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ABSTRACT

Car plate recognition is used in traffic monitoring and control systems such as
intelligent parking lot management, finding stolen vehicles, and automated highway
toll. Car plate recognition consists of several stages of processing namely, car
plate localization, extraction, and recognition which consists of Optical Character
Recognition (OCR). However, in practice, Low-Resolution (LR) images or videos
are widely used in surveillance systems. In low resolution surveillance systems, the
car plate text is often illegible. Other than that, small car plate due to the distance
and illumination cause the car plate recognition to fail as well. Super-Resolution
(SR) techniques can be used to improve the car plate quality by processing a series
of LR images into a single High-Resolution (HR) image. Today, the best upscaling
algorithms cannot effectively reconstruct data that does not exist. Recovering the HR
image from a single LR is still an ill-conditioned problem for SR. Previous methods
always minimize the mean square loss in order to improve the peak signal to noise
ratio(PSNR). However, minimizing the mean square loss leads to overly smoothed
reconstructed image. In this project, Generative Adversarial Networks (GANs) based
SR is proposed to reconstruct the LR images into HR images. Besides that, perceptual
loss is proposed to solve the smoothing issue. The quality of the GAN based SR
generated images will be compared to existing techniques such as bicubic, nearest and
Super-Resolution Convolution Neural Network (SRCNN). The results show that the
reconstructed images using GANs based SR achieve better results in term of perceptual
quality compared to previous methods.
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ABSTRAK

Pengenalan plat kereta digunakan secara meluas dalam sistem pengawasan
lalu lintas dan kawalan seperti pengurusan tempat letak kereta yang pintar, mencari
kenderaan yang dicuri, dan jalan tol automatik. Pengiktirafan plat kereta terdiri
daripada beberapa peringkat pemprosesan iaitu penyetempatan, pengekstrakan dan
pengenalan plat kereta yang terdiri daripada Pengiktirafan Abjed Optik(OCR). Walau
bagaimanapun, secara praktikal, imej atau video resolusi rendah (LR) digunakan
secara meluas dalam sistem pengawasan. Dalam sistem pengawasan resolusi
rendah, teks plat kereta sering tidak boleh dibaca. Selain itu, plat kereta kecil
disebabkan oleh jarak, pencahayaan dan sebagainya akan menyebabkan ujian plat
kereta tidak dapat dibaca untuk mengiktiraf juga. Teknik Super-Resolution (SR)
digunakan untuk meningkatkan mutu plat kereta dengan memajukan satu siri imej
LR kepada satu imej Resolusi Tinggi (HR) tunggal. Hari ini, algoritma upscaling
terbaik juga tidak dapat membina semula data yang tidak wujud dengan berkesan.
Memulihkan imej HR dari LR tunggal masih merupakan masalah yang tidak berhati-
hati untuk SR. Kaedah sebelumnya sentiasa meminimumkan kerugian MSE bagi
meningkatkan isyarat puncak kepada nisbah hingar (PSNR). Walau bagaimanapun,
meminimumkan kerugian kuantiti MSE membawa kepada imej yang dibina semula
dengan lancar. Dalam projek ini, SR berdasarkan Generatif Adversarial Networks
(GANs) dicadangkan untuk membina semula imej LR ke dalam imej HR. Di samping
itu, kerugian persepsi dicadangkan untuk menyelesaikan isu lancar. Kualiti imej
SR yang dihasilkan oleh GAN akan dibandingkan dengan teknik sedia ada seperti
bicubic, nearest dan SRCNN. Hasilnya menunjukkan bahawa imej yang dibina semula
menggunakan SR berasaskan GAN mencapai hasil yang lebih baik dari segi kualiti
persepsi berbanding dengan kaedah terdahulu.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Today, the population and economy of Malaysia have grown significantly
from year to year. As a result, the number of vehicles registered in Malaysia have
shown significant growth as well. In 2017, the Malaysia Automotive Association
(MAA) reported that the total number of vehicle registered in Malaysia reached 28.2
million [9]. The complexity of traffic management becomes a challenge from year to
year. Many research have been carried on improving the efficiency and accuracy of
vehicle car plate recognition. The car plate recognition algorithms are widely used
in traffic monitoring and control systems such as intelligent parking lot management,
finding stolen vehicles, traffic law enforcement, automated toll management system
for highways, bridges, tunnels and other fields.

In general, car plate recognition consists of four sub-stages, which are car plate
localization, car plate extraction, character segmentation and character recognition
[10]. In practice, car plate is not the only object in an image that is captured by the
camera. Road, cars, people and etc. will also be included in the image as well. Car
plate localization stage is designed to analyze the input image and locate the region
of interest, which is the car plate. Next is the car plate extraction stage. This stage is
focused on processing the region of interest to extract the car plate. After extraction
stage, the acquired extracted area will be the input to the segmentation stage. In the
segmentation stage, the image from the extraction stage will be split into several unique
parts, where each part contains only one character. Lastly, in the recognition stage, a
classifier will be used to recognize the characters from the segmentation stage. Some
common classifiers used are Naïve Bayes algorithm [11, 12], support vector machine
[13] and neural networks [14]. The performance of a car plate recognition system
relies on the accurateness of the car plate recognition algorithm and the quality of the
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images acquisition. However, in practice, Low-Resolution (LR) images or videos are
widely used in surveillance systems. In low resolution surveillance systems, the car
plate text is often illegible due to the distance, illumination and perspective distortion.

Super-Resolution (SR) techniques can be used to improve car plate image
quality by processing a single LR image or a series of LR images into a single
High-Resolution (HR) image. Besides that, SR gives an alternative way to solve the
limitation of images acquisition from hardware by using software processing. There
have two type of SR techniques, which are Single-Image Super-Resolution (SISR) and
Multi-Image Super-Resolution (MISR) techniques. SISR techniques can be further
categorized into interpolation-based methods [15], reconstruction-based methods [16]
and example learning-based methods [17]. For MISR, it can be further categorized
into frequency domain method and spatial domain method [18].

1.2 Problem Statement

Existing SISR techniques especially deep learning methods [19, 20] are able
to obtain remarkable performance in terms of PSNR. However, the challenge faced by
existing SISR techniques is that the reconstructed HR image from single LR image is
problematic and it is an ill-conditioned problem [21].

Other than that, at large magnification factors, the finer texture details of the
super resolved images is not able to be reconstructed from a single LR image due
to the high frequency information loss during large upsampling process which makes
the one-to-many mapping becomes more challenging. As a result, the super resolved
images with large magnification factor will be fuzzy, overly smooth, and unnatural in
appearance [22].

In addition, most of the SR methods today mainly focus on minimizing the
mean square loss, in order to achieve better performance in terms of PSNR. However,
such methods always lead to overly smooth appearance on the reconstructed images.
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1.3 Objective

The objectives of this project are:

• To proposed a GAN based SISR model to reconstruct the LR image into a
single HR image.

• To maintain the quality of super resolved images with large upscaling factor.

• To evaluate the performance of the proposed GANs based SR generated images
with existing techniques.

1.4 Scope of Work

In this project, the main focus is to generate a realistic car plate image with
better perceptual quality at the car plate numbers so that it can improve the accuracy on
the recognition. Hence, the focus will be on the perceptual quality of GANs based SR
generated images. The computational resources, efficiency and performance will not
be part of the work. The image quality metric such as Peak to Noise Ratio (PSNR) and
Structural Similarity (SSIM) are used to evaluate the quality of the generated images.
In addition, the accuracy or the performance of the car plate recognition on GANs
based SR generated images will not be further explored.

The main research will be carried on the SISR techniques while MISR
techniques will not be further discussed. Current SISR techniques are analyzed and
compared in details in Chapter 2.

Car plate datasets which is adopted from [23] to train the model. 640 images
are chosen and downsampled to 96x96 resolution as the training dataset. For evaluation
dataset, 10 images are chosen. All the images are evaluated at upscaling factor of 4
only.

Python is the main programing language used to code the GANs based SR
model. Besides, Tensorflow platform is used as the deep learning library.
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1.5 Organization

The organization of this thesis consists of six chapters.

Chapter one describes the project background, problem statement, objectives,
scope of work and the outline of this thesis.

Chapter two describes the literature review on the existing SISR techniques,
for example interpolation-based methods, reconstruction-based methods and example
learning-based methods. Furthermore, the comparison of the existing SISR techniques
will be included in this chapter as well. Next, the overview of the GANs model and its
application is discussed as well.

Chapter three discusses the research methodology of this project, especially the
overview of the GANs model. The tools used in this project will be discussed as well.
In addition, the image quality metric used in this project is further discussed in this
chapter as well.

Chapter four illustrates the proposed design. The architecture of the proposed
design will be discussed. The training details will be covered as well in this chapter.

Chapter five shows the results of this project. Discussion on the result is carried
out in this chapter.

Chapter six, which is the last chapter in this thesis, is the conclusion of this
project. Some potential future work is discussed in this chapter.



REFERENCES

1. Bevilacqua, M. Algorithms for super-resolution of images and videos based

on learning methods. Ph.D. Thesis. Université Rennes 1. 2014.

2. Deng, L.-J., Guo, W. and Huang, T.-Z. Single-image super-resolution via
an iterative reproducing kernel hilbert space method. IEEE Transactions on

Circuits and Systems for Video Technology, 2016. 26(11): 2001–2014.

3. Gong, M., He, K., Zhou, J. and Zhang, J. Single color image super-resolution
through neighbor embedding. Journal of computational information systems,
2011. 7(1): 49–56.

4. Hardeep, P., Swadas, P. B. and Joshi, M. A survey on techniques and
challenges in image super resolution reconstruction. International Journal

of Computer Science and Mobile Computing, 2013. 2(4): 317–325.

5. Yang, J., Wright, J., Huang, T. and Ma, Y. Image super-resolution as
sparse representation of raw image patches. Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE. 2008. 1–8.

6. Dong, C., Loy, C. C., He, K. and Tang, X. Image super-resolution using deep
convolutional networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2016. 38(2): 295–307.

7. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B. and Lee,
H. Generative adversarial text to image synthesis. arXiv preprint

arXiv:1605.05396, 2016.

8. Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A. A. Image-to-image translation with
conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

9. Lee, J. Vehicle registrations in Malaysia hit 28.2 million
units, 2017. URL https://paultan.org/2017/10/03/

vehicle-registrations-in-malaysia-hit-28-2-million-units.

10. Hurtik, P. and Vajgl, M. Automatic license plate recognition in difficult
conditions - Technical report. 2017 Joint 17th World Congress of

International Fuzzy Systems Association and 9th International Conference

https://paultan.org/2017/10/03/vehicle-registrations-in-malaysia-hit-28-2-million-units
https://paultan.org/2017/10/03/vehicle-registrations-in-malaysia-hit-28-2-million-units


51

on Soft Computing and Intelligent Systems (IFSA-SCIS). 2017. 1–6. doi:
10.1109/IFSA-SCIS.2017.8023337.

11. Kurzynski, M. and Zolnierek, A. Sequential Pattern Recognition: Naive Bayes
Versus Fuzzy Relation Method. International Conference on Computational

Intelligence for Modelling, Control and Automation and International

Conference on Intelligent Agents, Web Technologies and Internet Commerce

(CIMCA-IAWTIC’06). 2005, vol. 1. 1165–1170. doi:10.1109/CIMCA.2005.
1631420.

12. Phung, S. L., Bouzerdoum, A., Chai, D. and Watson, A. Naive Bayes face-
nonface classifier: a study of preprocessing and feature extraction techniques.
Image Processing, 2004. ICIP’04. 2004 International Conference on. IEEE.
2004, vol. 2. 1385–1388.

13. Czajkowska, J., Rudzki, M. and Czajkowski, Z. A new fuzzy support vectors
machine for biomedical data classification. Engineering in Medicine and

Biology Society, 2008. EMBS 2008. 30th Annual International Conference of

the IEEE. IEEE. 2008. 4676–4679.

14. Ram, R., Palo, H. K. and Mohanty, M. N. Recognition of fear from speech
using adaptive algorithm with MLP classifier. Circuit, Power and Computing

Technologies (ICCPCT), 2016 International Conference on. IEEE. 2016. 1–5.

15. Sarmadi, S. and Shamsa, Z. A new approach in single Image Super Resolution.
2016 6th International Conference on Computer and Knowledge Engineering

(ICCKE). 2016. 78–81. doi:10.1109/ICCKE.2016.7802119.

16. Zhang, X., Zhou, W. and Duan, Z. Image super-resolution reconstruction
based on fusion of K-SVD and semi-coupled dictionary learning. 2016 Asia-

Pacific Signal and Information Processing Association Annual Summit and

Conference (APSIPA). 2016. 1–5. doi:10.1109/APSIPA.2016.7820691.

17. Timofte, R., De, V. and Gool, L. V. Anchored Neighborhood Regression for
Fast Example-Based Super-Resolution. 2013 IEEE International Conference

on Computer Vision. 2013. ISSN 1550-5499. 1920–1927. doi:10.1109/ICCV.
2013.241.

18. Zhang, H., Zhang, L. and Shen, H. A blind super-resolution reconstruction
method considering image registration errors. International Journal of Fuzzy

Systems, 2015. 17(2): 353–364.

19. Lai, W.-S., Huang, J.-B., Ahuja, N. and Yang, M.-H. Deep Laplacian
Pyramid Networks for Fast and Accurate Super-Resolution. arXiv preprint

arXiv:1704.03915, 2017.



52

20. Dong, C., Loy, C. C. and Tang, X. Accelerating the super-resolution
convolutional neural network. European Conference on Computer Vision.
Springer. 2016. 391–407.

21. Huang, S., Sun, J., Yang, Y., Fang, Y. and Lin, P. Multi-Frame Super-
Resolution Reconstruction Based on Gradient Vector Flow Hybrid Field. IEEE

Access, 2017. 5: 21669–21683.

22. Sajjadi, M. S., Schölkopf, B. and Hirsch, M. EnhanceNet: Single Image
Super-Resolution through Automated Texture Synthesis. arXiv preprint

arXiv:1612.07919, 2016.

23. Liang, E. Car Plate Dataset, 2017. URL https://1drv.ms/f/s!

AmSINa9nwX9Ch8gI7KQi_chzUyuQlA.

24. Zhang, X. and Wu, X. Image interpolation by adaptive 2-D autoregressive
modeling and soft-decision estimation. IEEE Transactions on Image

Processing, 2008. 17(6): 887–896.

25. Chopade, P. and Patil, P. Single and Multi Frame Image Super-Resolution and
its Performance Analysis: A Comprehensive Survey. International Journal of

Computer Applications, 2015. 111(15).

26. Lai, C., Li, F., Li, B. and Jin, S. Single Image Super-Resolution via Classified
Sparse Representation. Embedded Software and Systems (ICESS), 2016 13th

International Conference on. IEEE. 2016. 159–163.

27. Yang, J., Wright, J., Huang, T. S. and Ma, Y. Image super-resolution via sparse
representation. IEEE transactions on image processing, 2010. 19(11): 2861–
2873.

28. Goto, T., Kawamoto, Y., Sakuta, Y., Tsutsui, A. and Sakurai, M. Learning-
based super-resolution image reconstruction on multi-core processor. IEEE

Transactions on Consumer Electronics, 2012. 58(3).

29. Rahim, A. N. A., Yaakob, S. N., Ngadiran, R. and Nasruddin, M. W. An
analysis of interpolation methods for super resolution images. 2015 IEEE

Student Conference on Research and Development (SCOReD). 2015. 72–77.
doi:10.1109/SCORED.2015.7449432.

30. Dai, S., Han, M., Xu, W., Wu, Y. and Gong, Y. Soft edge smoothness prior
for alpha channel super resolution. Computer Vision and Pattern Recognition,

2007. CVPR’07. IEEE Conference on. IEEE. 2007. 1–8.

31. Sarmadi, S. and Shamsa, Z. A new approach in single Image Super Resolution.
Computer and Knowledge Engineering (ICCKE), 2016 6th International

https://1drv.ms/f/s!AmSINa9nwX9Ch8gI7KQi_chzUyuQlA
https://1drv.ms/f/s!AmSINa9nwX9Ch8gI7KQi_chzUyuQlA


53

Conference on. IEEE. 2016. 78–81.

32. Duanmu, C. and Zhao, D. A new super-resolution algorithm by interpolation
in homogeneous areas. Computer Science and Network Technology (ICCSNT),

2016 5th International Conference on. IEEE. 2016. 716–719.

33. Zhang, X., Zhou, W. and Duan, Z. Image super-resolution reconstruction
based on fusion of K-SVD and semi-coupled dictionary learning. Signal

and Information Processing Association Annual Summit and Conference

(APSIPA), 2016 Asia-Pacific. IEEE. 2016. 1–5.

34. Fattal, R. Image upsampling via imposed edge statistics. ACM Transactions

on Graphics (TOG). ACM. 2007, vol. 26. 95.

35. Sen, P. and Darabi, S. Compressive image super-resolution. Signals,

Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar

Conference on. IEEE. 2009. 1235–1242.

36. Dong, W., Zhang, L., Shi, G. and Wu, X. Image deblurring and super-
resolution by adaptive sparse domain selection and adaptive regularization.
IEEE Transactions on Image Processing, 2011. 20(7): 1838–1857.

37. Dong, W., Zhang, L., Lukac, R. and Shi, G. Sparse representation based image
interpolation with nonlocal autoregressive modeling. IEEE Transactions on

Image Processing, 2013. 22(4): 1382–1394.

38. Shan, Q., Li, Z., Jia, J. and Tang, C.-K. Fast image/video upsampling. ACM

Transactions on Graphics (TOG), 2008. 27(5): 153.

39. Freeman, W. T., Jones, T. R. and Pasztor, E. C. Example-based super-
resolution. IEEE Computer graphics and Applications, 2002. 22(2): 56–65.

40. Bevilacqua, M., Roumy, A., Guillemot, C. and Morel, M.-L. A. Neighbor
embedding based single-image super-resolution using Semi-Nonnegative
Matrix Factorization. Acoustics, Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on. IEEE. 2012. 1289–1292.

41. Kim, K. I. and Kwon, Y. Single-image super-resolution using sparse regression
and natural image prior. IEEE transactions on pattern analysis and machine

intelligence, 2010. 32(6): 1127–1133.

42. He, H. and Siu, W.-C. Single image super-resolution using Gaussian process
regression. Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on. IEEE. 2011. 449–456.

43. Salvador, J. and Pérez-Pellitero, E. Naive bayes super-resolution forest.
Proceedings of the IEEE International Conference on Computer Vision. 2015.



54

325–333.

44. Schulter, S., Leistner, C. and Bischof, H. Fast and accurate image upscaling
with super-resolution forests. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2015. 3791–3799.

45. Dai, D., Timofte, R. and Van Gool, L. Jointly Optimized Regressors for Image
Super-resolution. Computer Graphics Forum. Wiley Online Library. 2015,
vol. 34. 95–104.

46. PARKS, C., PARK, M. and KANG, M. Super resolution image reconstruction:
a technical review. IEEE signal processing magazine, 2003. 5: 21–35.

47. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A. and Bengio, Y. Generative adversarial nets. Advances in

neural information processing systems. 2014. 2672–2680.

48. Radford, A., Metz, L. and Chintala, S. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. CoRR, 2015.
abs/1511.06434. URL http://arxiv.org/abs/1511.06434.

49. He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016. 770–778.

50. Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

51. Johnson, J., Alahi, A. and Fei-Fei, L. Perceptual losses for real-time style
transfer and super-resolution. European Conference on Computer Vision.
Springer. 2016. 694–711.

52. Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

53. Hanhart, P., Korshunov, P. and Ebrahimi, T. Benchmarking of quality metrics
on ultra-high definition video sequences. Digital Signal Processing (DSP),

2013 18th International Conference on. IEEE. 2013. 1–8.

54. Kundu, D. and Evans, B. L. Full-reference visual quality assessment for
synthetic images: A subjective study. Image Processing (ICIP), 2015 IEEE

International Conference on. IEEE. 2015. 2374–2378.

http://arxiv.org/abs/1511.06434

	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT 
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	Introduction
	Problem Background
	Problem Statement
	Objective 
	Scope of Work
	Organization

	Literature Review
	SISR Techniques
	Interpolation-Based Methods
	Reconstruction-Based Methods
	Example Learning-Based Methods
	Comparison of the Existing SISR Methods

	Overview of GANs 
	Application of GANs
	Chapter Summary


	Research Methodology
	Design Flow
	The Concept of GANs 
	The Flow of Training GAN
	Image Quality Metrics
	Mean-Square Error (MSE)
	Peak Signal-to-Noise Ratio (PSNR)
	Structural Similarity (SSIM)

	Dataset 
	Tools and Platforms
	TensorFlow Installation Guide

	Proposed Design
	Proposed Architecture For GANs
	Proposed Architecture For Generator Network
	Proposed Architecture For Discriminator Network

	Loss Function
	Adversarial Loss Function
	Content Loss Function
	Chapter Summary


	Results 
	Training Details
	Validation and Result Collection
	Content Loss Comparison
	Comparison With Existing Techniques 

	Conclusion
	Conclusion
	Contribution
	Future Works

	REFERENCES 

