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An ultrashort pulse fiber laser has been proposed due to the problem of bulky 

size and high cost of the Titanium Sapphire laser and other commercial ultrashort 

pulse fiber lasers. Thus, this study focused on the development of a robust, compact 

and stable femtosecond mode-locked fiber laser via optical telecommunication 

components. This laser was designed to have a high repetition rate (80 - 100 MHz) 

and average output power (30 - 50 mW), and also a narrow pulse width (< 100 fs) 

which are crucial for a laser source used in all-fiber terahertz time domain 

spectroscopy system. A short cavity was needed in order to get a high repetition rate 

while the effect of optical dispersion in the cavity was included in order to produce a 

narrow pulse width. This design employed a passive mode-locked technique with a 

carbon nanotube thin film as the saturable absorber. Initially, a diode laser of 980 nm 

wavelength was used as a pumping source and a 0.4 m long of highly erbium-doped 

fiber with 110 dB/m peak absorption at wavelength of 1530 nm was utilised as a gain 

medium. Then, in order to achieve the desired parameters, the pump power was 

increased to raise the repetition rate of the pulse laser and a supercontinuum 

generation technique was adopted to compress the pulse width. The preliminary 

results of the designed laser show a fundamental repetition rate of 67.8 MHz at 

mode-locking threshold pump power of 63.5 mW. The average output power and 

pulse width obtained are 0.77 mW and 410 fs respectively. The increment of pump 

power to 104.2 mW significantly increased the fundamental repetition rate to 193.5 

MHz which corresponds to the 3rd order harmonic and compressed the pulse width 

to 70 fs. The average output power after compressing the pulse width is 4.27 mW.  

As the conclusion, two of the targeted parameters of the laser have been successfully 

attained. This design however has not been able to produce the targeted average 

output power and to operate with the desired parameters simultaneously. 
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Satu laser gentian denyut ultra-pendek telah dicadangkan kerana masalah 

berhubung dengan saiz yang besar dan kos yang tinggi bagi laser Titanium Sapphire 

dan laser gentian denyut ultra-pendek komersial yang lain. Oleh itu, kajian ini 

menjurus kepada pembangunan laser gentian mod terkunci femto-saat yang tahan 

lasak, lebih kecil dan stabil menggunakan komponen telekomunikasi optik. Laser ini 

direka bentuk untuk mempunyai kadar pengulangan (80 - 100 MHz) dan kuasa 

output purata (30 - 50 mW) yang tinggi, dan juga lebar denyut yang sempit (< 100 fs) 

kesemuanya penting bagi satu sumber laser yang digunakan dalam sistem 

spektroskopi domain masa terahertz semua gentian. Satu rongga pendek diperlukan 

untuk menghasilkan kadar pengulangan yang tinggi manakala kesan penyebaran 

optik dalam rongga diambil kira untuk menghasilkan lebar denyut sempit. Reka 

bentuk ini menggunakan teknik mod terkunci pasif dengan filem nipis karbon bertiub 

nano sebagai penyerap boleh tepu. Pada mulanya, laser diod dengan panjang 

gelombang 980 nm digunakan sebagai sumber pam dan gentian berdop erbium 

sepanjang 0.4 m dengan penyerapan puncak 110 dB/m pada panjang gelombang 

1530 nm digunakan sebagai medium gandaan. Kemudian, untuk mencapai parameter 

yang dikehendaki, kuasa pam dinaikkan untuk meningkatkan kadar pengulangan 

denyut laser dan teknik penjanaan ultra-selanjar telah digunakan untuk 

memampatkan lebar denyut. Hasil awal laser yang direka bentuk menunjukkan kadar 

pengulangan asas ialah 67.8 MHz pada kuasa ambang pam mod terkunci 63.5 mW. 

Kuasa output purata dan lebar denyut yang diperoleh masing-masing ialah 0.77 mW 

dan 410 fs. Peningkatan kuasa pam kepada 104.2 mW telah meningkatkan kadar 

pengulangan asas dengan ketara kepada 193.5 MHz yang dipadankan dengan 

harmonik tertib ketiga dan memampatkan lebar denyut kepada 70 fs. Sebagai 

kesimpulannya dua parameter laser yang disasarkan telah berjaya diperolehi. Reka 

bentuk ini bagaimanapun tidak dapat menghasilkan kuasa output purata yang 

disasarkan dan beroperasi dengan parameter yang diinginkan secara serentak. 

ABSTRAK 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Background of Study 

The laser invention in 1960 had sparked the interest in optical physics, and 

among the arising research field is ultrafast optics fields where generations of 

nanosecond (10
-9

) pulses by the first mode-locked laser is initiated. Yet, the 

generation of ultrafast pulses are remained as the active research subject thus led to 

the variety of designs including assembly of time scale pulses of femtosecond (10
-15

). 

The short pulse laser system had explored through a wide range of areas including 

scientific research field, medical and industrial applications. This system with 

ultrashort pulses had been studied in time resolves studies in chemistry, two photon 

and CARS spectroscopy and microscopy, optical coherence tomography and 

terahertz generation. In the medical field, the applications that related to short laser 

pulses are including eye laser surgery and dentist drill. For industry applications, 

ultrafast lasers are implied in micro-machining and marking [1]. 

Generally, for terahertz generation, multi-wavelengths lasers such as dual-

wavelength lasers with closely spaced lines are required, either as a high-power 

continuous wave (CW) or pulse laser sources. One of the developments of the 

femtosecond laser that mostly been constructed for terahertz generation is Titanium 

Sapphire femtosecond lasers [2–5]. A solid state laser known as Titanium Sapphire 
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(Ti: sapphire) have operating wavelength at spectral range of 0.75 µm to 1.0 µm. 

This laser is most extensively utilised as an ultrafast optical source due to the large 

bandwidth and superior thermal properties of the laser. However, this laser came 

with bulky, complicated system, and very expensive. Therefore, due to this problem, 

a compact and cost-effective laser source should be considered, and the idea of 

femtosecond laser generation using fiber had been carried out. Fiber based sources 

commonly used for telecommunications in the wavelength region of 1.5 µm. Erbium 

doped fiber (EDF) is desirable as a gain medium in this region due to the 

development of wavelength division multiplexed systems (WDMs). Femtosecond 

fiber lasers offer several advantages over bulk solid-state lasers, including greater 

stability, reduced alignment sensitivity, and compact design [6–8]. Furthermore, fiber 

lasers are efficient and these qualities make short pulse fiber lasers more attractive.  

Femtosecond fiber laser can also be achieved using electro-optics 

components integrate with the laser cavity which is known as the active approach. 

However, this approach introduces high loss and increased complexity to the setup. 

As an alternative, passive mode-locking is preferable compared to the active 

counterpart due to the compactness, simplicity, and reliability of a saturable absorber 

(SA) in the laser cavity design. Recently, single wall carbon nanotubes (CNTs) have 

emerged as a promising SA due to their low saturation intensity, sub-picosecond 

recovery time, and environmental robustness [9]. By contrast, the predominant SAs, 

for example, semiconductor saturable mirrors, are limited by their narrow tuning 

range for only a few nanometers (nm), high cost in the fabrication process and 

packaging [10]. Fabrication of these materials can be challenging in the 1.3–1.5 µm 

region for optical communication purposes [11,12].  

Therefore, this work focused on the development of ultrashort femtosecond 

fiber laser pulses used as a laser source for terahertz wave generations. Research on 

the development of a robust, compact and stable of the laser is performed. 
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1.2 Problem Statement 

Currently, fiber lasers are the alternative way to solid state lasers as they offer 

ultrashort pulse duration with good consistency, compactness, alignment free and 

excellent beam quality. Common techniques for prompting the mode-locked 

operation of a fiber laser is nonlinear polarization evolution (NPE) and 

semiconductor saturable absorber mirror (SESAM). Both techniques had limitations 

as they suffer from high-intensity losses, limited operation bandwidth and a complex 

and expensive fabrication process. Therefore, to overcome the issues, unconventional 

and new saturable absorbers such as carbon nanotubes, graphene and few-layer 

molybdenum disulfide (MoS2) had been employed since they are broadband and 

cost-effective. Then, high repetition rate pulses in mode locked fiber lasers could be 

achieved either by shortening the cavity in centimeter scale or employed harmonic 

mode locking (HML). Synthesized carbon nanotubes microfiber saturable absorber 

in the laser cavity had generated pulse width of a passively mode-locked fiber laser. 

However, by compressing the designed passively mode-locked fiber laser using 

nonlinear dispersive media, it can narrow the pulse width and gives a superbly 

broadens spectrum known as supercontinuum generation. Thus, this believes can 

gives high repetition rate pulses in mode locked fiber lasers with narrow pulse width. 

1.3 Research Objectives 

The main aim of this study is to develop a femtosecond fiber laser system 

with simple cavity design. This work is measured based on the performance of the 

designed fiber laser, where it is divided into four sequence objectives given as 

follows; 
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1. To characterise the erbium-doped fiber (EDF) as the gain medium and modes of 

the laser operation. 

2. To attain ultra-short pulse fiber laser via the passively mode-locked technique 

using carbon nanotubes saturable absorber. 

3. To determine the high pulse repetition rate ~80 to 100 MHz with harmonic 

mode-locked methods. 

4. To narrow the pulse width from picosecond into femtosecond by using 

supercontinuum generation technique. 

1.4 Scope of Study 

This work is conducted to develop a femtosecond fiber laser and the scope is 

focused on using a passively mode-locking technique. It is preferable to the active 

counterpart owing to the compactness, simplicity, and reliability of a saturable 

absorber (SA) in the laser cavity design. A carbon nanotubes thin film is employed as 

a promising saturable absorber due to the low saturation intensity, sub-picosecond 

recovery time, and environmental robustness. A laser diode of InGaAs at the 

wavelength of 980 nm is efficiently pumping for compact and reliable of laser source 

at wavelength 1.5 -1.6 µm. Erbium doped fiber (EDF) gain medium operating in the 

telecommunication wavelength region of 1.55 µm is utilised because it has the 

simplest approach to designing fiber laser system, and potential to deliver high-

quality mode-locked pulses. The gain medium has two different absorption peak 

power of 16 dB/m with length fixed at 300 cm and 110 dB/m with length varied from 

30 cm, 40 cm, to 50 cm. These gain medium lengths are depending on the total 

cavity length for laser generation. A hundred meters of highly nonlinear fiber is 

employed as dispersive media for pulse narrowing thru supercontinuum generation 

due to its zero dispersion wavelengths at 1568 nm, which corresponds to the region 

of injected mode-locked erbium doped fiber laser (ML-EDFL). 
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1.5 Significances of Study 

Generation of the femtosecond fiber laser had facilitated in improving the 

laser technology and move away from Titanium; Sapphire solid state laser into 

compact pulse fiber laser. The primary contributions of this study are occupying the 

demands of low-cost compact fiber laser as a source of all fiber system terahertz time 

domain spectroscopy. Through this study, it will benefit to the other researchers in 

understanding and construct the femtosecond fiber laser step by step. Researchers 

may vary the technique used for femtosecond fiber laser generation and also 

improvise using novel theory and method. 

1.6 Thesis Structure and Organization 

 The thesis outline has begun with the introduction to the work in Chapter 1. 

Divide into several subtopics, the study frameworks are discussed through the 

problem statements, followed by objectives of the research. Then, scopes of study 

applied are stated in detail and contributions of this study are identified in the 

subtopic of significance of the study. 

In Chapter 2, the theoretical aspects of this work are highlighted, including 

the theoretical background of pulse propagation in optical fibers, rate equation of 

erbium doped fiber (EDF) as the gain medium, mode operation of the laser; 

continuous wave and pulse wave. Also, possible techniques of pulse generations 

include; Q-switching, mode-locking and Q-switched mode locking. Most focus is on 

passively mode locking since the objective is the mode locked generation using this 

technique. This chapter also concisely introduced with theoretical equations and the 

essential parameters of the mode locked output characterization. 
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Chapter 3 introduces the optical instrument or components utilised in this 

work. Optical properties, including pump laser diode, Erbium doped fiber absorption 

properties, carbon nanotubes saturable absorber characterization method based on a 

literature review, and setup for a series of the experiment are graphically explained 

and presented in this chapter. 

The experimental results taken based on the presented setup in chapter 3 and 

data analyses are covered in Chapter 4. This chapter starts with a basic 

characterization of pump laser diode, then different length of Erbium doped fiber 

which acts as a gain medium with different absorption are analysed. The output 

performance of the constructed simple ring cavity of Erbium doped fiber laser 

(EDFL) with different length and Erbium-doped concentration is analysed and 

discussed. Afterward, the characterization of the pulse wave laser generated by 

inserting the carbon nanotubes saturable absorber known as a passively mode-locking 

generation is obtained and discussed. To generate a high repetition rate of the mode-

locked laser, harmonic mode locking at a particular pump power is observed. Further 

development of the femtosecond fiber laser, the EDFL based carbon nanotubes 

saturable absorber is demonstrated as a pulse source for supercontinuum (SC) 

generation, and 100 m of highly nonlinear fiber (HNLF) is being required as the 

nonlinear medium. 

Chapter 5 summarized all the results and discussions on the generation of the 

ultrashort pulse fiber laser. The outlook and aim of this work are again highlighted. 

The problems and limitation occurred during the research work are discussed as well 

as the future work needed to overcome the problems are suggested. 
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