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ABSTRACT 

One important factor in microbial fuel cells (MFCs) study is the anode. In 

MFCs, the anode acts as the key component in the generation of bioelectricity and 

power. Despite the fact that there have been some improvements in the electrochemical 

performance of MFCs in recent years, their low power generation is still deemed a 

major drawback. The effects of surface modifications of the anode as biofilm carrier 

on the performance of MFCs were investigated. This research focused on the role of 

the novel fabricated anode as support material for the adhesion of bacterial consortium 

(NAR-2) consisted of Citrobacter sp. A1, Enterobacter sp. L17 and Enterococcus sp. 

C1 were used in MFCs reactor for the decolourisation of Acid Red 27 (AR27) and the 

simultaneous generation of electricity. The performance of a modified anode 

fabricated using surfactant-treated clinoptilolite (S-TC) with common type of carbon-

based material, namely treated clinoptilolite-modified graphite felt (TC-MGF) anode 

was evaluated with different MFCs constructions. Prior to the MFCs experiments, the 

modification of anode was successfully verified using different spectroscopic and 

microscopic techniques such as EDX, FESEM, ATR-FTIR and BET analysis. In 

addition, screening of parameters for the adhesion of bacterial consortium NAR-2 onto 

TC-MGF anode (NAR-2-bioanode) was accomplished. The newly-developed TC-

MGF bioanode was implemented in the dual-chamber (H-type) of the MFC. The 

performance of TC-MGF bioanode was compared to the results obtained using non-

modified graphite felt (BGF) bioanode. Maximum power densities for BGF and TC-

MGF bioanodes were 458.8 ± 5.0 and 940.3 ± 4.2 mWm-2, respectively. In the 

following experimental, a small MFC reactor was fabricated with TC-MGF bioanode 

to compare the performance of the MFC with commonly used fuel cell membranes, 

Nafion (N-117 and N-115), which were examined along with the N-212 membrane in 

a single-chamber cubic di-air cathode (S-CCD-AC) design. The power density and 

columbic efficiency of N-115 membrane (1022.5 mWm-2 - 35.4%) were significantly 

higher than the values obtained for the N-117 (592 mWm-2 - 15.6%) and N-212 (493 

mWm-2 - 12.3%) membranes. A novel MFC reactor with TC-MGF bioanode novel 

design (Conch shell) using the N-115 membrane having an air-cathode upflow (A-CU) 

MFC, as a combination of upflow and MFC technologies was used to compare the 

presence and absence of a membrane design.  The A-CUMFC with membrane-less at 

flow rate 0.6 mL min-1, anode distance of 0.5 cm and a concentration of AR27 at 900 

mg L-1, high decolourisation rate (98%) achieved in a 60-day operation, was 40% 

higher than that of the membrane-MFC. The average maximum power density 

obtained (1250 mWm-2) using the membrane-less MFC was higher than that of the 

membrane-MFC (1108 mWm-2) during the 80-day operation with TC-MGF bioanode.  
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ABSTRAK 

Satu faktor penting di bawah kajian sel bahan bakar mikrob (MFCs) ialah anod. 

Di MFC, anod bertindak sebagai komponen utama dalam penjanaan bio-elektrik dan 

kuasa. Walaupun terdapat beberapa peningkatan dalam prestasi elektrokimia MFC 

dalam beberapa tahun kebelakangan ini, penjanaan kuasa rendah mereka masih 

dianggap sebagai kelemahan utama. Kesan pengubahsuaian permukaan anod sebagai 

pembawa biofilem terhadap prestasi MFC telah dikaji. Kajian ini menumpukan kepada 

peranan anod yang baru dibuat bagi melekatkan filem mikrob sebagai bahan sokongan 

untuk menawarkan tapak pelekat konsortium bakteria (NAR-2) yang terdiri daripada 

Citrobacter sp. A1, Enterobacter sp. L17 dan Enterococcus sp. C1 digunakan dalam 

reaktor MFC, dari segi penyahbauan Acid Red 27 (AR27), dan penjanaan elektrik 

serentak. Prestasi anod yang diubahsuai yang dibuat menggunakan klinoptilolit (S-TC) 

yang dirawat dengan terapi surfaktan dengan bahan yang berasaskan karbon yang 

biasa, iaitu anoda grafit dan klinitilolit yang diubahsuai (TC-MGF) dirawat dengan 

pembinaan MFC yang berbeza. Sebelum kajian MFC, pengubahsuaian anod berjaya 

disahkan menggunakan teknik spektroskopi dan mikroskopik yang berbeza seperti 

analisis EDX, FESEM, ATR-FTIR dan BET. Di samping itu, pemeriksaan parameter 

untuk pelekat konsortium bakteria NAR-2 ke anod TC-MGF (NAR-2-bioanode) telah 

dicapai. Bioanod TC-MGF yang baru dibangunkan telah dilaksanakan di ruang dobel 

(H-jenis) MFC. Prestasi bioanod TC-MGF dibandingkan dengan hasil yang diperoleh 

menggunakan bioanod grafit (BGF) yang tidak diubah suai. Keupayaan kuasa 

maksimum untuk bioanod BGF dan TC-MGF masing-masing adalah 458.8 ± 5.0 and 

940.3 ± 4.2 mWm-2. Dalam kajian seterusnya, reaktor MFC kecil dibuat dengan 

bioanod TC-MGF untuk membandingkan prestasi MFC dengan membran sel bahan 

bakar yang biasa digunakan, Nafion (N-117 dan N-115), yang dikaji bersama dengan 

N-212 Membran dalam reka bentuk katod di-udara kubus tunggal-ruang (S-CCD-AC). 

Ketumpatan kuasa dan kecekapan columbic (1022.5 mWm-2 - 35.4%) membran N-115 

jauh lebih tinggi dan daripada nilai yang diperoleh untuk N-117 (592 mWm-2 - 15.6%) 

dan membran N-212 (493 mWm-2- 12.3%). Reka bentuk kelompok MFC dengan reka 

bentuk kelompok bioanod TC-MGF (Conch shell) menggunakan membran N-115 

yang mempunyai MFC aliran udara-katod (A-CU) MFC, sebagai gabungan aliran dan 

teknologi MFC digunakan untuk membandingkan kewujudan dan ketiadaan reka 

bentuk membran. A-CUMFC dengan membran yang kurang pada kadar aliran 0.6 mL 

min-1, jarak anod 0.5 cm dan kepekatan AR27 pada 900 mg L-1, kadar penyahairan 

yang tinggi (98%) dicapai dalam operasi 60 hari, adalah 40% lebih tinggi daripada 

membran-MFC. Ketumpatan kuasa maksimum purata yang diperoleh (1250 mWm-2) 

dengan menggunakan MFC yang tidak membran adalah lebih tinggi daripada 

membran-MFC (1108 mWm-2) dalam operasi 80 hari dengan bioanod TC-MGF. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Study Background  

Recently, it has been observed that due to a massive increase in population and 

industrialisation, there has been a need for further knowledge regarding energy 

resources. Today, scientists are faced with the daunting task of discovering novel and 

innovative techniques of generating energy from alternative energy sources. To date, 

the most commonly used source of energy is fossil fuel, which is still able to support 

energy demands for the next 100 years (Daniel et al., 2009). However, many reports 

have stated that fossil fuels, especially oil, natural gas, and coal, are being used at a 

very alarming rate. Additionally, it has also been observed that the use of fossil fuels 

has led to an increase in global warming and can cause significant variations in climatic 

conditions. This has resulted in an increasing demand for alternative and cleaner 

sources of renewable energy (He, 2007). 

The demand for energy has tremendously increased over the last few years. 

Scientists have started focussing on waste streams, including industrial waste, 

agricultural waste, domestic and food processing wastes, as alternative energy 

resources and for a cleaner environment due to the presence of biodegradable wastes 

(He, 2007). 

Azo dyes are one of the biggest and the most popular classes of synthetic dyes 

with wide applications in the paper, textile, cosmetics, food and pharmaceutical 
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industries (Idel-aouad et al., 2011; Mendes et al., 2011; Jadhav et al., 2013). It has 

been observed that every year azo dyes are produced approximately 7 × 105 metric 

tons, and approximately 5-10% of these dyes are released into the environment as 

waste (Rai et al., 2005; Dafale et al., 2010). Azo dyes are very popular due to their 

cost-effective synthesis process, stability, and availability in many colours. 

Chemically, azo dyes consist of one or more azo bonds (-N=N-) associated with the 

aromatic structure in the molecule (Jadhav et al., 2013; Jović et al., 2013; Fang et al., 

2015). 

Azo dyes itself is hazardous; however, it can be more hazardous when the azo 

bonds are reduced to give amines which are more carcinogenic than the parent 

structure (Zouari-Mechichi et al., 2006; Mendes et al., 2011; Costa et al., 2012). 

Hence, the incomplete treatment of azo dyes leads to the formation of aromatic amines 

as their breakdown products, which are carcinogenic in nature (Jonstrup et al., 2011). 

Azo dyes are used extensively in the textile industry, thereby resulting in massive 

water pollution because the azo dyes are resistant to degradation. One such example is 

Acid Red 27 (AR27), a naphthylamine sulfonic azo dye which is widely available in 

the form of atrisodium salt. It is also commonly known as C.I. 16185, C.I. Food Red 

9, Amaranth, or Azorubin S (Hong et al., 2007). 

The physicochemical methods used for the removal of dyes from wastewater 

containing azo dyes include coagulation, adsorption, membrane filtration, chemical 

oxidation, and ozonation (Selcuk, 2005; Dos Santos et al., 2007; Alaton et al., 2002; 

Forgacs et al., 2004). Many reports have stated that these methods result in massive 

amounts of sludge and lead to secondary pollution as they use a lot of chemicals. 

However, ozonation method would not produce solid waste or sludge as in the physical 

methods, but the energy consuming has turned this method to be less practical 

(Robinson et al., 2001; Hong et al., 2007; Saratale et al., 2011; Dafale et al., 2010). 

Additionally, the physical and chemical methods used for the removal of azo dyes are 

very expensive and time-consuming (Sarkar et al., 2011; Chengalroyen and Dabbs, 

2013). Microbes play very important roles in bringing about the degradation of 

xenobiotic compounds. Hence, bioremediation using microbes (and their enzymatic 
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reaction) was developed as an alternative and an environmentally-friendly technique 

for degrading azo dyes (Saratale et al., 2011; Chengalroyen and Dabbs, 2013).  

Biodegradation using a mixed microbial consortium is the most common 

technique for azo dye degradation. The anaerobic-aerobic treatment of wastewater 

containing azo dyes is an effective combination method for the biodegradation of azo 

dyes (Van der Zee and Villaverde, 2005; Jonstrup et al., 2011). The anaerobic 

treatment procedure removes the colour of azo dyes; however, it also results in the 

formation of aromatic amines as the decolourisation products (McMullan et al., 2001; 

Murali et al., 2013; Pandey et al., 2007). These aromatic amines are easily degraded 

using aerobic processes (Jonstrup et al., 2011) through hydroxylation and ring-fission 

of the aromatic molecules (Supaka et al., 2004). Earlier, a novel NAR-2 bacterial 

consortium was developed consisting of the Citrobacter sp. A1 (a bacterial strain 

previously isolated and characterised from the sewage oxidation pond at Universiti 

Teknologi Malaysia in Johor, Malaysia), Enterobacter sp. L17 strain (known as 

Enterobacter cloacae L17) and the Enterococcus sp. C1. These were the stock cultures 

available in the Nanomaterial Lab at UTM. These bacterial strains were given the 

acronyms A1 for the Citrobacter sp. A1, L17 for the Enterobacter sp. L17 and C1 for 

the Enterococcus sp. C1 (Chan et al., 2012a). In their study, Chan et al. (2012a) 

reported on the decolourisation of Acid Red 27 using the NAR-2 bacterial consortium. 

They observed that the C1 culture was a more dominant decolouriser of the dye during 

the microaerophilic condition, whereas the A1 and the L17 cultures improved the 

resultant biotransformation of the dye intermediates during the deamination and 

desulphonation processes.  

Microbial fuel cells (MFCs) are novel and ground-breaking technology that 

can help to reduce the dependence on fossil fuels for energy production. They have 

been successfully used for the production of energy from biological processes involved 

in wastewater treatment (Logan et al., 2006; Zuo et al., 2007; Murali et al., 2013; Fang 

et al., 2015). MFCs use microbes as the biocatalyst. The electrogenic bacteria forming 

biofilm on the anode surface produce electrons and protons during organic matter 

degradation under anaerobic conditions. The electrons are transferred to the cathode 

through an external circuit. Meanwhile, the protons are moved to the cathode through 
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the electrolyte and the separator. Eventually, the electrons and protons combine with 

oxygen to form water molecules to complete the reaction scheme (Song et al., 2015). 

To maintain the electro-neutrality, the cations are transported from the anode to the 

cathode through a cation exchange membrane (CEM) (Logan et al., 2006; Chen et al., 

2010). 

Although several earlier reports have observed that microbes are able to 

produce fuels such as methane, ethane, and even hydrogen, there are very few reports 

on electrogenic microorganisms with respect to their use in microbial fuel cells 

(MFCs). Some electrogenic bacteria reported earlier include Aeromonas, Clostridium, 

Citrobacter, Geobacter, Klebsiella, Pseudomonas, Rhodoferax and Shewanella (He, 

2007; Humudat et al., 2015). 

In recent years, the azo dye decolourisation technique using MFC has become 

very interesting for biodegradation purposes. This system helps in a more continuous 

and flexible decolourisation process that can be used on an industrial scale. Many 

earlier reports have described the process of developing a mixed microbial consortium 

for degrading azo dyes by immobilising the culture on some appropriate support 

materials (Tony et al., 2009). Bacterial immobilisation on the support matrix becomes 

a useful technique used in bioreactor studies (Hrenović et al., 2005). 

 The main principle of the MFC revolves around the total number of electric 

charges which pass through the complete circuit every second. Hence, the electron 

transfer passage route should be as simple as possible, the distance between both 

electrodes has to be optimised to improve the mass transfer occurring between the 

electrodes (Cheng et al., 2006b). Furthermore, the external resistance effect 

contributes greatly to the change in current density, which highlights the maximum 

probable power density. An earlier study reported that to produce a maximum power 

output when the internal resictance is equal to the external resistance of the MFC 

systems (Logan et al., 2006). 

Additionally, other studies have also noted that for MFCs, the proton exchange 

membranes (PEMs) play a vital role in separating the anodic and cathodic chambers. 
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The permeable membranes allow a smooth migration of the protons, produced at the 

anode, to the cathode. The different pore sizes of the PEMs are able to offer better 

stability, while the membranes themselves contribute the least internal resistance (Hou 

et al., 2011a; Leong et al., 2013). 

When designing the MFC reactors, the performance of the anodes need to be 

taken into consideration. Several researchers have tested a wide variety of materials, 

and many configurations have also been developed in the past few years for improving 

the performance of MFCs (Liu and Logan, 2004). In recent years, many studies have 

focused on the use of carbon electrodes and carbon papers for developing MFC 

electrodes as they are cost-effective, non-corrosive and perfectly biocompatible (Wei 

et al., 2011). On the other hand, these carbon materials have very low electrocatalytic 

movements for the anode microbial response and therefore, adjustment on the carbon 

electrode considered as main method for improving their activity (Park et al., 2013). 

In order to improve the efficiency of MFCs, investigation on modification of 

conventional carbon-based materials, such as graphite felt, carbon paper, and carbon 

cloth for the fabrication of the anode were conducted (Wang et al., 2013a; Wang et 

al., 2013b; Cheng and Logan 2007). Modification of anode may lead to a more 

efficient MFC; with specific properties of anodes, including biocompatibility, 

electronic conductivity, surface wettability and surface area were investigated (Park et 

al., 2013; Chen et al., 2013; Wei et al., 2011). The anode property is strongly linked 

to the electrochemical reaction that affects the performance of the cell adhesion 

(Ginsburg and Karamanev 2007; Wu et al., 2015).   

 Additionally, changes to the surface of the anode are known to enhance the 

bacterial adhesion and, at the same time, to improve the electron transfer between the 

microbes and the surface of the electrode. Many researchers have implemented a 

variety of physical and chemical modification processes, such as ammonia treatment, 

acid oxidation, and electrochemical oxidation, for improving the transfer of electrons 

(Du et al., 2007; Wei et al., 2011). An earlier study indicated that enhancing the 

electron transfer through an anode biofilm would result in an improvement of power 

output in the MFCs (Xie et al., 2012; Fiset and Puig, 2015).  
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In their study, Park et al. (2013) conducted a magnetite/multiwall carbon 

nanotube (MWCNT) for coating anode, and it was observed that the reception of 

electrons by the anodic electrode was significantly enhanced by the use of E. coli 

biofilm in powered MFCs. Reports have stated that the anodic component and the 

arrangement can greatly affect the electron transmission, bacterial supplement, and 

substrate oxidation (Logan et al., 2006; Lanas et al., 2014). Recent studies have also 

revealed that positively-charged modifications and the use of natural surfaces, such as 

sand and quartz, improve the adhesion of the negatively-charged microbial culture due 

to the electrostatic force of attraction between the cells and the surface. Cheng and 

Logan (2007) studied the ammonium treatment and their results indicated that the 

positive charges on the carbon surfaces were greatly enhanced due to the ammonia gas 

which decreased the process and improved the power produced in the MFC with a 

microbial consortium. This approach proved to be effective in allowing the bacterial 

nanowire to adhere to the carbon cloth electrodes. In addition, Wu et al. (2015) 

observed that the use of different varieties of zeolite, namely NaX and Mobil Catalytic 

Material Number 41 (MCM-41), as a coating for the electrodes improves the 

performance of the MFC. This is due to an increase in the surface area in the range of 

6.1-11 m2 g-1, which favours the formation of a thick biofilm.  

1.2 Problem Statement 

Over the years, it has become very important to find novel and cleaner energy 

sources. Nowadays, many industries around the world contribute to water and 

environmental pollution. Many reports have stated that the microbial fuel cell (MFC) 

system is a very good technique for energy production, while several researchers have 

suggested that the MFC is capable of bringing about the treatment of azo dyes from 

wastewater and simultaneously producing electricity (Li et al., 2010; Hou et al., 

2011a). Despite the fact taht MFC being a novel technology for wastewater treatment 

and energy production, there are also some major drawbacks which limit the actual 

use of this technique, for example, the unsustainability of biocatalysts present on the 

anode, the configuration of the MFC, which limits the power output mainly during the 

scale-up, and the impractical batch-operation type of MFC systems as the microbes 



7 

 

would easily wash out from the system. Therefore, the anode compartment needs a 

stable biofilm to be formed on a suitable and large anode surface. Furthermore, the 

characteristics of the anode need to be adapted to the biofilm and the used application 

in the MFC system. 

Thus, the power output from MFCs must be improved by optimising the reactor 

configuration and operating conditions, while deploying proper anode materials with 

biocompatibility and large specific surface area. Nevertheless, no researche has 

demonstrated the use of the treated clinoptilolite-modified graphite felt (TC-MGF) 

anode as a support material for the adhesion of the NAR-2 bacterial consortium and 

the effect of TC-MGF on MFC performance. It is therefore important to fully 

understand the properties of this modified anode and its effect on the performance of 

the MFC system for simultaneously Acid Red 27 (AR27) azo dye decolourisation and 

electricity generation. 

1.3 Objectives of this study 

In view of the current understanding and limited research to date, this study 

was conducted to determine the effect of a modified anode involved in the 

immobilisation and performance of a developed MFC on dye degradation and 

electricity generation. Hence, the following objectives were established to achieve the 

aim of the research: 

1. To charachterise treated clinoptilolite with surfactant 

hexadecyltrimethylammonium bromide (HDTMA-Br) followed by 

graphite felt anode modification using treated clinoptilolite (TC-MGF).  

2. To determine the optimum conditions for the immobilisation of NAR-

2 consortium onto TC-MGF anode using conventional method and 

charachterise the TC-MGF bioanoe.  

3. To evaluate the effectiveness of TC-MGF bioanode for the generation 

of electricity from Acid Red 27 (AR27) dye in a dual-chamber (H-type) 
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MFC and its impact on the biodegraded products in comparison to 

graphite felt (BGF) bioanode. 

4. To charachterise and evaluate the performances of the different Nafion 

membranes for the decolourisation of the AR27 dye and the generation 

of electric power using a single cube-chamber di-air cathode MFC with 

TC-MGF anode.   

5. To assess the generation of electric power and decolourisation 

efficiency in a continuous upflow single column air cathode MFC 

system by a TC-MGF spiral design along membrane-less and 

membrane operations followed by analysis of the resultant degraded 

products. 

1.4 Scope of the Study 

This study has focused primarily on investigating the improvement of anode 

using modification technique to improve bacterial adhesion, that would then be 

incorporated in the different types of the MFCs system. Hence, the performance of the 

MFCs were evaluated at their optimised conditions.  

The scope of this research was to study the modification effect of the anode 

surface on the performance of the MFC for simultaneous azo dye decolourisation of 

the Acid Red 27 (AR27) and electricity generation, using bacterial consortium NAR-

2. An initial attempt was made using a dual-chamber MFC utilising modified anode, 

namely treated clinoptilolite-modified graphite felt (TC-MGF). This study introduced 

a modification process into the MFC design using an inert, inorganic and robust 

material known as surfactant-treated clinoptilolite (S-TC). The TC-MGF anode was 

then further improved by optimisation studies in a single-chamber air cathode MFC 

system with the evaluation of the physical properties, the decolourisation and power 

output performance of the variable Nafion membranes (N-115, N-117and N-212) in 

the MFC. Furthermore, in order to improve the MFC system for the biodegradation 

process and power generation, further modifications were made to the MFC design 
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using a spiral anode with membrane-less operation with respect to the chemical 

analysis in a continuous upflow single column air cathode MFC reactor. 

1.5 Significance of this Study 

Earlier studies focused on the treatment of azo dyes using MFCs system for 

power generation. However, this study used a modified anode for immobilising the 

bacterial consortium, thereby improving the decolourisation and degradation of the 

model azo dye AR27, and also the resultant electricity production. The main idea 

behind this study was based on the ionic or hydrophobic interactions which take place 

between microbes and the modified anodes, based on the actual design. The anode was 

modified to be positively charged, so that it would then attract the negatively charged 

bacteria cell wall and the azo dye molecules. Hence, interaction between the dye 

molecules, nutrients and bacteria present would result in a desired decolourisation 

efficacy, especially if the system is continuous in operation. Therefore, the modified 

clinoptilolite anodes were installed to form an MFC system and were immobilised 

using the bacterial consortium, NAR-2. This system was used to carry out dye 

decolourisation and production of electricity. This was an initial attempt to construct 

an MFC system to generate electricity by decolourising the AR27 mono azo dye using 

the NAR-2 bacterial consortium. In several earlier studies, it was noted that when the 

bacteria were immobilised, they were able to be more resistant to the shock loads of 

the dye compared to the suspended bacterial culture (Ab.llah, 2012). The use of an 

upflow continuous MFC system along TC-MGF spiral anode (Conch Shell) with 

membrane-less design, as reported in this study, was demonstrated to be very 

significant and noteworthy as it brought more effective degradation of the azo dye 

within improved power generation and therefore, can be applied in the future 

investigation for the treatment of real wastewater containing different types of azo 

dyes for the generation of bioelectricity. 
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1.6 Thesis Organisation 

The entire thesis consists of six chapters. Chapter 1 presents a concise 

introduction to the role of the MFC system in the degradation of recalcitrant chemical 

pollutants and also in the production of electric power using an active biofilm that is 

formed on a modified anode. Moreover, the chapter also exploits the use of the 

modified anode as a site for the adhesion of bacterial colonies. Furthermore, the 

chapter covers the problem statement, and the objectives, scope and significance of the 

study. 

In Chapter 2, the basics of the modified anodes and the assessment of their role 

in the bacterial and anode interactions will be explained. The chapter also discusses 

the various anodic procedures and the MFC design, and also hypothesises about the 

reaction format mechanism. Furthermore, the chapter also includes earlier researches 

into the performance of the MFC system on the degradation of pollutants along with 

the subsequent power generation. Thereafter, the chapter presents the research 

framework, depending on the current understanding of the available studies.  

In Chapter 3, an in-depth analysis of the methods used, along with the research 

methodology which would be applied in the study, is presented. Furthermore, some 

laboratory experiments were conducted to determine the performance of the MFC 

based on the electricity calculations. Also, the chapter discusses the characterisation 

studies which were carried out using the modified anodes with the help of various 

microscopic and spectroscopic techniques along with optimisation (conventional 

method) studies. All the results of these experiments are presented and discussed in 

further detail in Chapters 4 and 5.  

Chapter 4 focuses on the fabrication and the behaviour of the modified anodes 

in immobilising the bacterial consortium and performance on MFC. In Chapter 5, the 

optimisation parameters and the evaluation of the physical properties, the 

decolourisation and power output performance of the variable Nafion membranes in 

the MFC are clarified. The optimised parameters were then developed into continuous 

MFC systems with/without a membrane for carrying out biodegradation and electricity 
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production. One of these systems was subsequently further explored for lower 

degradation sensitivity. 

Lastly, Chapter 6 revolves around the conclusion of the whole study and 

highlights the major contributions of this work. Furthermore, the chapter also presents 

some recommendations for future studies. 
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