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The principle of positioning is a technology of identification that enables 

object, people and/or assets to be tracked.  This is basically to allow objects to be 

found for the purpose of rendering/obtaining services.  Ranging technique therefore 

is an important part in anchor nodes location vis-à-vis the distance between anchors 

to the blind node.  Integration of location capability into Wireless Sensor Network 

provides enablement in the location of network devices anywhere in the area of 

deployment, thereby making the network more valuable from the point of view of the 

application.  Currently, there are several techniques which have been used to 

estimate ranges, most of the approaches which are dependent on a single frequency 

technique and those techniques are inaccurate in estimating the range, particularly in 

a multipath environment.  The proposed work was to employ a dual-frequency phase 

difference of arrival technique for one-way propagation to capture ranges.  Phase 

Difference of Arrival technique is a dual-frequency technique of ranging that offers 

better solution than already available single frequency ranging techniques. The 

technique has previously been used for radar application.  Having evaluated the 

performance of this new technique for different frequency pairs with different 

frequency separation in different noise variance level, proof of the concept is 

provided using simulated data.  The obtained results show that the proposed dual-

frequency Phase-Difference of Arrival system is able to correctly find the location of, 

and track objects.  Ranging simulation results show that frequency separation of 

50MHz is best suited for one-way short-range application. 

ABSTRACT 
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Prinsip penglokasian adalah teknologi pengesanan yang membolehkan objek, 

orang dan asset dikesan.  Ini pada asanya membolehkan objek dikesan untuk tujuan 

tindakan selanjutnya. Oleh yang demikian, teknik pengukuran jarak memainkan 

peranan penting dalam menganggarkan lokasi nod melalui pengukuran jarak di 

antara nod dan juga nod lain.  Integrasi keupayaan penglokasian ke rangkaian 

pengesan wayarles membolehkan lokasi peranti rangkaian di mana-mana dalam 

penggunaan, membuat rangkaian lebih bermakna dari sudut applikasi.  Pada masa 

ini, terdapat beberapa teknik yang telah digunakan untuk menganggarkan jarak, 

kebanyakan teknik yang sedia ada bergantung kepada teknik frekuensi tunggal dan 

itu adalah kurang tepat dalam menganggarkan jarak, terutamanya dalam persekitaran 

pelbagai jarak.  Projek yang dicadangkan adalah dengan menggunakan teknik 

perbezaan fasa ketibaan dua frekuensi bagi pergerakan isyarat sehala. Teknik 

perbezaan fasa ketibaan dua frekuensi adalah teknik peanggaran jarak dwi-frekuensi 

yang menjanjikan penyelesaian yang lebih baik daripada teknik-teknik yang 

menggunakan frekuensi tunggal yang sedia ada.  Teknik ini telah digunakan untuk 

aplikasi radar.  Prestasi teknik ini dinilai dari segi pelbagai kombinasi frekuensi dan 

pelbagai kombinasi jarak pemisahan frekuensi di dalam keadaan pelbagai tahap 

gangguan isyarat dan ia dapat dibuktikan dengan menggunakan data simulasi.  Hasil 

kajian menunjukkan bahawa cadangan teknik perbezaan fasa ketibaan dua frekuensi 

mampu untuk meanggarkan lokasi dan mengesan objek dengan betul.  Hasil kajian 

menunjukkan bahawa jarak pemisahan frekuensi kurang daripada 50MHz adalah 

paling sesuai untuk aplikasi jarak dekat isyarat satu hala. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Introduction of the Research  

Ranges of unknown node with respect to several known nodes are required in 

locating the position of the unknown node.  Currently, there are several techniques 

which have been used to estimate ranges, such as Time of Arrival (ToA), Time 

Difference of Arrival (TDoA), Angle of Arrival (AoA), Received Signal Strength 

Indication (RSSI) [1], Radio Interferometric Positioning System (RIPS), and others, 

described in the literature review.  Most of the approaches are dependent on a single 

frequency technique and those techniques are inaccurate in estimating the range, 

particularly in a multipath environment. 

 

Going by technological advances, it is observed that wireless networking 

technology has been experiencing a tremendous growth and widespread adoption in 

Communications Engineering.  Integration of location capability into the Wireless 

Sensor Network (WSN) can aid the location of network devices anywhere in the area 

of deployment, making the network more valuable from the application point of 

view.  A Wireless Sensor Network refers to a group of sensors, or nodes that are 

linked by a wireless medium to perform distributed sensing tasks. Connections 

between nodes are formed using such media as infrared devices or radios. Wireless 

sensor networks are usually used for such tasks as surveillance, widespread 

environmental sampling, security and health monitoring. They can be used in 
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virtually any environment, even those where wired connections are not possible, 

where the terrain is inhospitable, or where physical placement is difficult.  

Radiolocation is achieved by measuring one or more characteristics of the radio 

signal such as Received Signal Strength Indication, and Time-of-Arrival.  Using 

these measurements, the ranges between devices in the network are estimated and the 

locations of the devices are computed based on the estimated nodes information [2]. 

The importance of localization which involves 

(i) ranging, 

(ii) positioning and 

(iii) error optimization 

has been applied in numerous modern applications such as personal and public 

security, healthcare and military [3].  This clearly shows the importance of Range 

estimation, to accurately find the location of the position of a blind or unknown node 

(i.e, a sensor node in an unknown position) such as an object, person, product, asset 

or vehicle. 

Furthermore, crucial aspect of WSN operation produces low power 

consumption [2].  There is in recognition of the fact that multi-hop communication 

(messages are relayed by intermediate nodes) has the ability to improve energy 

efficiency by reducing the communication range required to convey information 

from a source to a destination [2].  While reducing range is attractive from power 
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consumption standpoint, the effect of communication range on range estimation and 

location estimation accuracy is still being exploited [2]. 

There has been the usage of distance estimation using phase measurement in 

many areas of Science and Engineering [3].  Particularly in this work, two signals 

with different frequencies will be transmitted from the transmitter to a receiver.  The 

signals will arrive at the receiver at different phases.  The corresponding phase 

difference from these two transmitted signals will be processed to evaluate the 

distance between the transmitting and receiving nodes [3].  This concept is illustrated 

in Figure 1.1. 

 
Figure 1.1 Basic Tx-Rx signal transmission 

1.2 Statement of the Problem 

Due to the inaccuracy which the single frequency technique poses especially 

when transmitted signals are highly faded at some frequencies, it has become 

necessary to employ dual frequencies to estimate the required range.  This involves 

transmitting signals using two different frequencies to an unknown node.  This is 

necessary because if one signal is transmitted, there is every tendency that it will fade 

at some point along the line.  This will certainly affect the outcome of the range 
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estimate carried out with it.  By employing dual-frequency, obviously, the two 

signals would not fade out at the same time.  Even one fades, the other will be be 

available to complete the task.  The signals, thereby, arrive at the node at different 

phases.  The difference in the phases of the arriving signals would then be used to 

adequately locate and estimate the node.  Therefore, the problem statement for this 

research is stated as follows: “How to provide frequency diversity for robust range 

estimation in a wireless communication environment”. 

1.3 Objectives of the Study 

The task of performing this project work necessitated some objectives to be 

realized.  The following are therefore the objectives set out for this research work: 

(i) To study the signal propagation in short-range communication, 

(ii) To simulate range estimation using Phase Difference of Arrival  (PDoA) 

technique, 

(iii) To analyze the range estimation through range ambiguity, effect of noise, 

and error analysis. 
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1.4 Scope of the Study 

The scope of this work is; Investigating range estimation using dual-

frequency technique, in order to find an acceptable and best-suited frequency 

separation for a short-range one-way propagation scenario. 

1.5 Significance of the Study 

Location estimation from range measurements can he viewed as an error 

minimization approach, for which Least squares (LS) is a classic approach.  

However, there are aspects of the problem which, when hypothesized, could allow 

better results than the LS method with the same multipath ToA datasets.  First, the 

ToA error (hence range error) due to multipath can only be positive.  A negative 

range error would imply superluminal propagation.  Therefore, in any physically 

consistent set of range measurements, it is impossible for the true location to lie 

outside of any of the circles of measured range radii about the respective base-

stations.  It is easily demonstrated that LS solutions are not consistent with this 

physical principle. 

Secondly, by studying the location estimates of a human presented with a 

graphical representation of the base-station map and overlaid circles from sets of 

ranging estimates (to known), it could be found that the best estimates tend to be 

based on a visually apparent subset of range circles which tend to the most self-

consistent in terms of nearly describing a point intersection.  This is rather different 

to LS in which the most outlying range circles actually have more than a proportional 

influence on the solution. One could weight each range measurement in an LS 
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formulation, hut this would require ancillary means to assign reliability estimates to 

each range measurement.  In view of the above therefore; 

(1) Range-based localization of object is able to provide adequate precision as it 

exploits measurements of physical quantities related to signals travelling 

between the anchor and the object [4]. 

(2) Through range-estimation over dual-frequency pairs, the effect of noise can 

be greatly reduced in the communication environment. 

(3) By using range-based approach therefore, error minimization is adequately 

guaranteed [5]. 

Hence, we can look at this sub-topic under the following sub-divisions: 

1.5.1 Why Range Estimation? 

In wireless communication technology, there is a rapid development of the 

need for identification, location and tracking of objects such as products, assets, and 

personnel, electronically.  It has become one of the primarily means to construct a 

Real-Time Locating System (RTLS) that tracks and identifies the location of objects 

in real time. 

Interestingly, there exists a relationship between range-estimates and: 

(1) Bandwidth, whereby precision increases with bandwidth, but carries 

diminishing returns with the additional expense; 

(2) center frequency, whereby lower frequencies penetrate materials better  

(where there is a building between the transmitter and the receiver). 
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The technique employed in this work, has the potential of estimating the 

position of an unknown node accurately, provided that the distances between two or 

more known nodes to the unknown node are well known.  Hence, to have high 

accuracy in positioning, the need of a robust ranging technique is required [3].  

1.5.2 Contribution of the Research to Knowledge 

With the single-frequency technique, when the transmitted signal is severely 

faded, the technique will likely produce phase that is unreliable, and subsequently, 

yield unreliable range estimation from the received signal.  The employed dual-

frequency technique has the capability of taking care of this problem.  Also, noise 

has a greater effect on single-frequency signal, which the dual-frequency technique is 

able to minimize to the barest level. 

1.6 Organization of the Thesis 

The field of Signal Processing has grown enormously in the past few decades 

to encompass and provide firm theoretical background for a large number of 

individual areas.  Since range estimation, for the most part, relies on the theory of 

Signal processing, it is shown as a major unifying influence for the entire work. 
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Chapter 1 introduces the general concept of the research work, providing the 

statement of the problem, the objectives and the significance of the study. 

Chapter 2 extensively discusses the literature review, reviewing the previous 

work done in recent times on the topic and then, reviewing the related topics. 

Chapter 3 dwells on the methodology of the research, including the tools 

employed in carrying out the research. 

Chapter 4 presents the simulation results and the analysis. 

Chapter 5 is the conclusion of this report. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

2.1 Overview 

Ranging is a phenomenon used widely for the purpose of identifying and 

localizing objects electronically.  It is able to offer substantial advantages for 

businesses, thereby allowing automatic inventory and tracking on the supply chain.  

This new technology plays a key role in pervasive networks and services.  Indeed, 

data can be stored and remotely retrieved through ranging, thereby enabling real-time 

identification of devices and users.  The functionality of ranging technology also 

finds application the area of indoor navigation, precise real-time inventory, and in 

library management to retrieve persons or objects, control access, and monitor events 

[6]. 

For Range-free techniques, the actual distance measurements are not required 

since the connectivity or any information available such as hop-count can be used as 

estimate distance for positioning estimation.  The examples of Range-free techniques 

are proximity-based localization, one-hop localization and multi-hop localization [3].  
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However, Range-based localization approach get more attention in research field 

since positioning is more accurate when compared to Range-free approach [3]. 

Range estimation, which uses single frequency, suffers from large range 

uncertainty and ambiguity [7].  This is because such estimation based on a single 

frequency f, has infinite range estimate solution, separated just by only half of the 

corresponding wavelength [7].  This is explained well in section 2.3.1.  Drastic 

reduction in range ambiguity can be achieved in two ways.  One is by lowering the 

transmitted signal frequency so as to increase the distance between two possible 

consecutive range estimates, thereby ruling out those range estimates inconsistent 

with the nature of the scene [7].  Secondly, the reduction in range ambiguity is also 

possible through increase in distance, making it larger than the difference between 

the lower and the upper bounds on target location [7].  However, the range ambiguity 

can be totally eliminated by employing dual-frequency pairs in the transmission of 

signals from the transmitter to the receiver [8]. 

2.2 Signal Propagation 

Basically, there are two ways of transmitting an electro-magnetic (EM) 

signal, namely either through a guided medium or through an unguided medium.  

Guided mediums such as coaxial cables and fiber-optic cables are far less hostile 

toward the information carrying EM signal than the wireless or the unguided 

medium.  It presents challenges and conditions which are unique for this kind of 

transmissions [9].  As s signal travels through the wireless channel, it undergoes 

many kinds of propagation effects such as reflection, diffraction and scattering.  This, 

of course is due to the presence of buildings, mountains and other such obstructions.  
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Reflection occurs when the EM waves impinge on objects which are much greater 

than the wavelength of the traveling wave.  Diffraction is a phenomena occurring 

when the wave interacts with a surface having sharp irregularities.  Scattering occurs 

when the medium through the wave is traveling contains objects which are much 

smaller than the wavelength of the EM wave. 

These varied phenomena’s lead to large scale and small scale propagation 

losses.  Due to the inherent randomness associated with such channels they are best 

described with the help of statistical models.  Models which predict the mean signal 

strength for arbitrary transmitter receiver distances are termed as large scale 

propagation models.  These are termed so because they predict the average signal 

strength for large Tx-Rx separations, typically for hundreds of kilometers. 

Further analysis was carried out with the signal propagation via the following 

models: 

2.2.1 Free-space Model 

Generally, EM signals when traveling through wireless channels, usually 

experience fading effects due to various effects, but in some cases the transmission is 

with a direct line of sight such as is obtained in satellite communication.  Free space 

model, depicted in Figure 2.1 predicts that the received power decays as negative 

square root of the distance. 
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Figure 2.1 Signal propagation via Free-space model 

Friis free space equation is given by,      

   
Ld

GGPdP rtt
r 22

2

)4(
)(

π
λ

=      (2.1)           

where  Pt is the transmitted power,                     

 Pr(d) is the received power,       

 Gt is the transmitter antenna gain,      

 Gr is the receiver antenna gain,      

 λ  is a factor which depends on the propagation environment,                        

 d is the Tx-Rx separation and       

 L is the system loss factor which depends upon line attenuation, filter losses 

and antenna losses and not related to propagation. 

The gain of the antenna is related to the effective aperture of the antenna 

which in turn is dependent upon the physical size of the antenna given as follows: 

   2

4
λ
π eAG =       (2.2) 

where Ae = effective aperture of the antenna. 
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The path loss, which represents the attenuation suffered by the signal as it 

travels through the wireless channel is given by the difference of the transmitted and 

received power in dB and is expressed as: 

  







=

r

t

P
PdBPL log10)(      (2.3) 

The fields of an antenna can be classified in two broad regions, namely the 

far field and the near field.  It is in the far field that the propagating waves act as 

plane waves and the power decays inversely with distance.  The far field region is 

also termed as Fraunhofer region and the Friis equation holds in this region. Hence, 

the Friis equation is used only beyond the far field distance, df, which is dependent 

upon the largest dimension of the antenna as:     

   
λ

22Dd f =       (2.4) 

where df  = far-field distance, and 

 D is the largest dimension of the antenna. 

Also we can see that the Friis equation is not defined for d = 0.  For this 

reason, we use a close in distance, do, as a reference point. The power received, 

Pr(d), is then given by:        

   
2

0
0 )()( 






=

d
ddPdP rr      (2.5) 
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The major drawback in this technique is that the RSSI-based systems usually 

need on-site adaptation in order to reduce the severe effects of multipath fading and 

shadowing in indoor environments [10]. 

2.2.2 Two-ray Model 

Two-ray model is also known as Ground Reflection model.  It is a simple 

model for propagation over ground, pictorially represented as shown in Figure 2.2. 

 
Figure 2.2 Signal propagation via Two-ray model 

Here, two components of transmitted signals arrive at the receiver – one LOS 

and the other reflected from the ground.  For small angle of incidence, it is assumed 

that the reflection coefficient, 1−=Γ . 
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At large distances compared to the antenna heights the two components will 

have approximately equal amplitude and a small phase difference given by: 

   
λ
πδθδ

2
=       (2.6)                        

where 
d
hh rt2

≈δ .                     

For large (d » )rt hh , it can be shown that the received power is,  

   4

22

d
hhGGPP rt

rttr =      (2.7)      

where Pt = transmitted power, 

 Gt = gain of the transmitter, 

Gr = gain of the receiver, 

ht = height of the transmitter above ground level, 

hr = height of the receiver above ground level, and 

d = distance between the transmitter and the receiver. 
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For this model, the path loss varies as d4, the square of the antenna height and 

is independent of the frequency [2]. 

2.2.3 Log-normal Shadowing Model 

In radio communications, the levels of the received signal usually decrease as 

the distance between the transmitter and the receiver increases.  This phenomenon is 

known as path-loss. Attenuation of radio signals due to the path-loss effect has been 

modeled by averaging the measured signal powers over long times and over many 

distances around the transmitter.  The averaged power at any given distance to the 

transmitter is referred to as the area mean power Pa (in Watts or milli-Watts).  The 

path-loss model states that Pa is a decreasing function of distance r between 

transmitter and the receiver and can be represented by a power law:  

   
η−









=

0

)(
r
rcrPa      (2.8) 

where Pa = power received at the receiver, 

 c = velocity of electromagnetic wave, 

 r = distance between transmitter and receiver, and 

 r0 = reference distance. 
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In Equation (2.8), r0 is a reference distance. Parameter η is the path-loss 

exponent which depends on the environment and terrain structure and can vary 

between 2 in free space to 6in heavily built urban areas.  The constant c depends on 

the transmitted power, the receiver and the transmitter antenna gains and the 

wavelength.  The path-loss model is often used in the study of wireless ad-hoc 

networks.  However, this model could be inaccurate because in reality, the received 

power levels may show significant variations around the area mean power.  This 

model is the log-normal shadowing model, and allows for random power variations 

around the area mean power.  Let the received power at distance r from the 

transmitter be denoted by P(r).  In the log-normal shadowing model the basic 

assumption is that the logarithm of P(r) is normally distributed around the 

logarithmic value of the area mean power [11]: 

  xrPrP a += ))((log10))((log10 1010    (2.9) 

In Equation (2.9), x is a zero-mean normal distributed random variable (in 

dB) with standard deviation σ (also in dB).  The standard deviation is larger than zero 

and, in some special cases where there are severe signal fluctuations due to 

irregularities in the surroundings of the receiving and transmitting antennas, it can be 

as high as 12 [12].  It could be noticed that if σ is assumed to be equal to zero, the 

log-normal model will be the same as the path-loss model.  So, the path-loss model 

can be seen as a specific case of the more general log-normal model. 
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2.3 Ranging Techniques 

Work has been carried out in the area of estimating ranges of some objects 

using various techniques.  While many techniques employ single-frequency, few 

other techniques employ dual-frequency.  Some of these techniques are hereby 

discussed, in terms of their modes of operation.  Their drawbacks and shortcomings 

are clearly stated. 

2.3.1 Time of Arrival 

In the Time of Arrival (ToA) technique, the one-way propagation time of the 

signal traveling between a mobile station (MS) and each of the base stations (BSs) is 

measured, and this provides a circle centered at the BS on which the MS must lie.  

The ToA measurements are then converted into a set of circular equations, from 

which the MS position can be determined with the knowledge of the BS geometry.  

Figure 2.3 shows the diagrammatic representation of the principle behind ToA. 

 
Figure 2.3 Principle of Time of Arrival 
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Basically, what is needed here is to estimate the range (distance) between the 

Transmitter (Tx) and the Receiver (Rx).  And this is done by sending the signal from 

the transmitter and then taking note of the time it takes the signal to arrive at the 

receiver.  Then, the required estimation is carried out using: 

tXctR =)(       (2.10) 

where R(t) is the required range, 

 c is the velocity of electromagnetic wave, and 

 t is the time of travel for the signal.  

A straightforward approach for determining the MS position is to solve the 

nonlinear equations relating these measurements directly, but it is computationally 

intensive [13].  Apart from the direct methodology, another common technique that 

avoids solving the nonlinear equations is to linearize them, and then, the solution is 

found iteratively.  However, this latter approach requires an initial estimate and 

cannot guarantee convergence to the correct solution unless the initial guess is close 

to it.   

To allow real-time implementation and ensure global optimization, the idea 

of the spherical interpolation (SI) in Time Difference of Arrival (TDoA)-based 

location is adopted.  Here, the nonlinear hyperbolic equations are reorganized into a 

set of linear equations by introducing an intermediate variable, which is a function of 

the source position.  However, the SI estimator solves the linear equations directly 
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via least squares (LS) without using the known relation between the intermediate 

variable and the position coordinate. 

In ToA technique of estimating range, the distance between a reference point 

and the target is proportional to the propagation time of signal.  ToA-based systems 

need at least three different measuring units to perform adequate positioning in 2-D.  

This is a major drawback of this technique.  Moreso, the technique also requires that 

all transmitters and receivers are precisely synchronized so that the receiver can 

know when the transmitter starts sending the signal. 

2.3.2 Time Difference of Arrival 

With the Time Difference of Arrival (TDoA) technique, two observing 

antennas are held a fixed distance from each other. These distances are typically 

large.  Receivers with pre-detection outputs are then attached to the two antennas, 

and the two resultant outputs are cross-correlated.  The peak output from the cross-

correlation is a measure of the TDoA between the observation points.  A line of 

position may be calculated from the cross-correlation peak. In the case of a wide-

band signal of interest (SOI) in an environment of narrow-band interference, the 

determination of the cross-correlation peak is extremely difficult and often 

impossible due to equipment limitations.  This is particularly true if the interference 

is of smaller bandwidth than the SOI.  Such interference then has a broad cross-

correlation function which typically obscures the correlation function of the SOI 

[14]. 
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TDoA is very much related to ToA in the sense that both employ single 

frequency.  The only difference is that in TDoA, the single frequency are sent out 

from the transmitter tow times, taking proper note of the time that the signals were 

sent.  This is necessary in order to use the difference in time of the arrivals of the 

signals for the purpose of estimating the required range.  The principle of TDoA lies 

on the principle of determining the relative location of a targeted transmitter by 

employing the difference in time at which the signal emitted by a target arrives at 

multiple measuring units.  It is such that three fixed receivers give two TDoAs and 

thus provide an intersection point that is the estimated location of the target.  The 

major drawback with this technique is that it requires a precise time reference 

between the measuring units especially in indoor environments where a Line-of-

Sight (LOS) is rarely available [9]. 

2.3.3 Angle of Arrival 

By Angle of Arrival (AoA) is meant the angle between the propagation 

direction of an incident wave and some reference direction, which is known as 

orientation [13].  Orientation, defined as a fixed direction against which the AoAs are 

measured, is represented in degrees in a clockwise direction from the North.  When 

the orientation is 00 or pointing to the North, the AoA will be absolute, otherwise, it 

will be relative.  One common approach to obtain AoA measurements is to use an 

antenna array on each sensor node.  

AoA technique consists in calculating the intersection of several direction 

lines, each originating from a beacon station or from the target [15].  As shown in 

Figure 2.4, the Triangulation approach, which the AoA technique is premised upon, 
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involves measuring the angle of arrival of at least two reference points.  The 

estimated position of the target corresponds to the intersection of the lines defined by 

the angles. 

 
Figure 2.4 Principle of location in Angle of Arrival technique 

A common occurrence in a typical urban sensing environment is multipath.  It 

could be noted that the effect of multipath is very similar to the presence of a target.  

With a propagation environment with two or more paths, the phase of the received 

signal corresponds to neither the target (direct path), nor that of the indirect path 

[16]. 

In order to use the principle of AoA to estimate a required range, consider 

Figure 2.5. 
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Figure 2.5 Estimating range using Angle of Arrival technique 

A general form of triangle has six (6) main characteristics as shown in Figure 

2.5, having 

(i) three linear lengths a, b and c, and 

(ii) three angles γβα and, . 

Now, in this case of AoA, the length c is known, as well as angles βα and .  

From the triangle, the third angle can be calculated from: 

  )(1800 βαγ +−=      (2.11) 

since the sum of all the three angles give 1800.  The law of sines is now used which 

mathematically sates that: 
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γβα sinsinsin

cba
==     (2.12) 

from where the range is calculated as: 

   
γ
β

sin
sincb =       (2.13) 

and 

   
γ
α

sin
sinca =       (2.14) 

The effect of multipath differs depending on the location of the target.  

Because the phase of the combined signal is highly nonlinear with respect to the 

multipath strength, the phase of the combined signal is close to that of the target 

return signal if the multipath signal is weak compared to direct path return.  

Otherwise, the phase will be highly distorted and thus cannot render meaningful 

range information [16]. 

The major drawback with this technique is that a directional antenna is 

required at the transmitter.  The mechanism needed to rotate the directional antenna 

involves expensive equipments and hence complex. 
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2.3.4 Received Signal Strength Indication 

Due to the wireless networking boom and demand for wireless networking 

infrastructure which is high, several products that enable wireless networking, 

Bluetooth, and other technologies are very much available and can be fitted to almost 

any mobile device available today.  Furthermore, it can be expected that WSN play a 

significant role in the future of ubiquitous computing.  As a result, Received Signal 

Strength Indication (RSSI) technique came into existence, to derive location 

estimates of wireless signals.  RSSI based localization techniques generally has two 

phases – a training phase and an estimation phase [17].  In the training phase, a 

mapping between wireless signal strength and various predefined positions in the 

environment is established.  This is typically achieved by collecting RSSI samples at 

the predefined locations.  In most cases, the environment is divided into cells in order 

to define these locations.  In the estimation phase, an estimate of the target’s location 

is computed using the signal strength mapping (otherwise known as wireless map) 

via probabilistic or deterministic techniques. 

Thus, RSSI based location estimation techniques are divided into two broad 

techniques, namely deterministic technique and probabilistic technique.  For the use 

of a deterministic technique, the physical area making up the environment is first 

divided into cells [1].  Next, the training is performed in which readings are taken 

from several fixed, known access points.  Finally, localization is performed by 

executing a determination phase in which the most likely cell is selected by 

determining which cell the new measurement fits best.  Probabilistic methods, on the 

other hand, construct a probability distribution over the target’s location for the 

physical area making up the environment.  In order to estimate the location of the 

target, different statistics like the mode of the distribution or the area with highest 

probability density may be used.  While probabilistic techniques provide more 

precision, a trade-off between computational overhead and precision is introduced. 

 

 



26 

 

RSSI technique therefore, is premised on the principle that the attenuation of 

emitted signal strength is a function of the distance between the emitter and the 

receiver.  The target, in this technique, can thus be localized with at least three 

reference points and the corresponding signal path losses due to propagation [2].  

The approach, called Trilateration approach, is illustrated in Figure 2.6, whereby, the 

position of the target is estimated by evaluating its distances from three reference 

points [14, 18]. 

 
Figure 2.6 Trilateration approach of range estimation 

The concept of Trilateration is illustrated in Figure 2.7. 
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Figure 2.7 Basic node formulation in Trilateration 

Referring to Figure 2.7, assuming that A1, A2 and A3 are the anchor nodes in 

known locations while B is a blind node in an unknown location.  Let coordinates of 

A1, A2 and A3 be (x1,y1), (x2,y2) and (x3,y3) respectively while coordinate of B is (x,y).  

Now, let us assume that distances between A1, A2 and A3 toward B are d1, d2 and d3 

respectively.  So, through Trilateration, coordinate x and y can be calculated as [3]: 
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Several models have been proposed empirically and theoretically, in order to 

translate the difference between the transmitted and the received signal strength into 

distance estimation.  The signal propagation theory behind RSSI can further be 

understudied through the following topic, having further sub-topics: 

2.3.5 Radio Interferometric Positioning System 

The Radio Interferometric Positioning System (RIPS) is similar to the 

proposed technique in that it employs dual-frequency for its operation [20]. 

The principle of optical interference is presently used in interferometers for 

metrology, for high precision distance measurements over short distances and for the 

definition of the meter.  The development of interferometers dates back to 1880, 

when A. A. Michelson had his first interferometer built in Germany [21].  A first 

measurement of the meter in terms of light waves followed in 1889.  For his work on 

interferometers, Michelson received the Nobel Prize in Physics in 1907. 

The basic principle of an interferometer is that two sinusoidal signals are 

transmitted with slightly different frequencies.  A reflecting tag (object) at the 

unknown node reflects the signals back to the transmitter.  The difference in the 

frequencies of the arrived signals at the transmitter is then used to estimate the 

location of the object.  
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The major drawback with this technique is that four (4) nodes are needed for 

its successful operation. If one node fails, then the range becomes difficult to 

estimate. 

2.3.6 Swept Frequency technique 

Other techniques such as Swept Frequency technique and Pulse Compression 

technique have also been employed [7], to increase the unambiguous range though, 

but the operational logistics and system requirements related to cost, hardware, and 

real-time processing, make the realization of such techniques more tasking for urban 

sensing applications [7]. 

Generally, the proposed dual-frequency technique however, will meet the 

necessary requirements and is likely to emerge as one of the leading technologies in 

a multipath environment [7]. 

2.4 The Proposed Technique 

The proposed technique for this project work is similar to the principle of 

operation of Radar (an acronym for Radio Detection And Ranging).  The similarity 

of both Radar and the proposed technique for this project work is that they both 

employ dual-frequency to estimate ranges of objects.  However, Radar operates using 
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2-way propagation scenario while the proposed technique for this project will operate 

on one-way propagation scenario. 

2.4.1 The principle of operation of Radar 

Radar is an object detection system that uses radio waves to determine the 

range, angle or velocity of objects.  A Radar transmits radio waves that reflects from 

any object in its path.  The received waves are then processed to determine the above 

named properties of the object. 

The power returning to the receiving antenna is given by: 

  222

4

)4( rt

rtt
r RR

FAGPP
π

σ
=      (2.19) 

where Pt = transmitted power, 

 Gt = gain of transmitting antenna, 

 σ = Radar cross-section, 

 F = pattern propagation factor, 

 

 



31 

 

 Rt = distance from the transmitter to target, 

 Rr = distance from the target to the receiver, 

Ar = effective aperture (area) of receiving antenna given by: 

  
π
λ

4

2
r

r
GA =       (2.20) 

where λ  = transmitted wavelength, and 

 Gr = gain of receiving antenna. 

 However, in common case where transmitter and receiver are at the same 

location, then  

   Rt = Rr       (2.21) 

which implies that: 

   42

4

)4( R
FAGPP rtt

r π
σ

=      (2.22) 
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2.4.2 Range estimation based on Dual-frequency signaling 

Consider that a dual-frequency signal is transmitted from a transmitter using 

frequencies f1 and f2 to an object [22], located at an unknown point, as shown in 

Figure 2.8. The transmitted signals at frequency fi, i = 1, 2, can be expressed as [16], 

       )()( 0)( tntj
i

iets +−= φρ , i = 1, 2,    (2.23)    

where si(t) is the dual-frequency waveforms from the transmitter, 

ρ is the range-dependent amplitude, 

)(tiφ  is phase of the signal corresponding to the i-th frequency of operation, 

and 

n0(t) is the Gaussian noise introduced into the signals [22]. 
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Figure 2.8 Transmission of dual-frequency from a reader to an object 

Now,          

   )(2)( xtft ii += πφ      (2.24)   

Measuring both phases in the [0, π2 ] range, then we have    

   mtft ππφ 22)( 11 +=      (2.25)  

and                    

   ntft ππφ 22)( 22 +=      (2.26) 

Now, the velocity of electromagnetic wave propagation is related to both the 

time of arrival of the signal from the transmitter to the receiver [23], and also the 

distance between the transmitter and the receiver as follows:   

   
t
tRc )(

= ,      (2.27)  

where c = the velocity of electromagnetic wave propagation, 
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 R(t) = the desired range, and 

 t = time of arrival of the signal from the transmitter to the receiver. 

From equation (2.27), 

  
c
tRt )(

=       (2.28) 

Substituting Equation (2.28) into Equations (2.25) and (2.26) gives,     

   m
c

tRft ππφ 2)(2)( 1
1 += ,    (2.29)    

and           

   n
c

tRft ππφ 2)(2)( 2
2 +=     (2.30)    

where m  and n  are unknown integers. 

Now, the phase difference at the receiver, from Equations (2.29) and (2.30) is 

given by:          

   )()()( 12 ttt φφφ −=∆      (2.31) 

                       = n
c

tRf ππ 2)(2 2 + − m
c

tRf ππ 2)(2 1 −    

            = ( ) ( )nmff
c

tR
−−− ππ 2)(2

12    (2.32) 
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Making R(t) the subject of the expression in Equation (2.17) gives,   

   
)(
)(

)(2
)()(

1212 ff
nmc

ff
tctR

−
−

−
−

∆
=

π
φ    (2.33) 

The second term in Equation (2.33) induces ambiguity in range, which means 

that for the same phase difference, the range estimate can assume infinite values [16] 

separated by the maximum unambiguous range Rmax [22]. An example of the phase 

difference versus the range estimate is shown in Figure 2.7, where the frequency 

separation is f∆ = 26 MHz and the actual range is R = 7.6 m [22].  So, to remove this 

ambiguity, we assume that nm = .  Hence, Equation (2.33) reduces to,  

   
f
tctR

∆
∆

=
π
φ

2
)()(   [7]    (2.34)    

where 12 fff −=∆  [13, 21]. 

However, the maximum unambiguous range is given by [24]:  

   
f
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∆

=
2max       (2.35) 
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                       = 5.77 m 
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Figure 2.9 Phase difference versus Range estimate 

For clarity, the actual range (R) at 7.6 m is marked by a square and the 

estimated ranges at repetitive positions 1.83 m, 13.37 m, 19.14 m, . . ., separated by 

Rmax = 5.77 m are marked by circles [22]. 
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CHAPTER 3 

 

 

 

METHODOLOGY 

3.1 Introduction 

The methodology involves a body of methods, rules, and postulates employed 

in carrying out this work.  It captures the analysis of the principles or procedures of 

inquiry into the field of ranging estimation.  

This project work is carried out following the schedule outlined below: 

(1) Critical understudying the signal propagation processes and techniques. 

(2) a) Reviewing the previous work done, including the techniques which have 

been developed. 

b) Understudying through research, the approach of the employed dual-

frequency technique. 

(3) Carrying out simulations of PDoA in the Matlab environment. 

(4) Studying and analyzing the phase characteristics of the received signal. 
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(5) Analyzing the Range ambiguity, effect of noise and error on the range 

estimation. 

(6) Drawing out the findings. 

Figure 3.1 captures the above schedule in flowchart form. 

 
Figure 3.1 Flowchart describing the project schedule 
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3.2 Tools of Research 

The employable tools available for carrying out this research work are 

basically: 

(1) Matlab, for simulation, and 

(2) Universal Software Radio Peripheral. 

3.2.1  Matlab 

MATLAB (which stands for MATrix LABoratory) is a high-level technical 

computing language and interactive environment for algorithm development, data 

visualization, data analysis, and numerical computation.  It is a special-purpose 

computer program optimized to perform Engineering and scientific calculations.  

Using Matlab, technical computing problems can be solved faster, especially when 

interfaced with programs written in programming languages such as C, C++, Java, 

Python and Fortran. 

Matlab is more than a fancy calculator.  It is an extremely useful and versatile 

tool in Communication Engineering simulation.  Even if a little is known about 

Matlab, one can use it to accomplish wonderful things.  The hard part, however, is 

figuring out which of the hundreds of commands, scores of help pages, and 

thousands of items of documentation one needs to look at to start using it quickly and 

efficiently. 
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Many signal processing researchers now use the Matlab technical computing 

language to develop their algorithms because of its ease to use, powerful library 

functions and convenient visualization tools. 

The aim here is not to go into the details of the operations of Matlab, but to 

mention it as a tool employed for simulation in this project work.  The codes for the 

simulations of this work are presented in the Appendices. 

3.2.2 Universal Software Radio Peripheral 

The Universal Software Radio Peripheral (USRP) is a transceiver device 

which enables engineers to rapidly design and implement powerful and flexible 

software radio systems [25].  Figure 3.2 shows the board diagram of a USRP.  The 

intuitive USRP design, coupled with a broad selection of daughter-boards covering a 

wide range of frequencies, helps in getting the needed software radio up and running 

quickly. 
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Figure 3.2 Universal Software Radio Peripheral 

What is simply needed is to download GNU Radio, a complete open source 

software radio and signal processing package, and the USRP is ready to use.  Once 

the software is installed and the USRP is plugged into a host computer, it is ready to 

transmit and receive a virtually limitless variety of signals.  The USRP can 

simultaneously receive and transmit on two antennas in real time.  All sampling 

clocks and local oscillators are fully coherent, thus allowing the creation of MIMO 

(Multiple-Input, Multiple-Output) systems [26]. 
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In the USRP, high sample-rate processing takes place in the Field 

Programmable Gate Array (FPGA), while lower sample-rate processing happens in 

the host computer.  The two onboard Digital Down-Converters (DDCs) mix, filter, 

and decimate (from 64 MS/s) incoming signals in the FPGA.  Two Digital Up-

Converters (DUCs) interpolate baseband signals to 128 MS/s before translating them 

to the selected output frequency. The DDCs and DUCs combined with the high 

sample rates also greatly simplify analog filtering requirements.  Daughterboards 

mounted on the USRP provide flexible, fully integrated RF front-ends.  A wide 

variety of available daughterboards allows the use of different frequencies for a 

broad range of applications.  The USRP accommodates up to two RF transceiver 

daughterboards (or two transmit and two receive) for RFI/O. 

The features of USRP include the following:- 

(1) Four 64 MS/s 12-bit analog to digital converters, 

(2) Four 128 MS/s 14-bit digital to analog converters, 

(3) Four Digital Down-Converters with programmable decimation rates, 

(4) Two Digital Up-Converters with programmable interpolation rates, 

(5) High-speed USB 2.0 interface (480 Mb/s), 

(6) Capable of processing signals up to 16 MHz wide, 

(7) Modular architecture supports wide variety of RF daughterboards, 

(8) Auxiliary analog and digital I/O support complex radio controls such as RSSI 

and AGC, 

(9) Fully coherent multi-channel systems (MIMO capable) [27]. 

 

The operational principle for the experimental set-up of USRP is described as 

follows: 

The set-up is usually carried out as sown in Figure 3.3.  In the set-up, 2.4 

GHz is usually chosen as the centre-frequency because of its suitability for Amateur 

Radio, Microwave link and Radar.  Furthermore, it is a common knowledge that the 
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2.4 GHz band has been set aside for industrial, Scientific and Medical (ISM) 

purposes due to its use in microwave heating.  Both transmitter and receiver are set at 

a height of 1 meter from the ground level.  Single-tone (sinusoidal) signal is then sent 

from the transmitter to the receiver (which does not require modulation) and various 

values of the received power are obtained for 

(i) free space model, 

(ii) log-normal shadowing model, and 

(iii) two-ray ground model 

for distances of 1 m, 3 m, 5 m, 7 m, 9 m, 11 m, 13 m, 15 m, 17 m and 19 m.  The 

result is discussed in Chapter 4. 

 
Figure 3.3 Experimental set-up of USRP 
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3.3 Possible obstacles to localization accuracy 

Obstacles to localization accuracy of an object include environmental 

interferences and occlusions (e.g., the presence of liquids and metals), orientation 

and spatial arrangement of an object, ambient RF noise and readers' locations.  These 

factors can weaken, scatter, or occlude radio waves, and thus lead to unreliable 

detection and inaccurate positioning of objects [12]. 

Previous techniques tend to sacrifice speed and accuracy in localizing objects 

in order to obtain reliable estimates.  That is by carrying out repeated measurements 

that should consistently yield the same outcome.  Unfortunately, these resulting 

speed and accuracy degradations tend to reduce the efficacy of the performance.  

However, the proposed localization framework will enable accurate object position 

estimation, without compromising either speed or reliability.  This is because the 

proposed framework is highly scalable and can accommodate a wide range of 

requirements and tradeoffs among power, cost, accuracy and speed. 
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CHAPTER 4 

 

 

 

SIMULATION RESULTS AND ANALYSIS 

4.1 Simulation Set-up 

The Simulation of this work was carried out in Matlab environment [28].  

The simulation results are hereby presented in this Chapter.  Furthermore, each 

presented result is analyzed for the sake clarity. 

First, Equation (2.34) was simulated in order to observe the graphical relation 

between phase-difference and distance.  Figure 4.1 was obtained in the process, 

which shows that the range is directly proportional to the phase difference between 

two signals emanating from the transmitter. 
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Figure 4.1 Phase Difference Vs. Distance Relation 

Next, the simulation was set-up, to obtain the Dual-frequency estimator 

results.  Here, two pairs of operating frequencies were used with the following 

parameters:          

   Center frequency, cf  = 2.4 GHz,    

   Lower frequency,  1f  = 
2
ffc

∆
−    (4.1)       

and,           

      Upper frequency,  2f  = 
2
ffc

∆
+    (4.2) 

 Table 4.1 presents the results of the lower and upper frequencies, obtained for 

the various values of frequency difference, f∆ . 

Table 4.1 The operating frequencies used for Simulation 

f∆ (MHz) f1(GHz) f2(GHz) 
0.5 2.39975 2.40025 
5 2.3975 2.4025 
50 2.375 2.425 
500 2.15 2.65 
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These frequencies different selections were evaluated in terms of phase 

difference for range cover, up till 600 meters [3].  The dual-frequency estimator 

results in Figure 4.2 were obtained. 

 
Figure 4.2 Dual-frequency Estimator results 

It could be seen from Figure 4.2 that with centre-frequency fc at 2.4 GHz, five 

different levels of frequency difference run on the Matlab produced varying 

sinusoids, each having different impact on the required range. 

Further, the simulation set-up was carried out for the various propagation 

madels as follows: 
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4.2 Propagation models simulation results 

Equations (2.11), (2.12) and (2.14) were simulated in Matlab environment for 

the Two-ray model, Log-normal Shadowing model and Free-space model 

respectively.  Furthermore, experimental set-up was carried out to see signal 

propagation using USRP as well.  Received power were read at distances 1 m, 3 m, 5 

m, 7 m, 9 m, 11 m, 13 m, 15 m, 17 m and 19 m.  The simulation results are as shown 

in Figure 4.3. 

It could be seen from the results of Figure 4.3 that the free-space propagation 

model is close to the USRP result.  This shows the acceptability and reliability of 

free-space model in the one-way short-range propagation scenario. 

 
Figure 4.3 Propagation models graphs 
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The result analysis is further carried out via range ambiguity, the effect of 

noise and error analysis in the following subsections. 

4.3 Range ambiguity 

The equation which generates the phase difference of two signals with 

different frequencies is obtained as follows:      

   
ii nff wt φϕθ +∆+=∆ 0      (4.3)       

where,           

   )(2 12 ffw −=∆ π      (4.4) 

          )2()2( 11102220 nffnff tftf φπϕφπϕθ ++−++=∆∴  (4.5)       

where 
if0ϕ  is the phase for each frequency carrier, and 

infφ  is the phase noise generated using normally distributed noise with 

variance of 150 which use to exist in a practical scenario [3]. 

Now, on the issue of the range ambiguity which was being introduced into 

the system by the second term in Equation (2.33).  Figure 4.4 shows that for a 

particular phase difference )(tφ∆ , there could be infinite values of range estimate 

R(t), separated from each other by 
f

nmc
∆
− )( . 
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Figure 4.4 Range ambiguity analysis 

In Equation (2.33), m and n are the complete cycle values of the travelling 

signal that arrived at the receiver.  These values are difficult to estimate in real world 

applications [3].  However, if the value of f∆  is small enough, then Equations (2.29) 

and (2.30) will almost be just one and same equation, implying that the value of m is 

almost equal to the value of n.  Hence, the second term in Equation (2.33) can be 

ignored. 

Therefore, Range ambiguity situation which tends to occur when there is 

considerable number of frequency separations for the same phase-difference, could 

be eradicated by ensuring proper selection of the frequency difference f∆ which will 

guarantee that the value of m is almost equal to the value of n [3]. 

It was therefore noted in Figure 4.2 that frequency separations of 0.5 MHz, 5 

MHz and 50 MHz were suitable to take care of range ambiguity.  For these 

separations, the values of m and n were almost equal.  For higher frequency 

separations, the difference in m and n began to exist, which can no longer be ignored. 
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However, phase ambiguity exists since the value of phase can only be 

measured in the range of [ ππ ,− ] [3].  This is shown in Figure 4.5, as phase 

difference changes over time and time is related to distance. 

 
Figure 4.5 Phase difference of two signals with time 

4.4 Effect of Phase Noise 

Noise is a term generally used to refer to any spurious or undesired 

disturbances that mask the received signal in a communication system.  Noise, in a 

communication system, is otherwise referred to Interference. 

Phase noise is the result of small random fluctuations or uncertainty in the 

phase of an electronic signal.  Such interference was therefore introduced into the 
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phase of the transmitted signal and sent together with the wanted signal, in order 

understudy its effect on the propagation scenario via ranging estimation. 

Figure 4.6 presents the simulated graphs obtained for various frequency-

differences of 10MHz, 1MHz and 0.5MHz, for both ‘Noisy’ signals and ‘No-noise’ 

signals. 

 
Figure 4.6 Effect of phase noise on the signal propagation 

From Figure 4.6, it could be seen that at No-noise,      

for 10 MHz,          

   metersd )59( −=∆       

         meters4=                

and           
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   0)12()( −=∆ tφ       

             01=         

Therefore, if  10 corresponds to 4 meters,               

then, 150 would correspond to (4 x 15) meters = 60 meters. 

Secondly,            

for 1 MHz, 

  metersd )111( −=∆       

        meters10=                     

and           

   02.0)( =∆ tφ            

Therefore, if  0.20 corresponds to 10 meters,            

then, 150 would correspond to 15
2.0

10 x  meters = 750 meters. 

Also,               

for 0.5 MHz,          

   metersd )119( −=∆       

        meters18=                      

and           

   02.0)( =∆ tφ              

Therefore, if  0.20 corresponds to 18 meters,           

then, 150 would correspond to 15
2.0

18 x  meters = 1350 meters. 
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Furthermore, Figure 4.7 shows the plot of values of phase difference with 

corresponding values of distance from 1 meter to 500 meters. 

 
Figure 4.7 Phase difference over 500 meters 

It could be seen from Figure 4.7 that )(tφ∆  is not identical to each other for 

smaller values of f∆ .  Specifically, for f∆ = 0.5 MHz and f∆ = 5 MHz, suitability is 

guaranteed for the propagation within 500 meters.  Frequency difference of f∆ = 50 

MHz, is suitable within 100 meters.  For higher frequency difference, )(tφ∆  is easily 

affected by noise.  This is because the proportionality between the phase difference 

and distance is not direct unlike in the case of the lower frequency difference.  This 

further confirms that lower values of f∆  are suitable for short-range application 

since the value of )(tφ∆  will not vary much from the real expected value [3]. 
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4.5 Error Analysis 

The errors were analyzed via distance error and phase error.  Table 4.2 

presents the obtained results, the simulation of which produced Figure 4.8. 

Table 4.2 Distance error Vs Phase error 

Phase error (0) Distance error(m) 
0.001 2.5 
0.005 2.5 
0.01 2.5 
0.05 2.5 
0.1 2.8 
0.5 5 
1 10 
5 25 
10 50 
50 240 

 
Figure 4.8 Distance error Vs Phase error graph 

 

 



56 

 

It could be deduced from the graph of Figure 4.8 that the employed dual-

frequency technique for range estimation is very suitable for short range application 

of within 100 meters (corresponding to 150 phase error) at lower frequency 

separations of up to 50 MHz. 
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CHAPTER 5 

 

 

 

CONCLUSION 

5.1 Introduction 

This chapter concludes the project development through a re-cap of the 

objectives set out for this work, the simulated results and analysis, and 

recommendations are offered for future improvement of Ranging estimation. 

5.2 Conclusion 

In this work, the employed dual-frequency technique provides the capability 

of estimating the range of objects over a short-range application.  This is because 

Range estimation is important to providing localization and tracking of assets and 

objects in various applications.  The objectives set for this work were achieved 

through: 
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(i) adequate understudying the signal propagation via free-space 

propagation model, log-normal propagation model and two-ray 

propagation model, 

(ii) carrying out simulations in Matlab environment; results being 

presented in Chapter 4, 

(iii) analyzing the range ambiguity and effect of noise on the range 

estimation, also in Chapter 4. 

The basic concept introduced in this dual-frequency ranging technique is that 

when two different signals travel from a transmitter Tx and arrive at the receiver Rx, 

the phase difference between these two signals at the receiver can be used to estimate 

the distance between the transmitter and the receiver. 

As discussed in sections 4.3 and 4.4, the phase difference, )(tφ∆ has direct 

relation with the frequency difference, f∆ , which must not be too high in order to 

avoid range ambiguity, and to drastically reduce the influence of noise on the result. 

From the simulations results therefore, lower frequency difference of up to 50 

MHz is very suitable for short-range ranging estimation application of within 100 

meters. 

5.3 Recommendation for Future work 

Having achieved the objectives set out for this work, there is however, room 

for further improvement.  This is because of the enormous importance which the 
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subject of range estimation offers in the propagation environment in particular and 

communication industry in general.  The following recommendations are therefore 

humbly made. 

(i) It is recommended that the work be carried out as well for a long-range 

application in a multipath environment. 

(ii) Field measurement is recommended to be done using USRP, and the 

results be compared with the Matlab simulated results. 

(iii) The effect of synchronization is also recommended for investigation in a 

non line-of-sight propagation environment. 
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APPENDIX A 

RANGE VERSUS PHASE-DIFFERENCE CODE 

x=0:20:200;     

 y=2*pi*10*10^6*x/(3*10^8);     

 plot(x,y);        

 title('Plot of y=2*pi*f*x/c');    

 xlabel('Range(m)');      

 ylabel('Phase difference(rad)');      

 grid on;
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APPENDIX B 

CODE FOR THE EFFECT OF NOISE ON SIGNAL PROPAGATION 

f1 = 2.4e9 - 5e6;        

 f2 = 2.4e9 + 5e6;        

 f3 = 2.4e9 - 0.5e6;        

 f4 = 2.4e9 + 0.5e6;        

 f5 = 2.4e9 - 0.25e6;        

 f6 = 2.4e9 + 0.25e6;        

 D = 1:2:20;         

 C = 3*10^8;        

 time = D / C ;        

 %niadalah phase of the signal tanpa noise.      

 P12 = ((2*pi*f2)-(2*pi*f1))*time; % phase difference of 2 freq10Mhz 

 P34 = ((2*pi*f4)-(2*pi*f3))*time; %1MHz    

 P56 = ((2*pi*f6)-(2*pi*f5))*time; %0.5MHz    

 sz = size(time);       

 theta1n1 = (2*pi*f1*time) + (sqrt((15/180)*pi))*randn(sz) + mean(P12); 

          

 theta2n1 = (2*pi*f2*time) + (sqrt((15/180)*pi))*randn(sz) + mean(P12); 

 P12_noise = theta2n1 - theta1n1;     
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 theta1n2 = (2*pi*f3*time) + (sqrt((15/180)*pi))*randn(sz) + mean(P34); 

 theta2n2 = (2*pi*f4*time) + (sqrt((15/180)*pi))*randn(sz) + mean(P34); 

 P12_noise1 = theta2n2 - theta1n2;     

 theta1n3 = (2*pi*f5*time) + (sqrt((15/180)*pi))*randn(sz) + mean(P56);

 theta3n1 = (2*pi*f6*time) + (sqrt((15/180)*pi))*randn(sz) + mean(P56);

 P12_noise2 = theta3n1 - theta1n3;     

 d12 = 2*pi*(f2-f1);       

 d21 = C / d12;        

 df_noise = (d21* P12_noise);      

 de_noise = D - df_noise;      

 d34 = 2*pi*(f4-f3);       

 d43 = C / d34;        

 df_noise1 = (d43* P12_noise1);     

 de_noise1 = D - df_noise1;       

 d56 = 2*pi*(f4-f3);       

 d65 = C / d56;        

 df_noise2 = (d65* P12_noise2);      

 de_noise2 = D - df_noise2;      

 figure       

 set(gcf,'color','white')       

 plot (D,P12,'-*',D,P12_noise,'-o',D,P12_noise1,'-rs',D,P34,'k-^',D,P56,'y-           

+',D,P12_noise2,'g->')       

 legend('No Noise 10MHz','Noise 10MHz','No Noise 1MHz','Noise 

1MHz','No Noise 0.5MHz','Noise 0.5MHz','location','northwest')  

 xlabel('Distance (meter)')     

 ylabel('phase difference (degree)')     

 %ylim([-2 2])        

 figure        

 set(gcf,'color','white')       

 plot (D,de_noise,'-o',D,de_noise1,'-rs',D,de_noise2,'-^') 
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 legend('Noise 10MHz','Noise 1MHz','Noise 0.5MHz','location','southeast') 

 xlabel('Distance (meter)')     

 ylabel('error (meter)')       

 grid on 
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APPENDIX C 

DISTANCE ERROR VERSUS PHASE ERROR CODE 

a = [3 5 6 9 12 15 18 21 24 27 30]; % no of sample            

b = [0.504451366 0.362985993 0.238900961 0.161617728 0.139045787 

0.133009991 0.125743177 0.110583847 0.098528411 0.112143764 

0.115902647]; %rmsemle            

c = [0.337411172 0.277563097 0.404998642 0.433410245 0.450832963 

0.461374771 0.467663081 0.472027563 0.476732891 0.479692366 

0.482266363]; %rmselse           

d = [0.742884929 0.839563265 2.542814286 0 5.206404177 12.1570605 

14.58707658 16.20275377 23.5151271 25.29466008 25.17918633]; 

%rmsecrt                

figure                 

set(gcf,'color','white')            

set (0, 'DefaultAxesFontSize', 8, 'DefaultAxesFontName','Arial');      

% set (0,'DefaultAxesLineStyleOrder',{'-',':','--'})       

% figure;            

set (gcf, 'Units', 'centimeter');                  

pos = get (gcf, 'Position');               

pos(3) = 10;  % figure box size 9.7cm x 6.3cm          
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pos(4) = 7.5; % default 6.3             

set (gcf, 'Position', pos);          

set (gca, 'Units', 'centimeter');            

set (gca, 'Position', [1.3 0.9 8 5]);  %axes box size 8cm x 5cm     

subplot(3,1,1)                 

plot (a,b,'-*b')             

legend ('MLE')              

ylabel('RMSE')             

xlim ([2 31])              

ylim ([0 0.6])            

subplot(3,1,2)            

plot (a,c,'-or')               

legend ('LSE')              

ylabel('RMSE')              

xlim ([2 31])              

ylim ([0.1 0.6])           

subplot(3,1,3)             

plot (a,d,'-+g')             

ylim ([-3 27])              

xlim ([2 31])              

legend ('CRT')             

xlabel('sample')           

ylabel('RMSE')            

a = [0.20943951 0.628318531 1.047197551 1.466076572 1.884955592 

2.303834613 2.722713633 3.141592654 3.560471674 3.979350695]; % real 

phase                 

b = [0.2736 0.7914 0.9894 2.1336 2.5006 1.9921 2.6728 3.0596 3.7129 

4.5532]; % estimate phase mle             

c = [0.187833319 0.652675043 1.1317 2.012061032 2.361914555 2.1975769 

2.857003533 3.25493212 3.377071674 4.380370948]; % estimate phase lse
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d = [0.1951 0.6125 0.1504 0.9405 1.793 1.9552 0.9256 2.6312 3.2301 

2.4832]; % estimate phase crt            

figure               

set(gcf,'color','white')                

set (0, 'DefaultAxesFontSize', 8, 'DefaultAxesFontName','Arial');       

% set (0,'DefaultAxesLineStyleOrder',{'-',':','--'})         

% figure;                

set (gcf, 'Units', 'centimeter');             

pos = get (gcf, 'Position');              

pos(3) = 10;  % figure box size 9.7cm x 6.3cm           

pos(4) = 7.5; % default 6.3              

set (gcf, 'Position', pos);              

set (gca, 'Units', 'centimeter');              

set (gca, 'Position', [1.3 0.9 8 5]);  %axes box size 8cm x 5cm         

plot (a,a,'-k',a,b,'-*b',a,c,'-or',a,d,'-+g')            

ylim ([0 4.7])              

xlim ([0.1 4.1])             

legend ('Actual Phase','MLE','LSE','CRT')           

xlabel('Real Phase in degree')            

ylabel('Estimate Phase in degree')             

title('Estimate Phase vs Real Phase')            

a = [1 3 5 7 9 11 13 15 17 19]; %real distance           

b = [1.306343773 3.778656659 4.724037021 10.1871896 11.93948552 

9.511576864 12.76167996 14.60851392 17.72779165 21.73992861]; % 

estimate distance mle               

c = [0.896838036 3.11629378 5.403469473 9.606883771 11.2773113 

10.49265679 13.64118704 15.54115609 16.1243295 20.91473067]; % 

estimate distance lse               

d = [0.931533882 2.924472079 0.718107103 4.49E+00 8.560944389 
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9.335392342 4.41941446 12.56305459 15.42259145 11.85640664]; % 

estimate distance crt                 

figure                      

set(gcf,'color','white')            

set (0, 'DefaultAxesFontSize', 8, 'DefaultAxesFontName','Arial');  

             

% set (0,'DefaultAxesLineStyleOrder',{'-',':','--'})      

% figure;           

set (gcf, 'Units', 'centimeter');         

pos = get (gcf, 'Position');         

pos(3) = 10;  % figure box size 9.7cm x 6.3cm      

pos(4) = 7.5; % default 6.3         

set (gcf, 'Position', pos);         

set (gca, 'Units', 'centimeter');         

set (gca, 'Position', [1.3 0.9 8 5]);  %axes box size 8cm x 5cm    

plot (a,a,'-k',a,b,'-*b',a,c,'-or',a,d,'-+g')       

ylim ([0.5 22])           

xlim ([0.5 19.5])          

legend ('Actual Distance','MLE','LSE','CRT')      

xlabel('Actual Distance in meter')        

ylabel('Estimate Distance in meter')        

title('Estimate Distance vs Real Distance')         

a = [0.001 0.005 0.01 0.05 0.1 0.5 1 5 10 50]; % phase error      

b = [0.004774648 0.023873241 0.047746483 0.238732415 0.477464829 

2.387324146 4.774648293 23.87324146 47.74648293 238.7324146]; % 

Distance error           

figure            

set(gcf,'color','white')          

semilogx(a,b,'b-*','LineWidth',2)        

ylim ([-1 250])           
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xlabel('Phase error in degree')         

ylabel('Distance error in meter')          

a = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45]; % phase error     

b=[4.77464829275686,9.54929658551372,14.3239448782706,19.098593171

0274,23.8732414637843,28.6478897565412,33.4225380492980,38.1971863

420549,42.9718346348117,47.7464829275686,52.5211312203255,57.29577

95130823,62.0704278058392,66.8450760985960,71.6197243913529,76.394

3726841098,81.1690209768666,85.9436692696235,90.7183175623803,95.4

929658551372,100.267614147894,105.042262440651,109.816910733408,11

4.591559026165,119.366207318921,124.140855611678,128.915503904435,

133.690152197192,138.464800489949,143.239448782706,148.01409707546

3,152.788745368220,157.563393660976,162.338041953733,167.112690246

490,171.887338539247,176.661986832004,181.436635124761,186.2112834

17518,190.985931710274,195.760580003031,200.535228295788,205.30987

6588545,210.084524881302,214.859173174059]; % Distance error   

figure            

set(gcf,'color','white')          

set (0, 'DefaultAxesFontSize', 8, 'DefaultAxesFontName','Arial');    

% set (0,'DefaultAxesLineStyleOrder',{'-',':','--'})      

% figure;           

set (gcf, 'Units', 'centimeter');         

pos = get (gcf, 'Position');         

pos(3) = 10;  % figure box size 9.7cm x 6.3cm      

pos(4) = 7.5; % default 6.3         

set (gcf, 'Position', pos);         

set (gca, 'Units', 'centimeter');         

set (gca, 'Position', [1.3 0.9 8 5]);  %axes box size 8cm x 5cm    

plot(a,b,'m-^')           

%ylim ([-1 250])          
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xlabel('Phase error in degree')         

ylabel('Distance error in meter')        

legend ('Distance = 15m')         

xlim ([0 47])           

title('Distance Error vs Phase Error') 
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