
i 

 

HIGH EFFICIENCY AND HIGH GAIN NON-ISOLATED 

BIDIRECTIONAL DC-DC CONVERTER WITH SOFT SWITCHING 

CAPABILITY 

RATIL HASNAT ASHIQUE 

 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy  

 

 

 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 

 

 

MAY 2018 

 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199243191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii 

 

DEDICATION 

 

To my beloved parents and my wife, 

for their endless love, motivation and support. 



iv 

 

ACKNOWLEDGEMENT 

 All praise is due to Allah (SWT), who granted me the ability to complete this 

research.  Thereby, I am much indebted to His mercy and blessings that he bestowed 

upon me. 

 

Next, I would like to express my heartiest gratitude to my project supervisor, 

Prof. Dr. Zainal Salam for his perpetual guidance, scholarly assistance and 

motivational support throughout this research. 

 

I also sincerely thank all the lecturers from whom I learned a lot. Not to 

mention, thanks to my fellow postgraduate friends for sharing useful ideas, 

information, and moral support during this study.  

 

Last but not the least I would like to express my sincere appreciation and 

gratitude to my parents for their continuous encouragements and especially my wife 

who endured all the difficulties during my studies happily.  

 



v 

 

ABSTRACT 

The non-isolated dc-dc power converters are considered as a unique option 

for flexible voltage control and adaptation in the modern energy conversion systems 

due to their simple and light configurations.  To this date, these converters are 

primarily investigated to generate high efficiency and high gain with a sustained soft 

switching capability and a smaller footprint.  On that account, this work proposes 

two effective solutions to address the aforementioned issues.  First, a high-efficiency 

soft switching non-isolated bidirectional dc-dc converter with a simple configuration 

is proposed.  The converter executes the zero voltage zero current switching 

(ZVZCS) over a wide operating region to ensure high efficiency.  For verification, a 

150 W experimental prototype is built and tested for soft switching performance by 

varying the input voltage, switching frequency and the loading.  It is observed that 

the efficiency remains consistently high and has a full-load maximum of 98.2% in 

the boost mode and 97.5% in the buck mode.  The analysis of the Electromagnetic 

Interference (EMI) performance of the converter also shows the improvement in the 

noise signature.  Second, an improved high gain zero voltage switching (ZVS) non-

isolated bidirectional dc-dc converter is proposed.  The high gain is realized by using 

an intermediate energy storage cell with reduced size.  Besides, the ZVS is 

implemented by two integrated auxiliary resonant networks.  These networks ensure 

sustained ZVS operation over the entire duty ratio.  A 200 W prototype is built to 

verify the concept.  As a result, a full load efficiency of 97.5% (in boost mode) and 

95.5% (in buck mode) is recorded at fs= 30 kHz.  Also, these efficiencies are 

recorded as 97% (boost mode) and 94.5% (buck mode) at fs= 100 kHz.  Moreover, it 

is observed that the efficiency (and so the soft switching) is consistent over the entire 

gain profile.  However, there is a slight additional drop of 1.5% (boost mode) and 1% 

(buck mode) at extreme duty ratios.  Both converters also implement soft switching 

for auxiliary switches and eliminate the reverse recovery loss. 
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ABSTRAK 

 

 Penukar kuasa dc-dc tidak terasing dianggap sebagai pilihan unik untuk 

pengawal voltan yang fleksibel dan penyesuaian dalam sistem penukaran tenaga 

moden disebabkan konfigurasinya yang mudah dan ringan.  Sehingga kini, penukar 

ini menjadi keutamaan untuk menjana kecekapan tinggi dan gandaan voltan tinggi 

dengan keupayaan beralih lembut yang berterusan dan tapak yang lebih kecil.  

Sehubungan itu, kerja ini mencadangkan penyelesaian yang berkesan untuk 

menangani isu tersebut.  Pertama, penukar dc-dc pensuisan lembut tidak terasing 

dwiarah berkecekapan tinggi dengan konfigurasi mudah dicadangkan. Penukar 

melaksanakan mod pensuisan voltan sifar dan arus sifar (ZVZCS) untuk memberikan 

kecekapan tinggi dalam julat operasi yang luas.  Untuk pengesahan, prototaip 

eksperimen 150 W dibina dan diuji untuk prestasi pensuisan lembut dengan 

mengubah voltan masukan, frekuensi pensuisan dan bebanan.  Diperhatikan bahawa 

kecekapan secara konsisten tinggi dan mempunyai kecekapan beban penuh 98.2% 

dalam mod boost dan 97.5% dalam mod buck.  Analisis prestasi gangguan 

elektromagnetik (EMI) penukar jelas menunjukkan penambahbaikan terhadap 

pengurangan hingar.  Kedua, penambahbaikan penukar dc-dc gandaan tinggi 

pensuisan voltan sifar (ZVS) tidak terasing dwiarah dicadangkan.  Pensuisan lembut 

dilakukan oleh dua rangkaian bersepadu resonan pembantu.  Ciri penting bagi 

penukar ini adalah ZVS dapat dikekalkan dalam keseluruhan kitar tugas (nisbah 

gandaan).  Ini memastikan gandaan voltan tinggi dengan kecekapan operasi yang 

tinggi.  Prototaip 200 W diuji untuk mengesahkan operasi penukar.  Hasilnya, 

kecekapan beban penuh 97.5% (dalam mod boost) dan 95.5% (dalam mod buck) 

dicatatkan pada fs = 30 kHz.  Begitu juga, kecekapan adalah 97% (mod boost) dan 

94.5% (mod buck) pada fs = 100 kHz.  Tambahan lagi, diperhatikan bahawa 

kecekapan (dan pensuisan lembut) konsisten di seluruh kawasan operasi.  Walau 

bagaimanapun sedikit penurunan sebanyak 1.5% (mod boost) dan 1% (mod buck) 

pada nisbah kitaran tugas yang melampau.  Kedua-dua penukar memastikan 

pensuisan lembut bagi suis-suis pembantu dan menghapuskan kehilangan pemulihan 

terbalik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Application Overview of the dc-dc Converter 

The sharp increase in the power requirements for modern computers, mobile 

devices, automotive/spacecraft and renewable energy system (RES) demand more 

efficient and reliable dc-dc power converters.  Notably, as the applications are 

becoming more complex and diverse, the demand for high-performance, cost-

effective converter topologies continue to grow.  Consequently, there is an impetus 

to develop dc-dc converters with higher efficiency, higher gain and a smaller 

footprint that can function under flexible operating conditions. From this viewpoint, 

the non-isolated dc-dc power converters are considered as a preferable option, 

compared to its bulkier and expensive isolated counterparts.  

In the communication and computer sector, the power supply can be either an 

isolated or non-isolated type of dc-dc converter.  Regardless of the type, it is required 

to be efficient, inexpensive and lightweight with low ripple noise to protect the 

delicate electronics.  Besides, it is expected to support a wide range of input voltage, 

but should not be limited by certain load constraints.  For the renewable energy 

system (RES), these converters are primarily used to convert the dc voltage from one 

level to another, i.e. from photovoltaic [1], wind [2], fuel cell [3, 4], wave, ocean 
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thermal and thermoelectric systems [5, 6].  In the microgrid environment, it also 

provides seamless integration of the RES to the internal grid by allowing the voltage 

and current from the RES to be precisely controlled. Additionally, an increasing 

number of RES deploy energy storage units (ESU) to store and manage the power 

flow more efficiently.  The ESU requires non-isolated dc-dc power converters to 

interface with, for example, PV arrays or dc loads, such as electric vehicles. Such 

application illustrates the necessity of a dc conversion system with bidirectional 

power flow capability.   

In the automotive industry—one of the main user of dc conversion systems, 

the non-isolated dc-dc converter is primarily used for internal electronics and vehicle 

control [7].  There is a wide range of dc voltage levels to be derived from the main 

battery for various vehicle instrumentation needs.  Looking into the future, the 

electric vehicle (EV) sector is paving the way for the widespread application of high 

voltage, high power dc-dc converters.  The on-board chargers of the EV are required 

to be bidirectional and lightweight.  On the other hand, the off-board chargers must 

be capable of providing a flexible output voltage range to adapt to a different type of 

vehicles.  With the expected high penetration of EV, the integration of RES into the 

charging system is foreseen as a viable solution to reduce the burden on the electrical 

grid [7-11]. Particularly, for the high power dc (fast) charging, the charging 

efficiency has become a critical issue. From these perspectives, the overall 

performance of future the power systems is largely determined by these converters. 

On a more extreme outlook, the possible replacement of ac distribution 

system by dc is being widely debated [8-10]. Correspondingly, within the smart grid 

infrastructure, the dc-dc converter will be the main component that interfaces the dc 

distribution voltages with the consumer appliances.  
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1.2 Challenges for High-Performance dc-dc Converter Operation 

In all applications, the efficiency of the dc-dc converters is of utmost concern. 

Thus, the conduction and switching losses must be reduced.  Conventionally, the 

hard switching PWM converters induce substantial switching losses, particularly at 

high switching frequency. Nevertheless, the high-frequency operation is highly 

desirable to reduce the size of the converter.  On that account, the soft switching 

technique is sought to reduce the switching losses and thus to improve the efficiency.  

The existing soft switching converters apply zero voltage switching (ZVS), zero 

current switching (ZCS) or zero voltage zero current switching (ZVZCS) techniques 

to suppress these losses.  Evidently, the ZVZCS provides improved loss reduction 

capability as compared to the former due to manipulation of both the voltage and 

current waveforms simultaneously.   

However, the ZVZCS can only be achieved either at the cost of increased 

component count (and the conduction losses) and more complex controller. 

Furthermore, most converters with ZVZCS can only provide unidirectional power 

flow capability [12] [13] [14-16]. Operational-wise, the change in the input voltage, 

switching frequency or the loading of the converter disrupts the function of ZVZCS 

[17-28].  Consequently, the efficiency of the converter is often compromised to allow 

the converter to work in wider operating range.  

Another issue of interest for the non-isolated dc-dc converter is the voltage 

gain ratio. Unlike its isolated counterpart, which utilizes transformer that can be 

concurrently used as a step-up mechanism, the nonisolated dc-dc converter has to 

employ other means to increase its gain. The popular method is to utilize the 

multilevel configuration, switched capacitor or coupled inductors. However, these 

topologies cannot provide a competitive gain without significantly increasing their 

component count and magnetic footprint. In addition, high gain converter comes with 

a substantial trade-off in terms of efficiency [26, 29-31].  For example, the multilevel 

topology cascades multiple converters units in series formation.  As a result, the 
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overall efficiency, which is the multiplication of the efficiency of each converter 

unit, is reduced. Furthermore, this configuration requires a large number of active 

and passive components that result in higher conduction losses.   

On the other hand, the coupled inductor based topology attains high gain by 

manipulating the turn‘s ratio of the coupled inductors. On that account, the increase 

in the turns ratio, requires more conductor, thus increases the I
2
R losses.  In addition, 

at high power, bigger magnetic circuit is required to accommodate the magnetic flux, 

in order to achieve the same gain ratio. Thus, the core losses are increased 

proportionally. As for the switched capacitor designs, multiple switched capacitor 

cells are required to boost the gain ratio.  Besides additional device losses, the 

residual charges contribute to lower the efficiency.  

In general, due to large number of switches in the above-mentioned 

topologies, it is extremely difficult to integrate the soft switching cells into the 

circuit. Since they could not exploit the advantages of the soft switching, most of 

these high gain converters exhibit higher switching losses [25, 32].  Notwithstanding, 

a small number of converters that integrate the soft switching fail to maintain it 

consistently over the entire gain profile.  This is primarily due to the extreme duty 

ratio in which high gain converter operates [26, 29-31, 33]. 

1.3 Problem Statements 

From the brief overview above, it can be inferred that the primary challenges 

that the non-isolated dc-dc power converters are required to address are: 1) High-

efficiency operation in a wide operating range, 2) High step-up/step-down gain with 

sustained soft switching capability, and 3) Simple configuration with lower 

component count.  In the recent literature, the nonisolated dc-dc converters are 

widely investigated to maintain low switching losses and to achieve high-efficiency 
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operation.  However, the high efficiency operation is achieved at the expense of 

larger component count, higher control complexity or limited operational range.  The 

latter is formulated in the form of soft switching that is limited by the input voltage, 

switching frequency or loading.  In other cases, the converter only allows 

unidirectional power flow, thus limiting the scope of their applications.  On the other 

hand, in many circumstances (EV, spacecraft), the high gain is required with 

substantial constraint imposed on the size and weight of the converter.  From this 

viewpoint, the gain heightening in a (low-weight) transformer-less topology is a big 

challenge by itself.  By surveying the relevant literature, it is observed that the 

existing group of high gain non-isolated dc-dc power converters cannot sustain a 

high-efficiency operation over the entire operating range of gain ratio and power.  

Also, most of these converters are not equipped with the soft switching feature so 

that the switching losses could be suppressed consistently. 

1.4 Objectives of Research 

Given these drawbacks of the current state-of the art of non-isolated 

bidirectional dc-dc converter argued in Section 1.2, this work sets two primary 

objectives.  They are summarized as follows. 

(i) To design a high-efficiency non-isolated bidirectional dc-dc power 

converter with soft switching (ZVZCS) capability.  The latter is to be 

implemented by an auxiliary network to reduce the switching losses in the 

main switches.  Most importantly, the ZVZCS must operate in a wide 

range of input voltage, switching frequencyand loading, while 

maintaining high efficiency.  Besides, the converter is expected to be built 

using low number of components.   

 

 

(ii) To design a soft switching non-isolated bidirectional dc-dc power 
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converter that can provide high gain with high efficiency.  The high gain 

is realized by using an intermediate energy storage cell, with reduced size 

and weight.  In addition, the soft switching (ZVS) is to be implemented 

over the entire operational duty cycle ratios. 

 

Objectives (i) and (ii) are realized using two different circuits. 

1.5 Scope of Research 

To achieve the objectives of the research, this work is limited by the 

following scopes: 

 

(i) The topologies of non-isolated soft switching dc-dc converters that are 

covered in the literature review in Chapter 2 are not exhaustive.  

However, it provides a comprehensive classification so that the existing 

circuits should fall under any of these categories.    

 

(ii) The test results of the experimental prototype of the high-efficiency 

converter in Chapter 3 are recorded at 150 W.  Mainly, the low power 

region allows analyzing the switching losses more effectively.  This is 

because the latter loss is more dominating than the conduction losses in 

this region.  
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1.6 Organization of Thesis 

This thesis is organized into five chapters.  Their contents are outlined as 

follows: 

(i) Chapter 2 provides an extensive review of the soft switching techniques, 

the soft switching converters and the gain boosting techniques employed 

in non-isolated bidirectional dc-dc converters.  The soft switching 

techniques are divided into the ZVS, the ZCS, the ZVZCS and the true 

ZVZCS.  On the other hand, the soft switching converters are categorized 

into the active and passive snubber, the series and shunt resonant and the 

pulse width modulated converters.  The merits and drawbacks of these 

soft switching configurations are highlighted.  Besides, the gain boosting 

techniques are discussed along with their advantages and disadvantages.   

 

(ii) Chapter 3 introduces the proposed non-isolated bidirectional dc-dc 

converter family.  The proposed converter employs a ZVZCS network to 

improve the efficiency.  Despite having a low component count and a 

simple configuration, it is capable of maintaining the soft switching 

condition for a wide operating range.  Furthermore, it can be integrated to 

other basic converter platforms to improve the efficiency and extend the 

soft switching range.  

 

(iii) Chapter 4 presents the proposed high gain and high efficiency non-

isolated bidirectional dc-dc converter.  The converter is integrated with 

the soft switching capability implemented by two identical auxiliary 

resonant networks.  The dedicated networks ensure the soft switching 

over the whole operating condition.  Resultantly, the high gain ratio is 

achievable with high operating efficiency.  Besides, the reverse recovery 

loss is also eliminated.   

 

(iv) Chapter 5 concludes the works undertaken and highlights the 
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contributions of this research.  Several suggestions are provided for 

possible directions of future work. 
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