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ABSTRACT 
 

 

 

 

This research is focused on the development of a new magnetorheological 

(MR) fluid which contains maghemite (γ-Fe2O3) nanoparticles so as to improve its 

performance. The performance of MR fluid is presented in terms of physical and 

rheological properties and its application in MR device. In this work, the γ-Fe2O3 has 

been synthesized using co-precipitation method and coated with oleic acid.  Two 

types of MR fluids were prepared, bidisperse MR fluid containing carbonyl iron (CI) 

microparticles substituted with γ-Fe2O3 and MR fluid utilizing γ-Fe2O3 additive.  MR 

fluid containing γ-Fe2O3 showed great improvement exhibiting reduced 

sedimentation rate and enhanced re-dispersibility. During the period of 50 hours, the 

bidisperse MR fluid with 5 wt% of γ-Fe2O3 reduced 15% of sedimentation rate and 

MR fluid with 1 wt% of γ-Fe2O3 additive reduced 9.6% of sedimentation rate 

compared to pure CI MR fluid. The rheological properties of the MR fluid were 

analyzed with respect to the rheological models of Bingham Plastic, Herschel 

Bulkley and Casson models. The rheological properties of bidisperse MR fluid 

revealed that the substitution of 5 wt% γ-Fe2O3 increased the yield stress by 8.5% but 

further substitution of γ-Fe2O3 would slightly decrease the yield stress. On the other 

hand, the MR fluid added with γ-Fe2O3 additive showed improvement in yield stress 

over the entire range of magnetic field applied. The results indicated that the addition 

of 1 wt% of γ-Fe2O3 in MR fluid increased the yield stress by 11.7%. The 

performance of MR fluid using MR valve equipped with a hydraulic bypass damper 

resulted in improvement of damping force when γ-Fe2O3 is added. The MR fluid 

with 1 wt% γ-Fe2O3 additive improved the maximum damping force up to 11.1% 

compared to the pure MR fluid. Therefore, the substitution and addition of γ-Fe2O3 

nanoparticles in the MR fluid improved both its physical and rheological properties, 

hence it can potentially be used in commercial application as a simple and reliable 

damping device. 
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ABSTRAK 

 

 

 

 

Kajian ini diberi tumpuan kepada penghasilan bendalir magnetorheologi (MR) baru 

yang mengandungi nanopartikel maghemite (γ-Fe2O3) untuk meningkatkan 

prestasinya.  Prestasi bendalir MR ditunjukkan dari segi sifat fizikal dan reologi dan 

aplikasinya dalam peranti MR.  Dalam kajian ini, γ-Fe2O3 telah disintesis dengan 

menggunakan kaedah pemendakan dan dilapisi dengan asid oleik.  Dua jenis bendalir 

MR disediakan, bendalir campuran MR yang mengandungi micropartikel besi 

karbonil (CI) digantikan dengan γ-Fe2O3 dan bendalir MR yang ditambah dengan 

bahan tambahan γ-Fe2O3.  Bendalir MR yang mengandungi γ-Fe2O3 menunjukkan 

peningkatan di mana kadar pemendapan dikurangkan dan penyebaran semula 

dipertingkatkan.  Dalam tempoh 50 jam, bendalir campuran MR dengan 5% γ-Fe2O3 

mengurangkan 15% kadar pemendapan manakala bendalir MR dengan 1% bahan 

tambahan γ-Fe2O3 mengurangkan 9.6% daripada kadar pemendapan berbanding 

bendalir MR CI tulen.  Sifat-sifat reologi dari bendalir MR dianalisis dengan model 

rheologi iaitu model Bingham Plastic, Herschel Bulkley dan Casson.  Sifat rheologi 

bendalir campuran MR menunjukkan bahawa penggantian 5% γ-Fe2O3 

meningkatkan tegasan alah sebanyak 8.5% tetapi penggantian γ-Fe2O3 seterusnya 

akan mengurangkan sedikit tegasan alah.  Sebaliknya, bendalir MR yang ditambah 

dengan bahan tambahan γ-Fe2O3 menunjukkan penambahan tegasan alah apabila 

kekuatan medan magnet yang berbeza dikenakan.  Keputusan menunjukkan bahawa 

penambahan 1% γ-Fe2O3 dalam bendalir MR meningkatkan tegasan alah sebanyak 

11.7%.  Prestasi bendalir MR menggunakan injap MR yang dilengkapi dengan 

peredam pintasan hidraulik menghasilkan peningkatan daya redaman apabila γ-Fe2O3 

ditambah.  Bendalir MR dengan bahan tambah 1 % γ-Fe2O3 meningkatkan daya 

redaman maksimum hingga 11.1% berbanding bendalir MR tulen. Oleh itu, 

penggantian dan penambahan nanopartikel γ-Fe2O3 dalam bendalir MR menambah 

baik ciri fizikal dan rheologinya, maka ia berpotensi untuk digunakan dalam aplikasi 

komersil sebagai peranti redaman yang ringkas dan boleh dipercayai. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Research Background 

 

 

Magnetorheological (MR) fluids fall in the class of smart materials, due to its 

controllable rheological properties. MR fluid rheological properties can be 

continuously, rapidly, and reversibly changed with the present of a magnetic field, 

which makes this material of high interest, due to its real-time MR response [1].  MR 

fluid typically consist of micron-sized particles suspended in a non-magnetic fluid.  

MR fluid has an apparent yield stress up to 100 kPa depending on the composition, 

concentration of the particle and magnetic field strength [2].  The rheology of MR 

fluids has attracted much attention since its properties can be monitored by the 

application of magnetic field.  Due to the improvement in MR technology, research 

on the MR characteristic and its applications are increasing, ranging from the 

automotive and civil engineering to the biomedical applications [3].  

 

 

 The important characteristics of magnetic particles described and used in the 

MR fluid are includes the saturation magnetization, distribution of particles size and 

shape and coercive field [4].  Besides the magnetic particles itself, carrier fluid, 

surfactants and additives are other important factors that can influence the 

rheological properties, stability and re-dispersibility of MR fluid [1].  In the absence 

of magnetic field (off-state), the magnetic particles in MR fluid are randomly 

dispersed in the carrier fluid.  Under the influence of magnetic field (on-state), the 

dispersed particles formed a chain-like structure in the direction of the field with the 

pole of one particle being attracted to the opposite pole of another particle [5,6].  The 

inert-particle forces 
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originating from the alignment of this magnetic particles lead to a material with 

higher yield stress and apparent viscosity [7].  The chain-like structure formed by the 

particles during application of magnetic field resist to a certain level of shear stress 

without breaking and the fluid behave as a solid-like liquid [8].  When the shear 

stress exceeds a critical level, the chain structure breaks and the fluid starts to flow.  

The value of shear stress at this critical level is known as apparent yield stress of the 

fluids [9]. 

 

 

Most of the success of MR fluid used in the devices is largely due to the 

advancement in fluid technology.  The biggest challenges of MR fluid are to have 

high turn up ratio, high maximum yield stress and producing a stable and re-

dispersible MR fluids [1,10].  To achieve all these criteria, researchers have to find a 

way to produce the best MR fluid, suitable for commercial applications where 

manufacturing cost and maximum yield stress are critical issues.  Considering high 

density of microparticles dispersed in the MR fluid, their stability and re-

dispersibility are the main issues. Therefore there are severe need to find improved 

methods for facilitating their stabilization [11].  To overcome these drawbacks, 

various methods have been reported to improve stability of MR fluid includes adding 

surfactant such as oleic acid and stearic salt to prevent aggregation [12], and 

thixotropic agent or thickening agent such as silica nano and arabic gum [12,13] to 

prevent particle settling.  Moreover, the use of viscoplastics media such as grease 

[14], water in oil emulsions as continuous phase [15] and ionic liquid as carriers 

[16,17] have also been investigated.  Besides that, some researchers also used 

different shapes of magnetic particles (flake shape) to improve its stability [18,19].  

Furthermore, a few researchers improved the magnetic particles by coating them 

with polymers such as poly methyl methacrylate (PMMA) [20] and polyaniline 

(PANI) with multiwalled carbon nanotube (MWCNT) [21].  However, because the 

coating process using polymers are rather complicated, the additive method using 

various materials has been adopted.  The use of these additives such as carbon 

nanotube, CNT [22], organoclay [23] and nanowires [24,25] have been found to 

effectively prevent sedimentation problem [26].  However, it is reported that by 

adding non-magnetic additive into the MR fluid will hinder the formation of chains, 

thus, decreases the MR effect [27].   
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 In order to find a new way to enhance the performance, stability and re-

dispersibility of the MR fluid, the focus has been shifted on suspension composed 

magnetic nanoparticles rather than non-magnetic nanoparticles.  Thus, researches 

have been conducted on the advantages of using the mixture of magnetic 

nanoparticles and microparticles, called bidisperse MR fluids.  Bidisperse MR fluid 

is a fluid that contain both micro- and nanoparticles, where part of microparticles is 

replaced with nanoparticles [17].  Chin et al. [28] reported that it is possible to 

maintain high level of MR effect while reducing the sedimentation rate by replacing 

only part of the microparticles in MR fluid with nanoparticles.  The optimum 

concentration of nanoparticles at which the highest yield stress is reached is depends 

on total magnetic particles concentration.  Based on previous researches, Wereley et 

al. [29] reached highest dynamic yield stress with 7.5 wt% of nanoparticles 

concentration when total particle loading is 60 wt%, whereas, Chauduri et al. [30] 

measured highest yield stress at 5 wt% of nanoparticles concentration with 45 wt% 

total particle loading, while Ngatu et al. [31] achieved highest yield stress at 15 wt% 

of nanoparticles concentration with 80 wt% total particle loading. 

 

 

 Although bidisperse MR fluid was reported to improve the sedimentation rate 

and re-dispersibility of the suspension, this substitution also offers different results in 

the enhancement of yield stress.  Over the years, most researchers concluded that the 

substitution of magnetic nanoparticles has both improved the stability and increased 

the value of yield stress.  Trihan et al. [32] and Wereley et al. [29] reported that 

substitution of 20% magnetic nanoparticles to the MR fluid increase the yield stress.  

Meanwhile, Chaudhuri et al. [30] reported that substitution of 5% magnetite 

nanoparticle (Fe3O4) increased the yield stress but decreased when the magnetite is 

7.5%.  Furthermore, Lopez et al. [33] also reported an increased in yield stress for 

magnetite varied from 0 to 21.6%.  Recent research by Jonkkari et al. [17] also 

reported that 5% substitution of magnetite increased the yield stress up to 13%.  On 

the other hand, several other researchers found that the substitution of magnetic 

nanoparticle into MR fluid would decrease the value of yield stress eventhough the 

sedimentation stability is increased. Rosenfelt et al. [34] reported that the yield stress 

has reduced to 11% for bidisperse suspension compared to the monodisperse 
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suspension.  Ngatu et al. [31] also found that magnetic nanoparticles reduced the 

yield stress of MR fluid up to 64% and Iglesias et al. [35] also reported that the yield 

stress is decreased when 7% of magnetic nanoparticle is substituted into MR fluid.  

Upon comparing the results from all the researches, the enhancement of MR fluid 

yield stress is strongly dependent on the magnetic saturation value of the magnetic 

nanoparticles itself.  Higher value of magnetic saturation in magnetic nanoparticle 

tends to increase the value of yield stress of MR fluid.  Most of the researchers that 

reported the improvement of MR fluid yield stress used magnetite nanoparticles that 

have high magnetic saturation, while in contrast, the researchers that reported in 

reduction of MR fluid yield stress mostly used the iron nanoparticles synthesized 

from carbonyl iron that have lower value of magnetic saturation.  For example, Park 

et al. [36] reported that the iron nanoparticles synthesized from carbonyl iron 

precursor have magnetic saturation of 4.58 emu/g or 9 kA/m, far lower than 

magnetite with magnetic saturation of 410 kA/m [37].   

 

 

 Generally, bidisperse MR fluid can increase the value of yield stress 

compared to monodisperse MR fluid, but however there are certain level of 

nanoparticles concentrations that can be substituted before the yield stress is 

decreased [30].  From manufacturer’s point of view, bidisperse MR fluid gives 

advantages in terms of device weight and cost.  This is because in bidisperse MR 

fluid, the concentration of micron-sized particles is reduced and subsequently reduce 

the weight of the device.   

 

 

There is also another way to improve the MR fluid stability and at the same 

time increase the yield stress.  Based on the literature, most of the researchers 

focused on the development of bidisperse MR fluid and there are only a few 

researches on the use of magnetic nanoparticles as an additive in MR fluid.  The 

usage of magnetic nanoparticle additive is considered as an effective way to enhance 

both the dispersion stability and MR fluid behaviour. In this type of MR fluid, the 

magnetic nanoparticle is added to the suspension of MR fluid without reducing the 

concentration of micron-sized particles.  Over the years, there were only 2 researches 

that have been conducted on the influence of magnetic nanoparticle as an additive in 

the MR fluid.  Park et al. [36] reported the use of iron nanoparticles derived from 
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carbonyl iron with the size of 4 nm, having magnetic saturation of 4.58 emu/g.  They 

added the iron nanoparticles as an additive in the MR fluid with concentration of 0.1 

and 1 wt% and found that at high magnetic field, the yield stress of pure MR fluid is 

6.8 kPa, MR fluid with 0.1 wt% additive is 7.2 kPa and MR fluid with 1 wt% 

additive is 9.7 kPa.  Later on, Jang et al. reported the use of rod shape maghemite (γ-

Fe2O3) nanoparticle with size of 500 nm as an additive in the MR fluid.  They found 

that the addition of 1 wt% of rod shape γ-Fe2O3 in the MR fluid improved the 

sedimentation rate and at the same time increased the MR properties.  Therefore, the 

research on the effect of magnetic nanoparticles as an additive in the MR fluid 

should be increasingly chosen and investigated as it contributes to a better 

performance of MR fluid.  

 

 

Most of the researchers investigated the use of magnetite nanoparticle in MR 

fluid compared to maghemite nanoparticle (γ-Fe2O3) because the value of magnetic 

saturation of magnetite nanoparticle is slightly higher than maghemite nanoparticle 

[38].  However, maghemite nanoparticle is chemically stable and exhibits higher 

curie temperature compared to magnetite nanoparticle that is not stable and easy to 

oxidize [39].  The use of maghemite (γ-Fe2O3) nanoparticles in MR fluid would 

contributes to a better performance of MR fluid in terms of fluid stability and yield 

stress.  Therefore, the development of bidiperse MR fluid and MR fluid added with 

nanoparticles additive utilizing maghemite (γ-Fe2O3) nanoparticles were investigated 

in this research. 

 

 

 

 

1.2 Problem Statement 

 

 

MR fluids are known as smart materials due to the rapid changes in MR 

response when subjected to a magnetic field.  In order to produce high maximum 

yield stress of MR fluid, micron-sized magnetic particles are used instead of nano-

sized magnetic particles [35].  However, due to high density of micron-sized 

magnetic particles, MR fluid is faced with the problem of instability of the 

suspension caused by high settling rate which makes it a severe drawback towards 

more generalized applications [40].  The formation of hard and compact sediment 
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over time is due to the gravitational forces and remixing it would be difficult because 

of the remnant magnetism that keeps them in aggregates [28,33,41].  Hence, the need 

of finding improved methods is crucial in order to stabilize the MR fluid and at the 

same time to improve the maximum yield stress.  In addition, re-dispersion is one of 

the biggest challenges in the realization of MR fluid and researchers were focusing 

on the stability or sedimentation rate of this suspension and not what happened after 

the particles sedimentation occurs [23].  Over the years, researchers improve the 

stability by adding non-magnetic particle into the MR fluid.  Even though the 

stability has been improved, the rheological properties of the fluid are affected. The 

formation of particle chains is hinder due to the presence of non-magnetic particle, 

thus reduce the MR effect.  Besides, the value of yield stress also reduced if lower 

volume fraction or smaller particle size is used.  

 

 

In terms of MR fluid performance, if the yield stress is reduced, lower 

performance by the MR device is produced.  Furthermore, the use of MR fluid in MR 

devices is limited commercially due to its high manufacturing cost and low output 

maximum yield stress.  If higher output performance need to be produced, the MR 

device must be equipped with bulkier and heavier coils to provide high magnetic 

field, thus an additional space is required [28].  Moreover, the weight of the MR 

device might also increase if higher volume fraction or larger size of magnetic 

particles is used in the MR fluid [9].  Therefore, the particles sizing and 

concentration of magnetic particles suspended in the fluid are limited in order to 

maintain its stability and low off-state viscosity [15].  The use of magnetic 

nanoparticles as a substitute particles in MR fluid (bidisperse MR fluid) is reported to 

improve the fluid stability and increase the fluid yield stress, thus the weight of MR 

device can be reduced due to lower volume fraction of magnetic microparticles is 

used.  On the other hand, the use of magnetic nanoparticles as an additive in MR 

fluid is also reported to improve the fluid stability and increase yield stress by 

maintaining the magnetic microparticles concentration.  Based on the previous 

results, the most generalized method is by introducing the magnetic nanoparticle in 

the MR fluid either by substituting the magnetic nanoparticles in the MR fluid 

[29,42,43] or by adding the magnetic nanoparticle as an additive [36,44,45]. 
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1.3 Research Objectives 

 
 

The objective of the study is to formulate a novel MR fluids utilizing 

superparamagnetic γ-Fe2O3 nanoparticles and investigate the rheological properties 

suitable for MR device system.  More specifically the objectives of this research 

were: 

  

 

a) To synthesize and modify γ-Fe2O3 nanoparticles so as to ensure its suitability 

to the oil phase. 

b) To formulate different compositions of oil-based MR fluid which consist of 

microparticles, nanoparticles, carrier liquid and additives in order to obtain 

the most suitable MR fluid based on their rheological characteristics. 

c) To analyze physical and rheological properties under influence of magnetic 

field. 

d) To evaluate the performance of MR fluid in terms of damping force using 

MR valve equipped with hydraulic bypass damper. 

 

 

 

 

1.4 Research Scope 

 

 

The scopes of the study are as follows: 

 

 

a) The γ-Fe2O3 nanoparticles are synthesized using co-precipitation method and 

the surface of the nanoparticles are modified using oleic acid. 

b) The oil-based MR fluids are formulated using carbonyl iron (CI) as micron- 

sized particles, γ-Fe2O3 as nano-sized particles and hydraulic oil as carrier 

liquid.  γ-Fe2O3 nanoparticles was also added as an additive to investigate the 

influence of the nanoparticles as additive in MR fluid.   

c) The physical properties (density, sedimentation rate and re-dispersibility) and 

rheological properties (apparent viscosity, shear stress and dynamic yield 

stress) of the formulated MR fluids are evaluated during off and on-state 

condition. 
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d) The performance of MR fluid in terms of force versus displacement and force 

versus velocity was measured using MR valve equipped with a double rod 

hydraulic cylinder in bypass configuration at different current magnitudes and 

frequencies. 

 

 

 

 

1.5 Significance of Research 

 

 

 The significance of this research lies in the enhancement of MR fluids 

especially to answer the demand for high performance fluid with low sedimentation 

rate and easy to re-disperse.  In this study, synthesized super-paramagnetic nano-

sized magnetic particles namely maghemite (γ-Fe2O3) nanoparticles coated with oleic 

acid are added to be a part of MR fluids.  This research provides knowledge on the 

effect of γ-Fe2O3 nanoparticles in the MR fluids which improves both physical and 

rheological properties of MR fluids which was never reported.  Finally, the novel 

MR fluid was used in the MR devices which results in the improvement of device 

performance thus demonstrating its application. 

 

 

 

 

1.6 Outline of Thesis 

 

 

 This thesis is organized in six chapters.  The first chapter of this thesis 

contains an introductory chapter including the research objectives and contributions.  

Each respective chapter in this thesis ends with a brief summary outlining the 

achievement and findings that were established in the chapter.   

 

 

 Chapter 2 covers the theoretical background and literature review of the field 

responsive fluids that undergo rheological changing upon application of external 

field.  This chapter also explains the theoretical background of nanotechnology and 

MR technology as well as the integration of magnetic nano in micro-particles MR 

fluids in terms of basic principles and rheological properties.  
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 Chapter 3 elaborates the experimental evaluation of the γ-Fe2O3 nanoparticles 

and MR fluids utilizing γ-Fe2O3 nanoparticles including the description of 

experimental setup and the experimental procedure.  The details of the procedure to 

synthesize and coating γ-Fe2O3 nanoparticles, formulation of MR fluids containing γ-

Fe2O3 nanoparticles, characterization of MR fluid and the evaluation of MR fluid 

performance using MR device are also been elaborated. This chapter also includes 

the list of materials used in this research. 

 

 

 Chapter 4 presents the result and discussion of the experiment for both 

physical and rheological properties of MR fluid during off- and on-state condition, 

including the analysis of the experimental results with respect to the rheological 

model.  This chapter also discussed the results obtained from the evaluation of MR 

fluid performance using MR valve equipped with hydraulic bypass damper. 

 

 

 The final chapter 5 is the concluding chapter which highlights the achieved 

contribution of the research in the relation to the research objectives.  The 

recommendation for future research work is also presented in this chapter. 
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