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 ABSTRACT 

The increasing concerns on climate change and the need for a more 
sustainable grid, recently has seen a fast expansion of renewable energy sources 
(RES). This leads to complexities in system balancing between the load and the 
integrated RES generation, as a result of increased levels of system variability and 
uncertainty. The concept of flexibility describes the capability of the power system 
to maintain a balance between generation and the load under uncertainty. Therefore, 
system operators need to develop flexibility measuring technique to manage the 
sudden intermittency of net-load. Current flexibility metrics are not exhaustive 
enough to capture the different aspects of the flexibility requirement assessment of 
the power systems. Furthermore, one of their demerits is that the start-up cost is not 
considered together with the other technical parameters. Hence, this thesis proposes 
a method that improves the assessment accuracy of individual thermal units and 
overall generation system. Additionally, a new flexibility metric for effective 
planning of system operations is proposed. The proposed metric considers techno-
economic flexibility indicators possessed by generation units. A new ranking for 
Flexibility Ranked Enhanced Priority List (FREPL) method for increasing share of 
renewable energy is proposed as well. The assessment is conducted using technical 
and economic flexibility indicators characteristics of the generating units. An 
analytical hierarchy process is utilized to assign weights to these indicators in order 
to measure their relative significance. Next, a normalization process is executed and 
then followed by a linear aggregation to produce the proposed flexibility metric. 
Flexibility and cost ranking are coupled in order to improve the FREPL. The 
proposed technique has been tested using both IEEE RTS-96 test system and IEEE 
10-units generating system. The developed method is integrated with the 
conventional unit commitment problem in order to assist the system operators for 
optimal use of the generation portfolios of their power system networks. The results 
demonstrate that the developed metric is robust and superior to the existing metrics, 
while the proposed Enhanced Priority List characterizes the system’s planned 
resources that could be operated in a sufficiently flexible manner. The net-load 
profile has been enhanced and the penetration level of wind power has been 
upgraded from 28.9% up to 37.2% while the penetration level of solar power has 
been upgraded from 14.5% up to 15.1%.  
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 ABSTRAK 

Kebimbangan yang meningkat terhadap perubahan iklim dan keperluan grid yang 
lebih mampan, perkembangan pesat sumber tenaga boleh diperbaharui (RES) dapat 
dilihat kebelakangan ini. Ini membawa kepada kerumitan dalam imbangan sistem 
antara beban dan penjanaan RES bersepadu, hasil dari peningkatan tahap 
kepelbagaian sistem dan ketidakpastian. Konsep fleksibiliti memerihal keupayaan 
sistem kuasa untuk mengekalkan keseimbangan antara penjanaan dan beban di 
bawah ketidakpastian. Oleh yang demikian, pengendali-pengendali sistem perlu 
membangunkan teknik pengukuran fleksibiliti bagi mengurus keterputus-putusan 
mendadak beban bersih. Metrik fleksibiliti semasa tidak begitu menyeluruh dalam 
mengambilkira aspek berlainan penilaian keperluan fleksibiliti sistem kuasa. 
Tambahan lagi, salah satu daripada kekurangan tersebut adalah kos permulaan tidak 
dipertimbangkan bersama dengan parameter teknikal yang lain. Oleh itu, tesis ini 
mencadangkan satu kaedah yang memperbaiki ketepatan penilaian  bagi setiap unit 
terma individu dan  keseluruhan sistem penjanaan. Di samping itu, metrik fleksibiliti 
baharu untuk perancangan berkesan operasi sistem dicadangkan. Metrik yang 
dicadangkan mempertimbangkan penunjuk fleksibiliti  tekno ekonomi yang dimiliki 
oleh setiap unit penjana. Satu pemeringkatan baharu untuk kaedah Senarai 
Keutamaan Kebolehlenturan Berpangkat Dipertingkat (FREPL) untuk meningkatkan 
perolehan tenaga boleh diperbaharui juga dicadangkan. Penilaian dibuat 
menggunakan ciri-ciri penunjuk fleksibiliti teknikal dan ekonomi untuk setiap unit 
penjana. Proses hierarki analitikal digunakan untuk menentukan pemberat kepada 
penunjuk ini bagi mengukur kepentingan relatif mereka. Seterusnya, proses 
normalisasi dilaksanakan dan diikuti dengan pengagregatan linear untuk 
menghasilkan metrik fleksibiliti yang dicadangkan. Fleksibiliti dan kos 
pemeringkatan digandingkan bagi menambahbaik FREPL. Teknik yang dicadangkan 
telah diuji menggunakan kedua-dua sistem ujian IEEE RTS-96 dan sistem penjanaan 
IEEE 10-unit. Kaedah yang dibangunkan disepadukan dengan masalah komitmen 
unit konvensional untuk membantu pengendali-pengendali sistem bagi penggunaan 
optimum portfolio penjanaan rangkaian sistem kuasa mereka. Keputusan 
menunjukkan bahawa metrik yang dibangunkan adalah teguh dan lebih baik dari 
metrik sedia ada, manakala Senarai Prioriti Dipertingkat yang dicadangkan 
mencirikan sumber terancang sistem yang boleh beroperasi dalam cara yang cukup 
fleksibel. Profil beban bersih turut dipertingkatkan dan tahap  penetrasi kuasa angin 
telah ditingkatkan daripada 28.9% kepada 37.2%, manakala tahap penetrasi kuasa 
solar turut ditingkatkan daripada 14.5% kepada 15.1%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

With increasing concerns about climate change and the need for a more 

sustainable grid, power systems have seen a fast expansion of Renewable Energy 

Sources (RES) in recent years. Environmental and economic benefits that results 

from the integration of RES into the power system lead to increased levels of system 

variability and uncertainty because of their intermittent nature. With increasing 

penetration levels of RES in future power systems, there has been a growing need to 

study its impact on power system operations planning [1]. Complexities in balancing 

load with generation have introduced new challenges in regards to maintaining 

system reliability at the least production cost with the satisfaction of system 

constraints [2].  

With RES in the generation mix portfolio, the concept of “net-load” arises 

because of the merit-order preference given to the RES units. The net-load 

represents the demand that must be supplied by the conventional thermal generation 

fleet if all of the RE is to be utilized. The output level of the remaining generators 

must change more quickly and be turned to a lower level with RES in the system [3]. 

As a result, more flexible resources are needed to meet the increasingly substantial 

ramping requirements in the system [4]. Power system flexibility refers to the ability 

of system to deploy its resources to respond to changes in net load. 
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The term flexibility describes the ability of a power system to cope with 

variability and uncertainty in both generation and demand, while maintaining a 

satisfactory level of reliability at a reasonable cost, over different time horizons [5]. 

Ensuring sufficient operation flexibility, in such a technology mix, requires major 

changes in system operation [5]. This flexibility will need to come either from plants 

that are inherently less flexible or from alternative sources of flexibility. Storage, 

flexible power plants,  integrated demand side management and combined heat and 

power units can provide flexibility to the power system [6]. Maintaining balance in 

power system operations requires controllable sources to adapt their output power to 

match the time-varying net-load which is uncertain in real-time operations [7] 

resulting in a greater demand for operational flexibility from these units [8, 9].  

Conventional practices of power system planning and operation are seen to 

be gradually inadequate in addressing flexibility challenge. One major issue with a 

great importance among the literature is to estimate and quantify the potential 

operational flexibility of different power system generating units and overall power 

system flexibility level. Power system operators are required to evaluate and plan for 

flexibility adequacy for their power systems to ensure an economical and feasible 

operation under higher penetration levels of RES. In a similar manner, generation 

companies are required to consider the concept of flexibility as part of their 

operations decisions [10]. In the flexibility studies, variability and constraints are 

typically captured using UC models [5, 11]. UC problem formulation represents the 

process of determining optimal schedule of generating units over a set of study 

period subject to device and system operating constraints [12]. 

This research aims to address major issues involved the flexibility adequacy 

planning problem at the operational time-frame. The UC problem formulation will 

be used to achieve the objectives of the research. 

This thesis presents a study for the quantifying operational flexibility for 

increasing renewable energy penetration level by modified enhanced priority list 

method. The study involves the development of new flexibility quantification 

framework, development of new adjusted weight flexibility metric, development of 
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new techno-economic flexibility metric and development of a new flexibility ranked 

enhanced priority list method. 

1.2 Problem Statement 

Traditionally, the system operators used to deal with some specific 

uncertainty and variability which normally used to arise from the load changes and 

generation outages. System operators used to have enough lead time and abundant 

capacity to solve these circumstances. Recently, the adoption of high penetration 

levels of RES within the power system generation portfolios has significantly 

intensified the degree of variability and uncertainty involved in the short-term 

operations and long-term planning. This is because, unlike conventional power 

sources, variable RESs, are described with variability which is the maximum 

available generation limit that changes with time, and this limit is not known with 

perfect accuracy (uncertainty). These characteristics reduce the available lead time, 

create requirements for large and sudden steeper ramping instances, and cause 

frequent start-ups and shutdowns for thermal generating units. These events pose 

substantial system balancing and frequency stability challenges to system operators. 

Maintaining balance in power system operations requires dispatchable resources to 

adapt their production level to match the time-varying net-load and uncontrollability 

of RESs which is uncertain in real-time operations. 

These challenges warrant the re-thinking of conventional practices of system 

operation and planning in a way that improves and maintains the system reliability at 

the least production cost.  In line with this, the ability of a power system to 

effectively perform system balancing has been a major issue within the current 

research. Flexibility requirement metrics and measures have been recently proposed 

to study the flexibility property from different aspects. Current flexibility 

requirement metrics are not exhaustive enough to capture the different aspects of the 

flexibility requirement assessment of the power systems. Inappropriate short-term 

flexibility planning tools will lead to insufficient flexibility in real time operation – 

inadequate power capacity combined with potentially inadequate maneuverability. 
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These can be in the form of: blackouts, load shedding, out-of-merit dispatch and 

potentially unnecessary RES curtailment. Generally, UC problem formulations try to 

solve this problem. However, they only focus on getting the right capacity but not 

the ramping ability. The potential flexibility of thermal generators assume larger 

importance since they are responsible to satisfy the net-load. Their flexibility is 

based on their current operational state and their technical constraints imposed by 

the technology on which they are based, types and numbers of power plants in the 

system. Power system operators and planners change their focus to having adequate 

flexibility resources. However, current UC models may not guarantee the schedule 

to be sufficiently flexible to accommodate higher penetration level of variable RESs. 

Therefore, this research work aims to develop a computational assessment 

tool to quantify the flexibility level of a power system in the operational time frame. 

The metric is expected to characterize the system’s planned resources that could be 

operated in a sufficiently flexible manner. It also aims to develop a flexibility ranked 

EPL method for the optimal solution of UC problem to increase the penetration level 

of RES in generation mix portfolio. 

1.3 Objectives 

The following are the objectives of the research: 

i. To develop algorithm that provides an accurate quantification of 

technical flexibility within conventional generators and overall 

generation system for system operators. 

ii. To develop a new flexibility metric that incorporates technical and 

economic flexibility parameters for effective planning of system 

operations. 

iii. To develop flexibility ranked enhanced priority list method to solve UC 

problem under increasing share of renewable energy penetration. 
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iv. To develop an adjusted weight flexibility metric for actual flexibility 

quantification of thermal units and overall generation system.  

1.4 Scope 

This research focuses on the development of a whole system approach to 

quantify the value of flexibility from flexible generation resources, in systems with 

high RES penetration. This will establish the needs for and value of different 

flexibility provision mechanisms that evolve with increasing RES penetration in 

future power systems. The following are the focal aspects of the study: 

i. Solar and wind power sources will only be considered for this study. 

Other types of renewable sources such as hydro, geothermal and 

others will not be considered for this study. Hydro will not be 

considered in the study as the study focus to study the impacts of 

solar and wind intermittency. 

ii. The research will only consider the operational time frame tools 

particularly the UC problem. Unlike many of the recent research 

works, it will not consider the long-term planning models.  

iii. For flexibility provision interventions, the research will not consider 

the demand side flexibility solutions. Only the thermal generation 

units will be considered as a mean to provide the flexibility 

requirement. 

iv. This research will concentrate on developing deterministic type of 

metrics. This is because deterministic metrics are more intuitive than 

the probabilistic-based ones. They are also easier and more suitable 

for system operators and other stakeholder decision makers. 

v. For optimization techniques, solution technique, the study will only 

consider an Enhanced Priority List (EPL) in order to achieve its 

objectives. Other types of evolutionary algorithms will not be 

considered for this study. 
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vi. Stochastic nature of solar and wind is considered to be covered under 

the SR which is 10% of the hourly load demand. 

vii. For the UC model, a deterministic UC model will be considered in 

this study. 

 

viii. Solar and wind are considered as a must run units for a better 

economical solution (No solar or wind curtailment is considered in 

this study even also not considered in the flexibility options). 

ix. IEEE RTS-96 and IEEE 10-units generation system are utilized to 

test the proposed method and developed metrics.  

1.5 Significance of the Research 

The significance of this research can be broadly categorized as follows: 

i. A flexibility framework for power systems will allow flexibility to be 

explicitly considered in the design of the system from a short-term 

perspective. It will also make it possible to quantitatively compare 

across different flexibility options open to system operators. 

ii. From the technical perspectives of the power system operations, the 

development of efficient flexibility metrics has significance in 

achieving smooth system balancing actions. It also reduces the level 

of renewable energy curtailments which will otherwise lead to 

significant economic losses. 

iii. Different studies have presented that some parameters of thermal 

generators are more important than others to handle unexpected 

changes in their output power and providing flexibility. Therefore, 

applying Analytical Hierarchy Process (AHP) in the formulation of 

the flexibility metric as a priority weighting (relative importance) 

scheme between the different technical flexibility parameters is 

significant to improve the accuracy of flexibility quantification. 
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iv. Introduction of flexibility ranked EPL method for the optimal 

solution of UC has a significant impact on increasing the penetration 

level of RES, therefore makes a valuable contribution to power 

systems operation. 

v. The developed tools within this research are expected to help power 

system operators to deliver deeper insights for renewable energy 

stakeholders on the amount and type that might be suitable for a 

particular power system from the perspectives of the technical 

operational point of view. 

1.6 Thesis Organization 

This thesis comprises of five chapters. The first chapter provides the general 

overview of the study by discussing the research background, problem statement, 

research objectives, scope and significance of the research. 

The second chapter is planned to deliver a comprehensive and critical 

literature review of the different research aspects considered in this thesis. It is 

divided into two major aspects. The first aspect focuses on the literature related to 

the UC problem, optimization techniques, and renewable generation within the UC 

problem solutions. The second aspect focuses on power system operational 

flexibility, flexibility metrics and their related issues. 

The third chapter defines and establishes the methodology of the research. 

Similar to the arrangement of Chapter 2, UC problem calculations and enhancement 

of the PL method is firstly presented. Followed by the description of the flexibility 

parameters and the improvement of the flexibility metric framework and then the 

development of flexibility metrics is presented. Lastly, the development of a 

flexibility ranked based PL scheduling method is proposed.  
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The fourth chapter presents the results and discussion. This includes the 

optimal solution of UC problem and investigates for the maximum feasible 

penetration level. Followed by a flexibility quantification by different priority 

weighting mechanisms and the results for newly developed metrics. The last section 

of this chapter discusses the development of a flexibility ranked priority list method 

for optimal generation scheduling and its impact on increasing the penetration level 

of both solar and wind power. 

Finally, conclusion, the contribution of the thesis and recommendation for 

future research are provided in Chapter five.  
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