monitoring and 

fault diagnosis of the spur gear only appropriate feature sets that improve the 

reliability and the accuracy of the condition monitoring and the fault diagnosis used. 

Several models were applied for prediction, monitoring and fault diagnoses purposes 

ranging from statistical and artificial neural network models. 
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1.2  Research Objective  

 

This research program objectives is to identify the feasibility of Artificial 

Neural Network (ANN), Regression models and Acoustic Emission (AE) for spur 

gear condition monitoring and fault diagnosis. A two main objectives have been 

outlined for this research program which includes: 

 

1. Creating a monitoring models for spur gear specific film thickness (λ): 

a. Predicting the specific film thickness (λ) regime. 

b. Establishing relationship between spur gear specific film thickness (λ) 

and temperature and AE activity during spur gear mesh. 

c. Establishing relationship between spur gear specific film thickness (λ) 

and AE activity during spur gear mesh. 

d. Establishing a program to identify specific film thickness (λ) regime. 

 

2. Development of diagnosis and classification methods for spur gear faults. 

a. Development of Slantlet Transform (SLT) method for converting the 

AE signal from time to frequency domain.  

b. Development of effective features selection method. 

In order to offer effective features, it is required to create many 

features through feature extraction. Then the most significant thing is 

providing the useful features through features selection, for that 

reason a new signal pre-processing technique and feature selection 

methods is used. 

c. Development of diagnosis and classification methods based on new 

third generation ANN techniques for spur gear fault. 

d. Design user friendly Graphical User Interface for fault diagnoses and 

classification in spur gear. 
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1.3  Scope of Study 

 

Although the proposed methods is applicable to any type of rotating machine, 

this work implements the proposed models on spur gear only. Within the condition 

monitoring and fault diagnoses framework, this work covers four main parts: 

1. Monitoring lubricant regime to indicate the spur gear operating 

conditions. 

2. Predict the future progress of the specific film thickness (λ) (prognostics) 

using two methods: ANN and Regression. 

3. Identification of the most effective AE features. 

4. Diagnose the fault developed in spur gear through an ANN diagnostics 

system. 

 

 

1.4 Significance of Study 

 

The significance of this research can be described as follow; 

1. The methods to predict the specific film thickness (λ) regime of spur gear 

reliability can improve the machine safety and reliability and therefore adding value 

to the maintenance performs. 

 

2. The ANN and regression methods establishing a correlation between ANN, 

AE technology and the lubrication regimes to monitor where the gear is running with 

respect to its specific film thickness (λ). 

 

3. The suggested Slantlet transform (SLT) can improve the features extraction 

technique. 

 

4. The influential features selection will improve the optimization of ANN 

input data. The Information Gain supported with ANN can be used to choice the very 

important features to diagnose and classify the spur gear failure. 
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5. The proposed third generation of ANN (Spiking neural network method) 

can improve the spur gear failure diagnosis. 

 

6. The designed program to prognoses, diagnoses and classify spur gear 

failure can contribute to easy monitoring and low maintenance cost. 

 

 

1.5  Thesis Outline 

 

This thesis is constructed into 6 chapters. Chapter 1 presents general 

literatures review, research topic, objectives and significance of the research. 

Reviewing the most important literature on the spur gear condition monitoring and 

fault diagnoses, AI and AE. A comprehensive survey of experimental and theoretical 

findings pertaining to spur gear condition monitoring and fault diagnoses as a whole 

can be found in Chapter 2. Brief explanation of AE Technology, artificial neural 

network modeling, regression model, Slantlet transform (SLT), feature extraction 

and feature selection methods can be cited in chapter 3. The research methodology, 

experimental setup and experimental procedure in chapter 4. Whole the result and 

discussion is in chapter 5. Lastly chapter 6 the conclusion. 
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