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ABSTRACT 

 

 

 

Molecular dynamics utilize energy model to solve the Newton’s equation of 
motion for a system of interacting particles.  Ab-initio, semi-empirical and empirical 
approaches have been reported as main approaches to compute total energy of a system 
for describing its molecular structures and properties.  In these approximation methods, 
the calculations achieved the level of accuracy in descending manner and in ascending 
order for computational time.  Ab-initio approach also known as first principles method 
solved the complex energy evaluations in Schrödinger equation to account for electronic 
structures with limitation on the size of the system.  Molecular mechanics (MM) is a 
conventional empirical approach that defined energy calculations in terms of functions 
with fitted parameters.  The simple algorithm in MM allowed it to simulate larger system.  
Consequently, new potential function is always required either to produce higher 
accuracy result or to reduce the computational time.  It is believed that there should be a 
compromise between the accuracy and the computational time depending on the 
simulation.  The main contribution of this study is to propose a new hydrocarbon 
potential energy model which consist of bond stretching and angle bending function, 
where both functions are important components of short range potential for the force 
fields based on MM principle.  The existing bond stretching and angle bending functions 
are found correlated to the piecewise polynomial concept.  New models were then 
proposed based on piecewise polynomial concept and basic principles.  Firstly, by 
neglecting the motion of electrons for fast computation purpose.  Secondly, only the 
necessity independent variables are involved.  Thirdly, structural properties such as 
symmetry and degeneracy are considered.  In this regard, the interatomic distance was 
determined as the independent variable in bond stretching model since single 
independent variable is assumed sufficient in reproducing the chemical reaction for one 
motion involvement.  Angle was selected as independent variable when the interactions 
were treated as a plane with triangle shape.  However, there is more than one motion 
involvement in angle bending model, thus, the deviation for angle is also considered as 
independent variable.  The selection rules were developed and independent variables 
were coupled with the interatomic distance to account for structural properties.  Hence, 
the angle bending model is developed based on the triangle and selection rules.  The 
parameters were estimated by using least square method.  The proposed model was then 
compared with data collected from two well-established methods and applied to the 
carbon nanotube application for validation.  Most of the results obtained achieved a good 
agreement except for carbon nanotube application where the discussions were given.  
Good agreement with data collection indicates that proposed models can be alternative 
solution to the existing force fields.  The results are significant for advancement of new 
knowledge. 
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ABSTRAK 

 

 

 

Dinamik molekul menggunakan model tenaga untuk menyelesaikan persamaan 
pergerakan Newton untuk sistem zarah yang berinteraksi.  Ab-initio, semi-empirikal dan 
empirikal telah dilaporkan sebagai pendekatan utama untuk mengira jumlah sistem 
tenaga demi menggambarkan struktur dan sifat molekulnya.  Dalam kaedah 
penghampiran ini, pengiraan mencapai tahap ketepatan mengikut tertib menurun dan 
masa pengiraan dalam urutan menaik.  Pendekatan ab-initio juga dikenali sebagai kaedah 
prinsip pertama menyelesaikan penilaian tenaga yang rumit dalam persamaan 
Schrödinger yang mengambilkira struktur elektronik yang terhad pada saiz sistem.  
Mekanik molekul (MM) adalah pendekatan empirikal konvensional yang mendefinasi 
pengiraan tenaga sebagai fungsi parameter suaian.  Algoritma yang mudah dalam MM 
membenarkan simulasi sistem yang lebih besar.  Akibatnya, rekaan potensi baharu 
diperlukan sama ada untuk menghasilkan ketepatan yang lebih tinggi atau untuk 
mengurangkan masa pengiraan.  Adalah dipercayai bahawa mesti ada tolak ansur antara 
ketepatan dan masa pengiraan yang bergantung pada simulasi.  Sumbangan utama kajian 
ini adalah untuk mencadangkan model tenaga hidrokarbon baharu yang terdiri daripada 
fungsi regangan ikatan dan sudut lenturan, di mana kedua-dua fungsi adalah komponen 
penting bagi potensi berjarak pendek untuk medan daya berdasarkan prinsip MM.  
Fungsi ikatan regangan dan sudut lenturan didapati berkorelasi dengan konsep 
polinomial cebis demi cebis.  Model baharu ini dicadangkan berdasarkan konsep 
polinomial cebis demi cebis dan prinsip-prinsip asas.  Pertama, mengabaikan pergerakan 
elektron untuk tujuan kelajuan pengiraan.  Kedua, melibatkan hanya pembolehubah 
bebas yang berkaitan.  Ketiga, sifat-sifat struktur seperti simetri dan degenerasi 
dipertimbangkan.  Dalam hal ini, jarak antara dua atom ditentukan sebagai 
pembolehubah bebas dalam model ikatan regangan kerana pembolehubah bebas tunggal 
diandaikan mampu untuk menghasilkan reaksi kimia bagi satu penglibatan gerakan.  
Sudut dipilih sebagai pembolehubah bebas apabila interaksi antaranya dianggap sebagai 
satah berbentuk segitiga.  Walau bagaimanapun, terdapat lebih daripada satu penglibatan 
gerakan dalam model lenturan sudut, oleh itu, sudut sisihan juga dipertimbangkan 
sebagai pembolehubah bebas.  Peraturan pemilihan telah dibangunkan dan 
pembolehubah bebas digandingkan pula dengan jarak antara dua atom untuk menangani 
sifat-sifat struktur.  Oleh itu, model lenturan sudut dibangunkan berdasarkan peraturan 
segi tiga dan pemilihan.  Parameter tersebut dianggarkan dengan menggunakan kaedah 
kuasa dua terkecil.  Model yang dicadangkan dibandingkan dengan data yang dikumpul 
dari dua kaedah yang mantap dan digunakan untuk aplikasi tiub nano karbon untuk 
pengesahan.  Kebanyakan hasil diperoleh dicapai dengan baik kecuali untuk aplikasi tiub 
nano karbon di mana perbincangan telah diberikan.  Persetujuan yang baik dengan data 
yang dikumpul menunjukkan bahawa model yang dicadangkan boleh menjadi 
penyelesaian alternatif kepada medan daya yang wujud.  Hasil kajian ini adalah penting 
untuk kemajuan pengetahuan baharu.   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

 This chapter comprises of several sections.  The first section introduces the 

main approaches for finding the potential energy and the basic principles of 

molecular mechanics approach for creating the functional forms that relevant to the 

research problem.  In the subsequent sections, the problem statement, objectives, 

significance, and scope of this research are stated, respectively.  Finally, the content 

is provided in the last section, organization of the thesis, for clarity purpose. 

 

 

 

1.2 Background of the Problem 

 

In molecular modelling, a wide variety of interatomic potentials in different 

functional form have been proposed for different intention over the years.  These 

computational methods for finding the potential energy curve of molecular structures 

can be categorized into three main approaches, which are ab-initio, semi-empirical 

and empirical approaches.  The word ab-initio is a Latin term means from the 

beginning or from first principles, thus, ab-initio approach also known as first 

principles theory.  It takes Schrödinger equation as a starting point and solved the 

Schrödinger equation without the inclusion of empirical parameters in the equation 

(Yeak, 2006).  Among the computational methods, the ab-initio approach able to 
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provide the highest level of accuracy in the energy evaluation.  The variational 

principle and perturbation theory are two most notable methods used in the ab-initio 

approach to perform direct electronic structure calculations.  However, the limitation 

of the ab-initio approach is size of the system.  It just capable to solve the system 

comprising up to hundreds of atoms even facilitated it with the powerful computers.  

Even though semi-empirical approach is assigned for solving the larger molecular 

system, it is also high computing demands for most systems (Yeak et al, 2005; Yip, 

2005).  Hence, empirical approach is applied to model the system behavior which 

avoided quantum mechanics (QM) totally in the calculation (Young, 2001).  The 

strengths and weaknesses for each approach have created critical breakthroughs into 

research area.  Especially for ab-initio and empirical approaches, high accuracy and 

fast computational speed were concluded as two main characteristics for ones to 

select the proper interatomic potential for handling different problems. The former is 

critical for studying the electronic properties in computational chemistry and the 

latter is extremely demanding in materials science. 

 

The simplification of energy system of molecular mechanics (MM) methods 

allows its utility in molecular dynamics (MD) simulation, where MD simulation 

required a large number of energy calculations.  MD simulation is a computer 

simulation method for studying the atomics motions in a system.  In principle, it is 

known that real materials shall behave according to the laws of quantum mechanics 

(QM), so that the electronic motions are included in the calculation.  The simulation 

work in the classical mechanics ignore the electronic effects, ones might suspect that 

it is unable to validate with any real application.  Born Oppenheimer approximation 

has diminished the skepticism by filling the gap between them.  Hamiltonian in 

Schrödinger equation considered the motions of system contributes from two 

particles, that is nuclei and electrons. Born and Oppenheimer noticed that the mass of 

nuclei is much heavier than the mass of electrons, force is mass times acceleration, 

this indicates electron move at least 1000 times faster than nuclei.  Therefore, in their 

approximation, they considered to separate the electronic part and nuclei part that 

this separation is approximately correct. Born Oppenheimer approximation treated 

nuclei are fixed with respect to electron interactions in the system, the electronic part 

can be solved at an accumulate set of fixed positions of the nuclei.  Then, the nuclei 
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part can be solved by treated the electron in terms of an effective Hamiltonian with 

electronic energy.  Solution for nuclei separation is indirectly equivalent to the MD, 

in which requires coordinates of atoms for calculating the energy system.  This is an 

important remark that supports the diversity progress for the development of MD 

simulation using potential function of any force field approaches.  Also, many force 

field methods have consistently increased in the progress of diversity, complexity, 

and sophistication over time. 

 

One of the famous applications is the artificial products made by Carbon 

based nano-materials.  NASA is still working on to turn science fiction concept into 

reality, which is to build an elevator to the Moon from Earth’s surface (Artyukhov et 

al., 2013) by using Carbon based nano-materials.  Hence, the time execution for 

energy calculation is extremely large.  Empirical approach is able to handle system 

comprising up to a few millions of atoms (Yeak et al, 2005; Yip, 2005).  The MM 

methods still widely extend and recommended today for use, especially for work 

before or after fabricated the nano-products, and for studying in planetary science.  

The similarity for both phenomena is treating an extraordinary large system, and 

thus, a simpler form of energy calculation for solving larger system is always 

required. 

 

As mentioned before, any conventional molecular mechanics (MM) method 

in the empirical approach is an approximation solution that returns less accurate 

results, but yet, it is still a preferable option for solving the large system.  The energy 

calculation in conventional MM methods can be subdivided into several functional 

forms with fitted parameters.  Parameters of the potential were fitted accordingly to 

the experimental data in the calculation, so that the potential with parameters 

obtained able to approximate the experimental data.  The basic principle of MM 

methods considered the energy calculation as the summation of bonded and non-

bonded terms (Lewars, 2011).  In fact, bonded and non-bonded terms also named as 

short range and long range potential in the different application fields.  Both consist 

of several combinations of functional forms.  The short range potential may 

comprises of 4 functional forms such as bond stretching, angle bending, dihedrals 

motion (improper or torsion dihedrals), and cross over terms of bond stretching, 
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angle bending and dihedrals motion.  The long range potential may consist of the van 

der Waals, electrostatic and polarization interaction.  Variety MM methods were 

categorized into three classes, where the first two classes only include the bonded 

terms in the calculation.  The first class is called Class I or first-generation; no cross 

terms are involved this class and the rest of functional terms are able to be expressed 

in the form of quadratic Taylor series expansion or harmonic potential or polynomial 

with degree two.  The second class is named as Class II or second-generation, it 

contains higher order in the Taylor series expansion or polynomial and the presence 

of cross terms in the potential function.  Similarly, the third class is termed as Class 

III or third-generation which account for electronegativity, polarizability and 

hyperconjugation.  Conventionally, classical force fields classified MM methods into 

either Class I or Class II (Schlick, 2010). 

 

There are four significant factors that affect the performance in this procedure 

for construction of new potential.  The complexity functional form of the energy 

expression is the first factor.  The number of independent variables and the 

calculation for finding assigned independent variables in the functional forms are 

main concerns which affect the implementation for the complexity of the energy 

calculation.  As a result, only essential independent variables are involved in the 

calculation.  Second factor refers to the data selected to parameterize the constants.  

As mentioned earlier, an ideal situation for MM is to produce high accurate result 

whilst the time execution and complexity of potential function remain unchanged.  

The accuracy of the approximation solution is substantially depends on the accuracy 

of data collection.  However, as discussed earlier, the ab-initio approach produced 

higher accuracy result for data collection due to it involved more independent 

variables in the calculation.  Hence, there should have a compromise between the 

independent variables with the level of accuracy for the data selection.  Thirdly, the 

fitting technique for parameters estimation, or more succinctly, the technique used to 

optimize constants from that data collection.  Finally, ability of new potential to be 

applied in such a way that it show consistent with its strengths and weaknesses 

(Young, 2001). 
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In real situation and the limited resources, the experimental results are 

initially considered in averaging or ensemble amount as it is hard to probe the 

molecules especially for any unstable state.  Therefore, molecular mechanics (MM) 

methods worked out by giving best description to the molecules that distorted from 

idealized geometry where molecules are initially distorted from stable state in order 

to study its behaviour near the equilibrium distance.  Considered a ball attached to a 

fixed spring, Newton’s third law states that whenever there is a force acted towards 

the ball, there exists an inner force in opposite direction which rebounces the ball 

back to the stable state (Leach, 2001).  By treating particles like a ball attached to the 

spring, the ideal geometry or equilibrium distance separates the energy curve into 

two parts.  The first part of energy curve illustrates the repulsion part, when a force is 

applied to the system in order to squeeze the particles uniformly, the particles tends 

to repulse each other in order to get back to the stable behaviour.  The second part 

demonstrates the attraction part, when a force is enforced in the system to pull the 

particles away, the particles tends to attract each other in order to form the stable 

state.  The repulsive and attractive forces are not uniform when same amount in 

increment of distance was applied (Hinchliffe, 2003).  This implies that there must at 

least two different equations to distinguish these behaviors.  Thus, piecewise 

polynomial (Davis, 1984) is found most suitable to capture this scenario. 

 

 Taking the affecting factors as considerations, in this thesis, piecewise 

polynomial is proposed to approximate the functional forms of bond stretching and 

angle bending, where only important independent variables are employed.  The 

second-generation of reactive empirical bond order (REBO) potential energy 

(Brenner et al., 2002) is used as the main source of data collection for the parameters 

estimation, since it showed some flexibilities to be recognized as empirical potentials 

for the first-generation (Brenner, 1990), and semi-empirical for the improvement 

version of second-generation (Brenner et al., 2002) for studying hydrocarbon 

compounds.  The level of accuracy for second-generation of REBO potential 

(Brenner et al., 2002) is in the middle range, where it allows forming and breaking 

for covalent bonding with associated changes in atomic hybridization within a 

classical potential.  It is a powerful method in modelling complex chemistry for large 

system by providing a better definition for bond lengths, energies, and force 
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constants of molecules, as well as interstitial defect energies, elastic properties, and 

surface energies for different arrangement of carbon system.  In numerical methods, 

there are plenty of choices for parameters estimation.  The least square approach is 

well known as the best fitting technique, since it only gives unique solution by 

searching the global minima in the whole optimization process for parameters.  If 

local minima should be allowed for filling the interstitial causes by independent 

variables in the optimization process, other methods such as truncated Newton 

method is a good option.  The new model with fitted parameter sets is used to 

reproduce the set of experimental data.  In this work, general piecewise polynomial is 

employed as fundamental principle for building new models.  Theoretical derivations 

for comparing general piecewise polynomial with the existing potential functions are 

presented.  Some derivations were utilized as a theoretical evident for describing the 

generalization of the new model.  The new function for bond stretching interaction is 

found able to contribute itself as an alternative method in computational chemistry 

softwares.  The flexibilities and weaknesses for general piecewise polynomial are 

discussed. 

 

 

 

1.3 Statement of the Problem 

 

 The development of force fields or potential function is always required 

either to obtain result at high accuracy or to reduce the computational cost for large 

system.  The present work intends to produce the force fields based on molecular 

mechanics (MM) principle.  Conventional force fields in MM ignored the electron 

motions and expressed the energy calculation as the combination from several 

contributions of functions with fitted parameters, where only necessary independent 

variables are considered.  Mimic the concept from crystal structure in solid state 

physics, electrons were replaced by atoms in a building block (imagine a box).  The 

building block could be an atom or groups of atoms in specific location (Kittel, 1996).  

Thus, when identical building blocks were added continuously, the system forms the 

crystal structure in a 3-dimensional periodic array of atoms.  In present study, single 

atom was treated in a building block.  The system is said with an assortment of aT  
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building blocks indicates that there is a total of aT  atoms in a system.  If bT  building 

blocks are bundled together as a group where aT  is divisible by bT , then, the energy 

calculation also expressed as summation of 
b

a

T

T
 functions of bundled group.  The 

problem statements can be written as below: 

 

1. What is the necessary independent variable best describe for the case if 

1
b

a

T

T
, ba TT   and two building blocks 2bT  are bundled together as a 

group?  The energy as well as their forces of individual atom for each 

contribution can be approximated by using the proposed model that based on 

piecewise polynomials concept?  How good is this empirical potential 

function for approximating the chemical reaction and structural property? 

2. What are the essential independent variables best describe for the case if 

1
b

a

T

T
, ba TT   and three building blocks 3bT  are bundled together as a 

group? The energy as well as their forces of individual atom for each 

contribution can be approximated by using the new model that based on 

piecewise polynomials concept?  How good is this new empirical potential 

function for approximating the chemical reaction and structural properties? 

3. If 3bT  building blocks are bundled together as a group, is it possible to 

approximate larger system? 

 

 

 

1.4 Objectives of the Research 

 

 The classical short range potential in conventional molecular mechanics 

(MM) methods considered bond stretching, angle bending and dihedrals motion as 

three important contributions of energy evaluation in ascending order.  The present 

work intends to study and develop models for covering first and second main models 

with its structural properties, respectively.  Symmetry and degeneracy are two basic 
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structural properties to the bond stretching and angle bending interactions, especially 

the latter is significant to connect both interactions for validation purpose.  A 

mathematical function is symmetric if there is an operation that alters its coordinates 

in some manner but leaves the graph of the function unchanged.  The degeneracy of 

an energy level is defined as the number of distinct quantum states that share that 

energy (Cooksy, 2014).  These fundamental definitions are widely applicable in 

quantum chemistry; nevertheless, the definitions for both properties have been 

slightly modified to suit the case studies in this work.  Both properties are found can 

be achieved by choosing the appropriate independent variables and creating the 

proper selection rules for piecewise polynomial (Davis, 1984).  The objectives of this 

research are summarized as: 

 

1. To develop and implement Bond Stretching Model (BSM) for approximating 

energy and forces.  In this regard independent variables to be employed must 

be determined and symmetry of structure considered. 

2. To develop and implement Angle Bending Model (ABM) for approximating 

energy and forces.  In this regard independent variables to be employed must 

be determined and symmetry of structure considered.  

3. To propose degeneracy embedded in the independent variables for bond 

stretching and bond angle interaction. 

4. To implement second-generation of reactive empirical bond order (REBO) 

potential in the tension of carbon nanotube simulation for calibration purpose. 

 

 

 

1.5 Significance of the Research 

 

 This work is significant for nanosized materials study.  Products that 

fabricated by nanosized particles will exhibit different kind of properties from the 

products fabricated by larger particles, even both using same materials.  These 

properties are called size-dependent properties.  In the vast literature, empirical 

potentials for different intentions have been proposed and applied to explore the 

system properties especially for nanosized materials properties.  New theories, new 
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concepts, new questions, new findings, new technologies and new products have 

been developed.  These products are created to improve quality of life.  In order to 

study the energy and motion for large system such as nanosized materials, new 

models for calculating the empirical potential and forces based on bond stretching 

and angle bending interaction are required, basically it needs to be: 

 

1. Fast in calculation due to less memory. 

2. Able to capture symmetry for the structure. 

3. Embedded with degeneracy. 

4. Ability to be generalized to general problem. 

 

Flexibilities for the proposed potential based on piecewise polynomial (Davis, 1984) 

concept show that the models are potentially to be generalized to tackle for general 

problem.  And also, there is still numerous ways to improve the model, for instance, 

the multiscale concept at critical region. 

 

 

 

1.6 Scope of the Research 

 

In this work, the attention are focused on interatomic interactions of 3-

dimensional multi molecular based on the geometric structures of system.  The 

factors such as degree of freedom for independent variables, accuracy for data 

collection and flexibility for fitting techniques which affect the performance and time 

execution in computation algorithm are reviewed and monitored.  The new models 

with its associated independent variables based on approximation concept are 

proposed for energy and force calculations since it is considered simple computation 

algorithm.  The new models are then used to approximate the bond stretching and 

bond angle interaction as well as study the structural properties.  Structural properties 

such as symmetry for the geometric structures and degeneracy between bond 

stretching and bond angle interaction are emphasized with selection rules.  The bond 

stretching model is applied with electronic structure calculation for generalization 

purpose.  The tension for carbon nanotube is simulated by molecular dynamics (MD) 
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via short range potential namely second-generation of reactive empirical bond order 

(REBO) potential.  

 

 

 

1.7 Organization of the thesis 

 

 The pros and cons for three main approaches of energy evaluations as well as 

the significant linkage between classical and quantum mechanics were briefly 

discussed in this chapter.  Chapter 2 introduces the relevant mathematical 

formulation in molecular computation.  Chapter 3 consists of three sections.  First 

section elucidates three main approaches for finding the energy calculation in 

different point of view; it starts with general problem and end up with the significant 

of this study.  Second section reviews the remarkable evolution from molecular 

mechanics (MM) methods to molecular dynamics (MD) simulation where the recent 

development and applications of force fields are given.  Third section discusses the 

main source of data collection, second-generation of reactive empirical bond order 

(REBO) potential energy.  The development of REBO potential energy from the 

first-generation up to second-generation are described.  Chapter 4 provides the ideas 

and basic principles employed for model development and formulations.  The 

capability of general piecewise polynomial concept to reproduce predicted energies 

are theoretically derived and justified for bond stretching model (BSM) and angle 

bending model (ABM).  Particular details such as how to determine and identify the 

essential independent variables involved in the function, and how to derive the 

differentiation forms that related to the forces calculation based on interatomic 

potential energy are also described in this chapter.  Chapter 5 represents the results 

and discussions for BSM and ABM.  The affecting factors of general piecewise 

polynomial are manipulated by using BSM.  Lastly, conclusions, contributions, 

limitation and recommendations for this thesis are presented in last chapter. 
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