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ABSTRACT 

 

 

 

 
The building envelope shape is the most salient design characteristic and has a 

significant influence on energy consumption during the post-occupancy service life. However, 

during the conceptual design phase, envelope shape-finding is defined without considering 

post-occupancy service life energy performance.  This warranted absence of a priori 

knowledge on shape-based convective heat transfer affects indoor environment quality and 

impedes the ability to meet post-occupancy energy performance efficiency requirements.  In 

addition, there is no suitable method for designers by which to make such calculations.  In an 

attempt to optimize energy consumption and reduce the post-occupancy service life in 

efficiency, this research aims to determine building shape energy efficiency using a simulation 

and optimization process that can facilitate the designer’s task during the conceptual design 

phase.  For this purpose, a case study research method and simulation-based particle swarm 

optimization process was conducted.  Foremost, it is pertinent to understand building shape 

behavior in order to improve energy efficiency.  For this, a longitudinal case study set out to 

collect real time energy data and historical building data by a selected unit of analysis Block 

C 02, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia.  The 

building shapes were simulated using thermal transient simulation for heat transfer analysis.  

However, results indicated that a proportionate increase in building shape compactness, aspect 

ratio or coefficient can adversely affect building shape thermal performance, affirming the 

proposition that convective heat transfer and solar radiation have a considerable influence on 

energy consumption based on shape geometrical characteristics. Following this, a varied 

combination of shapes, wall window ratio and glazing energy performance was then analyzed 

using particle swarm optimization to determine the optimal envelope shape combination. The 

results confirmed that, as the shape achieves its geometric efficiency, it appropriates the wall 

window ratio and glazing proportions that reduce convective heat transfer. A design approach 

that can determine shape energy efficiency based on simulation and particle swarm 

optimization was then developed. Further, sensitivity of this design approach was calibrated 

using comparative testing and empirical validation.  The findings provide a benchmark of 

energy consumption based on a combination of envelope shape characteristics, wall window 

ratio and glazing. In conclusion, this research has succeeded in transforming the conventional 

shape-finding process into an integrated simulation-based shape optimization for energy 

efficiency. The major contribution of this research study was that it developed a design 

approach for building shape energy efficiency and optimization. It can facilitate the task of 

designers during the conceptual design phase by disposing of their one-off design solutions 

and making it feasible to conceptualize varied building shapes for energy efficient design 

solutions. 
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ABSTRAK 

 

 

 

 
Reka bentuk luaran bangunan ialah ciri reka bentuk paling penting dan mempunyai 

pengaruh yang ketara ke atas penggunaan tenaga semasa hayat perkhidmatan pasca 

penghunian. Walau bagaimanapun, semasa fasa reka bentuk konseptual, pencarianreka bentuk 

luaran ditentukan tanpa mengambil kira prestasi tenaga hayat perkhidmatan pasca penghunian.  

Ketiadaan pengetahuan mengenai pemindahan haba perolakan berasaskan bentuk 

mempengaruhi kualiti persekitaran dalaman dan menyekat keupayaan untuk memenuhi syarat-

syarat kecekapan prestasi tenaga pasca penghunian.  Sebagai tambahan, tiada kaedah yang 

sesuai untuk pereka membuat pengiraan sedemikian.  Dalam usaha untuk mengoptimumkan 

penggunaan tenaga dan kecekapan hayat perkhidmatan pasca penghunian, kajian ini 

bermatlamat untuk menentukan kecekapan tenaga reka bentuk bangunan menggunakan proses 

simulasi dan pengoptimuman yang boleh memudahkan tugas pereka sewaktu fasa reka bentuk 

konseptual.  Bagi tujuan ini, kaedah kajian kes dan simulasi berdasarkan proses 

pengoptimuman kerumunan zarah telah dijalankan.  Antara yang paling utama adalah untuk 

memahami perlakuan reka bentuk bangunan supaya dapat meningkatkan kecekapan tenaga.  

Oleh itu, satu kajian kes longitudinal dijalankan untuk mengumpul data tenaga masa nyata dan 

data bangunan bersejarah dengan memilih unit analisis Blok C 02, Fakulti Geoinformasi dan 

Harta Tanah, Universiti Teknologi Malaysia. Reka bentuk bangunan telah disimulasi 

menggunakan simulasi sementara terma untuk analisis pemindahan haba.  Namun begitu, hasil 

menunjukkan bahawa peningkatan berkadar dalam kepadatan reka bentuk bangunan, nisbah 

aspek atau pekali boleh memberi kesan buruk kepada prestasi terma reka bentuk bangunan, 

mengesahkan usul bahawa pemindahan haba perolakan dan radiasi suria mempunyai pengaruh 

yang banyak ke atas penggunaan tenaga berdasarkan ciri-ciri geometri reka bentuk. Susulan 

itu, kombinasi reka bentuk, nisbah tingkap dinding dan prestasi tenaga pelicauan yang berbeza 

kemudiannya telah dianalisa menggunakan pengoptimuman kerumunan zarah bagi 

menentukan kombinasi reka bentuk luaran yang optimum.  Keputusan kajian mengesahkan 

bahawa, apabila reka bentuk mencapai kecekapan geometrinya, ia menyesuaikan nisbah 

tingkap dinding dan perkadaran pelicauan yang mengurangkan pemindahan haba perolakan. 

Pendekatan reka bentuk yang boleh menentukan kecekapan tenaga reka bentuk berdasarkan 

simulasi dan pengoptimuman kerumunan zarah telah dibangunkan.  Selanjutnya, sensitiviti 

pendekatan ini telah disahkan menggunakan kedua-dua ujian empirikal dan perbandingan.  

Dapatan tersebut menyediakan tanda aras penggunaan tenaga berdasarkan kombinasi ciri-ciri 

reka bentuk luaran, nisbah tingkap dinding dan pelicauan.  Kesimpulannya, kajian ini telah 

berjaya dalam mengubah proses dapatan reka bentuk lama kepada pengoptimuman reka 

bentuk berasaskan simulasi bersepadu untuk kecekapan tenaga.  Sumbangan utama bagi kajian 

penyelidikan ini adalah ia membangunkan pendekatan reka bentuk untuk kecekapan dan 

pengoptimuman tenaga reka bentuk luaran bangunan.Ia boleh memudahkan tugas pereka 

sewaktu fasa reka bentuk konseptual dengan mengatur penyelesaian reka bentuk sekali mereka 

dan boleh dilaksanakan untuk mengkonsepsikan pelbagai reka bentuk luaran bangunan untuk 

penyelesaian reka bentuk cekap tenaga.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research background  

 

 

In Malaysia, buildings account for 40% of total energy use and 36% of total 

CO2 emissions (Ahamed et al., 2011). According to Adalberth (1997), 65% of the total 

energy use was consumed during the operation phase, which is post-occupancy, rather 

than the construction and demolition phases. For instance, in the building life cycle 

energy phase of a building (i.e. pre-use, use-phase, maintenance and demolition 

phase), in particular the building use-phase (operation phase) energy utilization is 

much higher than other phases due to failures. This increasing energy demand is 

foreseen as a Facilities Management (FM) maintenance threat that gradually affects 

resultant performances and increases the life cycle cost by 15% (Da Silva et. al., 2012).  

This is an indication of the importance of reducing post-occupancy phase energy 

consumption.  For instance, FM comprises and integrates multiple disciplines (i.e. 

people, place, technology and process).  These partly render their services for the up-

keep of the implicit building performance maintenance aspects such as indoor thermal 

comfort, IAQ, IEQ, energy maintenance as well as occupant health and hygiene that 

predominantly contribute to the success of the core competency of business 

productivity (Al Horr et al., 2001).  In a trending business requirements environment, 

if productivity is to be achieved it is pertinent to provide high performance solution 

space that meets optimal indoor environment quality and thermal comfort conditions.  

This requires a better air exchange rate that can be achieved only by heavy utilization 

HVAC that prevents heat gain. Consequently, this  increases post-occupancy service 

life energy consumption in terms of energy use in buildings (Asif, Muneer and  Kelley, 

2007).  According to Gupta and Chandiwala (2010), issues of thermal comfort, IAQ, 
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IEQ and lighting control are regulated only by building envelope attributes in order to 

prevent thermal transfer.  For instance, building envelope performance is one of the 

intervening causes for heat gain, as well as a poor air exchange rate which can 

influence thermal comfort and humidity (Bell et al., 2010).  This contributes to a 

negative effect that causes deterioration of indoor environmental quality, sensorial 

disturbances and psycho-social illnesses (i.e. stress, sick building syndrome) thereby 

depriving occupants of productivity (Gou and Lau, 2012; Aguilera, et al., 2013).  

However, energy consumption and energy use varied by occupant archy-type and 

behavior might also contribute to performance failure (Roetzel and Tsangrassoulis, 

2012). However, it was largely affected by not considering pre-requisites of facility 

management’s energy maintenance in order to achieve energy efficiency during the 

conceptual design phase (Eberhard, 2003; Hossein et al., 2013).  This further resulted 

in 11% of performance failures, namely: 40% energy loss annually attributed to the 

design of that account for 50% and failure to respond to abrupt climate changes (Rivar 

et al.,1995).  This led to a deviation in actual energy performance as predicted in design 

(Roetzel and Tsangrassoulis, 2012).  The deeper underlying factors for this energy 

performance failure and gap, namely, the implementation of sustainable passive design 

standards, policies and framework are believed to contribute towards optimistic design 

predictions that achieve energy efficiency (Hernandez and Kenny, 2010; Tofield, 

2012; Attia et al., 2013).  In addition, envelope designs that need to be tested 

quantitatively are often overlooked by designers (Gucyeter and Gunaydin, 2012).  This 

comes about because designers focus on solving spatial design issues that do not 

proceed by form following function nor do they bother to adhere to energy efficiency 

issues during the conceptual design phase (Torres and Sakamoto, 2007; Cetiner and 

Edis, 2013). This has warranted flexibility for changing needs as part of building shape 

requirements for diminished performance optimization (Catalina and Iordache, 2012).  

On the other hand, a one-off design solution drastically reduces the possibility of shape 

behavior being examined to achieve reliable energy efficiency (Coelho and de Brito, 

2013).  In such a complex iterative design process, a designer may not be able to fully 

realize and predict energy performance, since energy systems in buildings are 

relatively complex and there exists a high probability for over-specifying HVAC 

(Maile, Fischer and Bazjanac, 2007; Yassin, 2011).  This has resulted in an inadvertent 

increase in post-occupancy energy consumption.  Hence, this proves there is a dearth 

of knowledge in envelope shape design, size, window and glazing that could support 
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HVAC efficiency.  On the other hand, there is currently no approach that establishes 

envelope combinatorial performance quantitatively for better design decision-making.  

Therefore, the prevailing methods for predicting the energy of buildings during the 

design stage are rudimentary for design application. This vindicates the theory that 

envelope shape design attributes reduce energy consumption and act as a system/sub-

system to provide climate response, (Sozer, 2010; Stavrakakis et al., 2012c; Favoino 

et al., 2014).  Therefore, it is pertinent to augment envelope shape design using 

simulation and optimization methods that can reduce the energy performance gap. 

 

 

 

 

1.1.1 Building envelope energy performances 

 

 

 Building envelope design has become an integral part of a sustainable building 

design approach that regulates total building performance attributes including: energy 

performance; indoor environmental quality; provision of protection from extreme 

outdoor heat; humidity control; thermal affects and prevention of noise (Jin, Overend 

and Thompson, 2012).  Su and Zhang (2010) argued that envelope design has the 

greatest influence on life cycle building energy and accounts for more than 50% of the 

energy performance gap and post-occupancy performance failure.  For instance, 

excessive window glazing in envelope design accounts for more than 30% of the heat 

gain and thermal radiation into indoor space (Department Energy Studies, USA, 2012) 

(Gucyeter and Gunaydin, 2012; Cetiner and Edis, 2013).  According to Gustavsen et 

al. (2010) large panes of glazing may contribute to high thermal convection and 

radiation that can lead to excess heat flux that increases indoor envelope surface 

temperature. Kim (2011) argued that an undesired solar load causes penetration of not 

only light, but radiation of 87% to 95%.  Consequently, this results in either a heat loss 

or heat gain effect on post-occupancy energy consumption.  Similarly, state-of-the-art 

window technologies, calculation of ratio between wall and window (Wall Window 

Ratio (WWR)) and glazing distribution by solar heat gain co-efficient (SHGC) and 

corresponding lower U value might not adequately represent building energy 

consumption (Goia, Perino, and Serra, 2013). This can result in the design of a wall 

window ratio that adversely affects indoor thermal comfort and causes sick building 

syndrome (SBS) (Jones, Lannon, and Williams, 2001; Cetiner and Edis, 2013).  It is 
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further justified by Bhola et al. (2000) who stated that even 20% thermal mass 

discrepancy in an envelope may affect occupant thermal comfort in a mechanically-

ventilated building (i.e. air-conditioned building).  Considering the issues pertaining 

to energy consumption, Konis (2013), confirmed that lack of focus on envelope shape 

during the conceptual design phase posed a challenge that could impact on energy 

performance failure.  In addition, the arguments of Goia et al. (2013) proved that 

without an appropriate geometrical profile, designers fail to gauge the accuracy of 

energy performance only by envelope materials.  This proves that building shape 

characteristics such as compactness, coefficient and aspect ratio influences heat 

transfer, in addition to window and glazing combination.  Therefore, it is pertinent to 

have appropriate shape characteristics during the conceptual design stage.  

 

 

Envelope shape is usually defined in the early design stages and is most likely 

to suffer little change until the end of the design process.  The energy consumption 

values are never calculated during the conceptual design phase, due to a lack of design 

information and extensive modelling requirements for energy simulation. These are 

considerably time-consuming, as the design of the shape is mostly performed by “rule 

of thumb” (Goia et al., 2013). Although the guideline facilitates the role of the 

designer, it is often not sufficient for more complex design projects. Therefore, in a 

long building lifecycle the issue of building shape plays a pivotal role in improving 

the resultant performance of the buildings (Huang et al., 2007). Therefore, choice of 

building shape is significant in the case of achieving energy efficiency (Wang et al., 

2006). Enforcing regulation through envelope shape efficiency can assess the shape 

behavior against heart transfer variables such as radiation and thermal infliction which 

could prevent energy performance failure. To achieve shape-based energy 

optimization, there is a need for a divisive design approach that can aid a designer 

during the conceptual design phase.  
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1.1.2 Building envelope methods, approaches and simulation in design process 

 

 

In design, applications of simulation and optimization are in the frontline to 

address building energy performances issues.  They are mostly concerned with 

addressing discrete variables such as building materials, insulation, glazing type and 

shading devices respectively. For example, Kim (2011) describes a design of carbon 

reduction method which used low-E-coated glass. This is a transparent composite 

façade system which failed to reflect heat and counter heat gain or heat loss. Similarly, 

Gou and Lau (2012), and Tzempelikos, Athienitis, and Karava (2007), developed an 

alternate method that uses operable window and shading devices to curb heat gain.  

Susorova et al. (2013), found that an embedded vegetative technique might improve 

thermal behavior by preventing evapo-transpiration and convective heat exchange 

between vegetation and an envelope layer.  Cetiner and Edis (2013), studied various 

proportions of WWR for building an envelope that considered orientations, 

dimensions and thermal insulations. Su and Zhang (2010) suggested a life cycle 

assessment approach that analyzed the environmental impact of envelope 

heterogeneous variables such as window types and WWR.  Although Goia et al. (2013) 

proved how robust window design could reduce heat gain and heat loss from 9% to 

15%, this still depends largely on window type (i.e. super window). However, the life 

cycle assessment that is made for windows does not seem to contain viable decision 

methods during the conceptual design phase.  Further, it is less predictable without 

adequate design information. Therefore, Choi, Loftness and Aziz (2012), ascertained 

that a less-informative design phase (i.e. conceptual design) is advisable by which to 

use widely-accepted design-based IEQ guidelines (i.e. Building Research 

Establishment Environmental Assessment Method; LEED- The Leadership in Energy 

and Environmental Design; HK-BEAM – Hong Kong Building Environmental 

Assessment Method; and BEES-Building for Environmental and Economic 

Sustainability) so as to help a designer.  However, Catalina et al. (2013), argued that 

most performance failures occurred due to the lack of a reliable expert system that 

could integrate design data such as shape, WWR, climate data, orientation, envelope 

material properties, and window properties respectively.  
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The research noticed an increasing tendency to use more simulation and 

optimization during the detailed design phase. For instance, Bouchlaghem (2000) 

proposed a graphical model that can simulate thermal performances; this could be 

applicable during the detailed design phase. The graphical model requires detailed 

information such as envelope material characteristics that were not available during 

the conceptual design phase. Sozer’s (2010) multi-criteria decision-making approach 

tested the thermal performance of single glass with insulated window, double glazed 

window and Low-E glass components respectively.  According to Rapone and Saro 

(2012), thermal comfort index is not achievable without ‘U’ value. Findings from these 

studies indicated that there is a possibility to curb latent radiation but composition of 

glazing, shading devices alone is not an efficient mechanism by which to obtain 

optimum facade performance.  Therefore, Zemella et al. (2011) proved that single 

objective and multi-objective optimization can enable designers to select envelope 

options based on energy consumption range but not cause an inflictive relation 

between the variables. Therefore, Han et al. (2007), proposed a regression model that 

could evaluate heterogeneous variables (i.e. U values, orientation, shading devices, 

length).  Similarly, according to Leskovar and Premrov, (2011), mathematical 

interpolation considers a number of variables such as material properties, plan aspect 

ratio, ceiling heights, orientations, ventilation rate, glazing and shading. However, 

through the use of multi-criteria optimization, it is possible to achieve total 

performance, but inflictive variance for WWR is not achievable and was not applicable 

during the conceptual design phase (Jin, Overend and Thompson, 2012). 

 

 

 The challenge for the above-discussed studies is to design and identify the 

optimal solution for facade based on solar radiation, IEQ performance, window 

performances and glazing respectively.  Considering an exclusive set of conditions 

might not be feasible to make an appropriate design decision during the conceptual 

design phase. This proves that facade performance is not defined solely by 

homogenous variables that set energy inertia for optimization.  Very few studies have 

addressed in combination the elements of façade, using two and not more than four 

variables.  The empirical evidence of post-occupancy data proves that envelope 

variables are inter-related, which inflict upon one another for heat transfer. 

Encouraging the application of these methods during the conceptual design stage has 
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failed to facilitate the task of a designer and is possible only with larger design data 

that could be obtainable during a detailed design phase. This research emphasizes that 

the resultant performance failure in building is influenced by combinatorial envelope 

variables that were not researched to a large extent.  In addition, none of the above 

studies considered the use of the shape variable to find their relative effect on WWR 

and glazing proportion. Therefore, this research posits that there is a lack of a holistic 

approach that could identify appropriate shape, WWR and glazing for energy 

efficiency during the conceptual design phase. 

 

 

 

 

1.2 Problem statement  

 

 

The envelope shape of a building is the most salient design characteristic and 

has a significant influence on energy consumption during the post-occupancy service 

life of the structure. However, during the conceptual design phase, envelope shape-

finding is defined without considering the energy performance required during post-

occupancy service life. This warranted absence of a priori knowledge on shape-based 

convective heat transfer affects indoor environment quality and can impede post-

occupancy energy performance efficiency.  For instance, poor building shapes and 

inadequate proportions of WWR and glazing are recognized as significant causes for 

undesired heat gain and thermal convection (Konis, 2013).  This influence of thermal 

discomfort and poor indoor environmental quality has become a prime cause for 

occupant sensorial unpleasant symptoms and psycho-social illness (sick building 

syndrome).  Furthermore, the larger deviation between the designed building and the 

actual built energy performance, proves that a designer could not efficiently gauge the 

accuracy of energy assumptions during the conceptual design phase (Stiny, 2006; 

Fernandes et al., 2014).  The approaches and methods that were discussed in Section 

1.1.2 addressed only homogenous envelope variables and not a combination of factors 

(i.e. WWR and glazing; glazing kind and shading devices; window types and shape).  

These sought to improve indoor environmental quality and energy performance 

efficiency.  Therefore, not enough investigation has been conducted into the pursuit of 

validating the building envelope shape variables in combination such as shape 

compactness, coefficient, aspect ratio, WWR and glazing against heat transfer 
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variables.  This proved that the research gap is significant in order to reduce design-

influenced energy performance failure and variance in post-occupancy energy 

consumption.  Therefore, it can be seen as a phenomenon that needs further 

investigation so as to develop a simulation-based optimization approach that facilitates 

the task of the designer during the conceptual design phase.  To address the research 

problem, this study developed two main research questions (RQ).  RQ 1 seeks to 

investigate the landscape of post-occupancy energy performance issues, failures 

pertaining to envelope design and formulation of combinatorial variables that 

influence post-occupancy energy performances. RQ 2 is further divided into three sub-

RQs which aim to answer the following: shape influenced energy performance; 

identification of appropriate shape combinations; and developing a designer approach 

for energy efficiency.  This approach enables a designer to quantify the impact of 

envelope shape and compare it with swarm of various design alternatives for ‘n’ best 

design solutions. Answering these research questions develops a benchmark for 

various shape compactness in order to achieve optimal thermal and energy 

performances.   

 

RQ 1: What are the combinatorial design-based envelope variables that affect the 

energy performance? 

 

RQ 2: How can appropriate building shape for energy optimization be identified? 

 

Sub RQ 2a:  How does building shape influence post-occupancy energy   

performance?  

Sub RQ 2b: What is the appropriate envelope combination (building shape, WWR 

and glazing) needed to improve energy optimization? 

Sub RQ 2c:  How can a design approach that will enable designers to predict 

building shape behavior against energy performance be developed?  

 

 

 

 

1.3 Proposition 

 

 

 Based on the extensive review of envelope energy performance issues and 

identified research problems, this research theorized two propositions that needed to 
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be tested by simulation.  Through the formulation of Proposition 1 and Proposition 2, 

this study answers the research questions.  Proposition 1 examines the various 

primitive and non-primitive building shape energy performance behavior and 

identifies their relationship with heat transfer variables.  Proposition 2 theorized based 

on WWR and glazing proportions a combinatorial relationship with shape that inflicts 

a heat transfer variable.  Both these propositions set the way forward to developing an 

approach that could determine building shape efficiency during the conceptual design 

phase. 

 

 

Proposition 1: For a building shape that influences energy performance  

 

“Proportionate increase in either building shape compactness, aspect ratio or 

coefficient adversely affects the building shape thermal performance such as heat 

transfer. Similarly, solar radiation has a high influence on energy consumption based 

on shape geometrical characteristics”  

 

 

Proposition 2: For appropriate shape, WWR and glazing combination 

 

“As the shape compactness, shape coefficient and aspect ratio achieves its geometric 

efficiency, appropriate WWR and glazing proportions that optimize energy 

performance are developed”.  

 

 

 

 

1.4 Aims and objectives  

 

 

The aim of this research is to determine building shape energy efficiency using 

simulation and optimization. This is expected to enhance the building shape-finding 

process during the conceptual design stage in order to obtain an effective building 

shape that could achieve energy efficiency.  However, there is a distinctive difference 

in conceptualizing a building shape that considers various design constraints in an 

iterative design process (Jaganathan et al., 2013).  Nevertheless, if the shape-finding 

process integrates simulation and optimization during the conceptual design stage, it 

is possible to predict accruable energy performance and curb design-influenced energy 
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performance failure.  This approach examines the shape energy performance behavior 

during the conceptual design phase and enables a designer to find the best fit shape-

based design solution and reduce post-occupancy performance failures.  

 

 

The aim of this research is to achieve a break-down of the following objectives.  

In pursuit of addressing the issue of shape-based energy optimization, the first 

objective investigates energy performance issues and design failures.  Thus, there is a 

requirement to formulate variables that need to be considered during the conceptual 

design phase.  These justified, shape-based variables need to be incorporated into the 

thermal transient simulation process.  The second objective is to simulate the various 

primitive and non-primitive building shapes so as to understand the energy 

performance behavior pertaining to the heat transfer variable and identify their 

relationship. Thus, we proceed to the third objective which is to develop a design 

approach for energy efficiency that can facilitate the task of the designer during the 

conceptual design phase. 

 

Objective 1: To formulate envelope shape variables that influence post-occupancy 

energy performance.  

Objective 2: To investigate various building shape influences on energy performances 

by simulation.  

Objective 3: To develop a design approach for building shape energy optimization  

 

 

 

 

1.5 Research methodology 

 

 

Many design researchers conducted a simulation to evaluate building 

performance considering homogenous and heterogeneous variables ( Mc Keen and 

Fung, 2014; Mangkuto, Rohmah and Asri, 2016).  In particular, the meta-heuristic 

evolutionary multi-objective optimization algorithm (i.e. genetic algorithm, artificial 

neural network and particle swarm optimization) was the applied method by which to 

estimate, evaluate and predict energy performance, IAQ, and IEQ.  For instance, Holst 

(2003) used a genetic optimization approach and energy in their case study in order to 

minimize energy use and developed a comfort metric for indoor environmental 
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comfort. Similar approaches were carried out by Torres and Sakamoto (2007) and 

Gagne and Anderson (2010); both used a genetic algorithm to achieve optimized 

daylight availability.  To determine a link between design and post-occupancy energy 

performance, Bambrook et al. (2011) and Schnier and Gero, (1998) used a “brute-

force” method and e-quest to minimize energy use and reduce carbon emissions.  This 

was achieved by varying building fabric properties such as glazing and mechanical 

ventilation of a building.  Most of the said meta-heuristic approaches evaluated 

heterogeneous envelope variables such as: windows; type of glazing; glazing 

proportions; and shading devices for energy optimization (Al-Homoud, 1997a, 2005b; 

Caldas and Norford, 2003; Torres and Sakamoto, 2007; Znouda et al., 2007; Wright 

and Mourshed, 2009; Manzan and Pinto, 2009).  These studies justify the use of a 

coupled approach for simulation energy performance optimization.  On this basis, the 

current study investigates shape energy performance behavior as against heat transfer 

variables by using CFD simulation and particle swarm optimization.  Further, Coley 

and Schukat (2002) affirm that, in order to collect multiplicity of empirical data, the 

case study is an appropriate approach through which simulation and Particle Swarm 

Optimization (PSO) could be explored.  This case study approach enables the 

simulation of the effect of thermal flow impact on primitive and non-primitive shape 

cooling load.  

 

 

The case study approach was employed to collect real time data by way of 

interviews, direct observations, and archival data (i.e. building information) which 

enabled a base line model to be developed. With the help of a baseline model, transient 

simulations were conducted for primitive and non-primitive building shapes as against 

heat transfer and radiation.  Varied combinations of shape energy performances were 

optimized by using particle swarm optimization to find ‘n’ best envelope shape 

combination.  The outcome of this approach was further validated by using sensitivity 

analysis for calibration.  The case study research and their components are briefly 

discussed and shown in Figure 3.1 in Chapter 3. 
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1.6 Significance of research 

 

 

 This study supports the integration of a shape-based energy efficiency design 

solution during the conceptual design phase that uses simulation and optimization 

respectively.  Moreover, the study supports the possibility to predict accruable post-

occupancy service life energy performances. It can also help a designer to select energy 

efficiency based design solutions in several design alternatives and discard one-off 

design solutions.  It has the potential to close the gap between the accruable energy 

performance during the conceptual design phase and actual energy performance during 

post-occupancy service life. Furthermore, extensive investigations of the past thirty 

years of research works and empirical data clearly proves that considering energy 

optimization is most important during the conceptual design phase to reduce post-

occupancy performance failures.  A thorough literature review has indicated the 

knowledge gap; that is, there is a need for an approach that should be developed based 

on building shape energy efficiency. For instance, it was determined that the lack of a 

holistic design approach, studies relating to building energy performance and their 

findings were conceptual and could be attributed to post-occupancy performance 

failures.  Secondly, existing optimization models, recommendations and guidelines 

(i.e. BREEAM, LEED, HK-BEAM, BEES, GBI-Malaysia) that fail to consider design 

variables such as shape, besides material input in a detailed iterative simulation were 

considered.  Moreover, most of the approaches that were complex and time-consuming 

could be used only in the detailed design stage. Lastly, literature reiterates that post-

occupancy energy performance failures in buildings adversely affect total building 

performances such as IEQ, thermal performance, health and hygiene, and occupant 

productivity.  To overcome all these energy performance failures, it is necessary to 

develop a design approach that can incorporate shape-based energy optimization 

during the conceptual design phase.  Therefore, the study sets the investigation 

strategically in two major phenomena that are lacking in the contemporary design 

approach: 

 

I. Envelope shape design should respond to post-occupancy energy performances.   

II. It is necessary to develop an integrated optimization approach during the 

conceptual design phase with reference to case-based building energy 

performance for reducing design failures.  
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1.7 Organization of the thesis 

 

 

 This thesis is organized into six chapters as follows. 

 

Chapter 1 presents the research background, problem statement, research question, 

aims and objective of this research, summary of research methodology and 

significance of research study. 

 

Chapter 2 presents a thorough literature review related to this research work.  In this 

chapter, the discussion sets its focus on post-occupancy energy performance failure, 

design led flaws in performance gap, governing performance envelope attributes in 

addition to energy performances methods, measures, and models.  The knowledge gap 

is outlined and discussed with the need for methods that identify the envelope shape 

and optimization models during the design phase. 

 

Chapter 3 presents a review of research approaches relevant to this study and makes 

comparisons for identifying suitable research methods.  The research framework 

explains components of case study, baseline model for transient simulation of various 

shape cluster energy consumption and optimization methods to identify appropriate 

envelope shape.  Lastly, the approach is validated using sensitivity analysis for 

calibration. 

 

Chapter 4 presents the results and analysis of data collected during the case study as 

explained in Chapter 3.  Reporting the findings relies on simulation of various shape 

cluster results.  Results of shape cluster are interrelated with shape and heat transfer 

variables.   

 

Chapter 5 presents the discussion of major findings of simulations and validation of 

the design approach that has been developed.  The first part of this chapter is dedicated 

to discussion of various shapes’ energy consumption while the second part elaborates 

upon the evolutionary design approach.  The last section describes the two step 

validation process for the evolutionary optimization approach for envelope shape 

design. 
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Chapter 6 summarizes the whole thesis and its findings.  It discusses the usefulness 

of the simulation and optimization approach during the conceptual design phase. The 

optimization approach is described and recommendations for further research when 

applying integrated simulation and optimization are also provided.  Finally, the chapter 

concludes by highlighting the knowledge contribution of the thesis as well as its impact 

on professional practice.   
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