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ABSTRACT 

 

 

 

 

While doing daily physiological activities, trabecular bone will experience 

certain amount of deformation, which causes movement of the bone marrow.  The 

bone marrow movement could affect the bone remodelling process. The properties of 

the bone will also be affected as the bone marrow acts as a hydraulic stiffening to the 

trabecular structure.  Previous studies on trabecular bone remodelling did not consider 

the effects of bone marrow movement.  Thus, there is a need to perform combined 

analyses of the bone marrow movement with trabecular structure to assess its effects 

on the remodelling process under a realistic condition.  The aim of this study is to 

determine the effect of bone marrow movement onto the trabecular bone structure 

under mechanical loading using fluid-structure interaction (FSI) approach.  Two 

different models of the trabecular bone, namely idealised and actual were constructed. 

The idealised models were used to correlate the bone marrow behaviour to the 

trabecular bone morphology.  The actual trabecular bone models were constructed to 

mimic the presence of the bone marrow within the trabecular bone structure during 

physiological loading.  The effects of different orientation of the trabecular structures 

were also examined.  Three numerical approaches which are finite element method, 

computational fluid dynamics and FSI were employed to evaluate the importance of 

bone marrow movement effect towards the trabecular bone mechanical properties.  

The findings show that the bone cells are able to stimulate the bone remodelling 

process under the normal walking gait loading.  The bone marrow behaviour such as 

shear stress, pressure and permeability, together with bone porosity and surface area, 

have a significant relationship with a p-value < 0.05.  The longitudinal permeability 

and stiffness were respectively 83% and 56% higher, compared to the transverse 

orientation.  The shear stress during a normal walking phase was in a range of 0.01- 

0.27 Pa.  These are sufficient to regulate cell response.  It was also found that the 

stiffness of the trabecular bone structure is 22% higher compared to the models without 

the bone marrow.  This finding suggests that the presence of the bone marrow could 

help to reduce the deformation and stresses on the trabecular bone structure. 
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ABSTRAK 

 

 

 

 

Semasa melakukan aktiviti fisiologi harian, tulang trabekular akan mengalami 

perubahan bentuk yang menyebabkan pergerakan sumsum tulang.  Pergerakan ini 

boleh menjejaskan proses pembentukan semula sel tulang.  Sifat-sifat tulang itu sendiri 

juga terjejas dengan peranan sumsum tulang sebagai pengekalan hidraulik pada 

trabekular.  Kajian terdahulu menganalisis tulang trabekular tanpa mengambil kira 

pergerakan sumsum tulang.  Oleh itu, untuk menyerupai keadaan sebenar adalah 

penting untuk mempertimbangkan analisis gabungan sumsum tulang dengan struktur 

trabekular.  Tujuan kajian ini adalah untuk mengenal pasti kesan pergerakan sumsum 

tulang pada struktur trabekular terhadap beban mekanikal dengan menggunakan 

pendekatan Interaksi Struktur-Bendalir (FSI).  Dua jenis model yang berbeza iaitu 

model unggul dan tulang trabekular sebenar dibina.  Model unggul digunakan untuk 

mengukur hubungan ciri-ciri sumsum tulang kepada morfologi tulang trabekular.  

Manakala, model tulang trabekular sebenar dibina untuk mengkaji keadaan sebenar 

sumsum tulang dalam struktur semasa beban fisiologi.  Orientasi struktur trabecular 

yang berbeza juga diperiksa.  Tiga pendekatan berangka yang mana merupakan kaedah 

unsur terhingga, dinamik cecair pengkomputeran dan FSI digunakan untuk menilai 

kesan kepentingan pergerakan sumsum tulang ke arah sifat mekanik tulang trabekular.  

Penemuan menunjukkan sel tulang mampu untuk bertindak balas terhadap proses 

pembentukan semula tulang dengan beban gait berjalan secara normal.  Perilaku 

pergerakan sumsum tulang seperti tekanan ricih, tekanan dan kebolehtelapan dengan 

keliangan dan kawasan permukaan trabekular mempunyai hubungan yang signifikan 

dengan nilai-p < 0.05.  Kebolehtelapan dan kekakuan orientasi membujur adalah 83% 

dan 56% lebih tinggi berbanding orientasi melintang.  Dalam kajian beban gait, nilai 

tegasan ricih sepanjang fasa berjalan secara normal didapati dalam julat 0.01-0.27 Pa. 

Ini didapati cukup untuk mencerna tindak balas sel seperti yang dinyatakan dalam 

kajian sebelumnya. Kekakuan tulang trabekular adalah 22% lebih tinggi berbanding 

model tanpa sumsum tulang. Penemuan ini mencadangkan kehadiran sumsum tulang 

boleh menyebabkan perubahan bentuk dan tekanan pada struktur trabecular berkurang. 
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Bone is an ultimate biomaterial which is light, robust, able to adapt to its 

functional demand and can also repair itself.  Bone roles as structural support, shield 

vital organs from distress, maintains mineral homoeostasis (calcium and phosphorus), 

and serve as attachment sites for muscles.  The four shapes of bone include short, long, 

flat and irregular shape and different shape has different purpose and position in the 

human body. 

 

 

There are two types of bone tissue; cortical bone and trabecular bone.  As 

shown in Figure 1.1, the cortical bone is the outside shell of the bone that forms the 

tube of the long bone, while the trabecular bone is the porous cellular solid that absorb 

load.  Up to 80% of the bone mass is composed of the cortical bone since it is compact 

dense and solid, and the balance, which only 20% carried by trabecular bone [1].  Due 

to the trabecular bone is porous structure, the bone is strong but light in weight.  The 

cortical bone is a bone tissue that has a porosity less than about 30% [2].  Thus, porosity 

can be used to differentiate between the cortical bone and trabecular bone [3].  

Furthermore, the trabecular bone is also known as spongy bone or cancellous bone.  
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The trabecular bone structures arranged in order to withstand the stresses from usual 

standing and walking.  In addition, the irregular lattice small rods and plates on the 

trabecular bone tissue called trabeculae and the pores of the trabecular bone filled with 

bone marrow.  

 

 

 

Figure 1.1: Structural types of bone; compact and spongy bone 

 

 

The bone tissue is composed of organic phases, inorganic phases, and water.  

The organic phase consists of fibrous type I collagen and amorphous ground substance, 

while the inorganic phase contains calcium phosphate crystal.  Organic and inorganic 

phase contribute to the tensile strength and compressive strength respectively to the 

bone tissue [4].  There are several cells in the bone such as osteoclasts, osteoblasts, 

osteocytes, lining cells, etc.  All these bone cells have their functions in bone growth 

and recovery, also known as bone remodelling process.  

 

 

Studies on mechanobiological movement through the trabecular bone needed 

to sustain the bone quality.  Previous researchers reported that various physiological 

activities had affected the bone remodelling process and nutrient supply.  Moreover, 

bone is well known as a self-repairing structural material that altered mechanical 
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loading.  In addition, the bone marrow contained by the trabecular bone will have 

displacement while bone is subject to mechanical loading.   

 

 

It is widely known that the trabecular bone is a highly porous structure with a 

significant volume of bone marrow.  A compressive or tensile force on the trabecular 

bone will result in bone marrow movement with respect to the trabecular bone 

structure.  Hence, the interaction between the fluid and trabecular bone will occur, and 

this incident might have several effects on the trabecular structure.  Therefore, the 

Fluid-Structure Interaction (FSI) approach were used to find out the effect of fluid to 

the trabecular and vice versa.  With the purpose of understanding the bone marrow 

interaction inside the trabecular bone, the knowledge of bone marrow properties is 

essential.  Even though there are some previous researches on bone marrow, the 

literature available on the fluid flow characteristic of bone marrow in the trabecular 

bone is still lacking.  As the trabecular bone experience loading conditions, the bone 

marrow will have a resistance to the trabecular bone structure.  Since the trabecular 

bone is known as an anisotropic material, by measuring the permeability of bone at a 

different orientation more understanding of the trabecular bone orientation can be 

understood.  Moreover, knowledge of shear stresses that occur within the bone during 

daily activities is necessary to comprehend how the bone marrow can affect the 

trabecular structure properties.  

 

 

The pressure differences across the trabecular bone along with viscosity and 

permeability values were used in these studies to quantify the shear stresses occurring 

on the trabecular surfaces.  Currently, no literature is available regarding the nature 

and behaviour of bone marrow that occur in trabecular bone during physiological 

loading condition.  So far, however, there has been little discussion on the fluid in bone 

area, and most of the researchers focused on the bone fluid flow within the lacunar-

canalicular porosity.  Therefore, in this study, the main concern is on the FSI of the 

bone marrow within the trabecular bone with the purpose of finding a correlation 

between fluid characteristics and mechanical properties of the trabecular bone and how 

the trabecular bone reacts on the interaction of bone marrow.   
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1.2 Problem Statement 

 

 

As mentioned earlier, this study is based on the effect of bone marrow 

movement to the trabecular bone during the physiological activities.  It is commonly 

known, bone marrow always coexisting with the trabecular structure.  However, 

previously most of studies have modelled the fluids and solid components separately.  

Thus, unable to capture the real conditions which occur within the trabecular bone and 

bone marrow.  Due to the load applied to the bone while daily activities were 

performed, such as standing, walking and running, the trabecular structure will have a 

stress and deformation.  Consequently, the bone marrow within the trabecular would 

have movement, while also providing a hydraulic stiffening effect to the trabecular 

structure.  The hydraulic stiffening effect will be slowing down the trabecular bone 

deformation [5].  Additionally, the movement of bone marrow can cause shear stress 

to the trabecular bone structure.  These mechanical effects to the trabecular bone are 

crucial to be understood with the purpose of developing artificial trabecular bone or 

scaffold.  

 

 

Furthermore, the mechanical environments of bone marrow are not yet clearly 

understood.  Other than a function of hydraulic stiffening of bone, bone marrow also 

acts importantly in the bone remodelling process.  In fact, bone marrow also functions 

as a home for progenitor cells; osteoclast and osteoblast, also, as a host to others cells 

such as immune cells, blood cells, adipocytes, mesenchymal stromal cells (MSCs), 

hematopoietic stem cells (HSCs), etc. [6].  The remodelling process was controlled by 

osteocytes mechanobiological signalling which was diffuse to the bone marrow.  

Likewise, it is known that when there is mechanical loading due to the physiological 

activities, the bone marrow within the trabecular structure was compressed.  This 

phenomenon causes a pressure drop in the trabecular bone structure.  Thus, the bone 

marrow will have a fluid flow through the porous structure.  Furthermore, the 

interaction between the bone marrow flow and the trabecular wall will generate shear 

stress.  These mechanical stimuli will affect the bone formation which also in control 

of trabecular design structure.  Over the time, the bone cells within the bone marrow 
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will respond to the remodelling process and adapt to the induced mechanical loading 

to resist the loading and become stronger.  Thus, the trabecular bone and marrow 

intimate interaction recommend that they both needed to be considered in parallel.  

 

 

Most of the bone-related diseases were prone in involve elderly such as hip, 

wrist and spine fracture, required additional focus in understanding the biomechanics 

of bone.  Due to the primary function of bone in withstand load during daily life 

activities, it is needed to understand the mechanical factors of bone.  Improving 

understanding of bone metabolism and bone fracture aetiology is vital with the purpose 

of preventing fracture and identify the risk at an early stage.  Therefore, the fluid-

structure interaction between the bone marrow and trabecular bone need to be 

examined.  With the purpose of understanding the bone marrow interaction between 

the trabecular bone and how it will have affected to mechanical properties, the finite 

element method was used.  The simulation was designed to imitate real condition 

within trabecular bone during mechanical loading.  These mechanical stimuli study 

may direct to the development of new approaches for enhancing bone healing while 

also help in preventing bone fracture.  Therefore, current study might cover the 

following research questions; 

 

 

1. How is the morphology of trabecular structure affecting the bone marrow 

characteristic. 

2. How the orientation affects the local stress of trabecular structure and bone 

marrow flow properties at the tissue level. 

3. What are the effects of morphology parameter indices correlation to the 

trabecular structure properties and bone marrow characteristics in physiological 

activity. 

4. How the bone marrow within the structure contributes to trabecular bone 

strength. 
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1.3 Objective 

 

 

This study is set out with the aim of assessing the importance on the interaction 

between the bone marrow and trabecular structure during physiological loading by 

using the FSI approach. 

 

The specific objectives of this research are: 

1. To determine the relationship of structure morphology and mechanical 

stimuli of bone marrow.  

2. To investigate the effects of trabecular bone loading orientation to bone 

marrow characteristic.  

3. To identify the flow characteristics of bone marrow with respect to the 

normal walking loading conditions as a daily physiological activity. 

4. To determine the effect of bone marrow to the trabecular structure 

stiffness. 

 

 

 

 

1.4 Scope of Study  

 

 

This study concentrates on the fluid flow interaction within the trabecular bone 

of bovine femur.  The bone marrow movements inside the trabecular bone were 

investigated in order to find out how it is affected by the bovine trabecular bone 

structure.  Thus, the bone remodelling process behaviour from the bone marrow can 

be explored with the purpose of understanding the fluid characteristic phenomena.  

More specifically, the scope of this thesis study can be simplified as follow;  

 

 

i. Idealise models were constructed based on parameters from literature 

review studies. 
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ii. The real samples of trabecular bone are harvested from the bovine 

femur.  

iii. Different orientations are considered for the morphology study and the 

FSI analysis.  

iv. All harvested bovine specimens are scanned using high-resolution 

micro-CT scanner (Skyscan1172).  

v. The scanning data were then being studied by using the ImageJ software 

for morphology study.  

vi. The morphology parameters, such as trabecular thickness, trabecular 

separation, trabecular number, volume fraction, connectivity, Mean 

Intercept Length (MIL) and Structure Model Index (SMI) are obtained 

from the ImageJ software.   

vii. The morphology data are compared with the previous study from the 

literature. 

viii. The scanning images were constructed to three-dimensional (3D) 

images by using Mimics software.  

ix. From the 3D images, the models of the trabecular bone structure are 

imported into the Comsol software for analysis.  

x. Load and boundary conditions are applied to the trabecular structure 

with bone marrow surrounding the trabecular model.  

xi. The movement of the bone marrow are studied while the different load 

applied such as uniaxial load and gait loading based on normal 

physiological activity.   

xii. The relationship between morphology parameters of bovine trabecular 

bone and physical activities with bone marrow characteristics were 

determined.  

 

 

  



8 

 

1.5 Significant of Finding  

 

 

Trabecular bone consists of a hierarchical complex structure which constantly 

changing under certain factors of mechanical and chemical.  These structures of 

trabecular bone play the main role in the distribution of stress in the skeletal system.  

By the time, the bone will lose its mass, and the structure will experience deterioration 

[7].  As a result, the bone becomes fragile, and its structure might break.  This condition 

called as osteoporosis disease.  More than 8.9 million fractures were caused by 

osteoporosis annually [8] and in fact, 1 in 5 men and 1 in 3 women aged over 50, will 

experience osteoporotic fractures [9].  In the year 2000, 9 million of new osteoporotic 

fracture were estimated [10], and by the year 2050, the occurrence of hip fracture will 

increase by 240% to 310% [11].  Studies from previous research have consistently 

found that treatments can reduce the risk of osteoporotic fracture depending on the 

patients’ population and drug used [12, 13].  However, with the bone remodelling 

process and adequate nutrient transport within the bone, the osteoporotic fracture can 

be prevented.   

 

 

The key to bone health that can prevent bone fractures is the mechanism which 

involves bone loss and formations of new bone called bone remodelling.  Undoubtedly, 

bone remodelling process also requires adequate nutrient transport through the bone 

cells.  Amazingly the bone can heal itself when there is external loads act upon the 

cells which can trigger the signals to the bones and start building themselves up.  These 

loads come from human daily life activities which also include house chores, daily 

walking, and sports activity.  Then again, the loads from human daily life will lead to 

the movement of the bone marrow within the trabecular structure which will cause the 

shear stress.  This shear stress is one of the factors which trigger the bone cells to start 

the bone remodelling process.  The capability of remodelling its structure and mass in 

adapting to biomechanical loading in daily life activities brand the bone as the highly 

efficient material.   
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Since the osteoporotic fractures are one of the health burdens which causes 

impairment, morbidity, mortality and decreases the quality of life in elderly, it is vital 

to increase understanding on how the bone cells mechanical stimuli actually works.  

Moreover, the previous study only focusing on the bone material properties itself while 

overlooking the functions of bone marrow within the trabecular structures [14-18].  

Therefore, the present study was focusing on quantification of the trabecular bone 

behaviour with a presence of bone marrow to improve the accuracy and validity of 

trabecular failure and prediction of the bone remodelling process, which was failed to 

be submitted by previous assessments.  Moreover, accurate bone remodelling process 

through the bone cell was predicted by using the FSI approach.  Subsequently, this 

study will contribute to the future development of strategies towards enhancing the 

bone healing process and osteoporotic fracture preventions.  
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1.6 Thesis Structure and Organisation 

 

 

Chapter 1 presents an introduction to this research which provides an overview 

and the importance of FSI in the trabecular bone study.  It consists of a background of 

study, problem statement, objective, scope and significance of this research.  Then, 

continue with Chapter 2 is the literature review which contains review on bone, 

trabecular bone, bone remodelling process and FSI in the trabecular bone application 

based on study of previous researchers.  Chapter 3 explain on what steps used to 

complete this research.  Starts from model developments for the simulation purpose, 

morphological study of trabecular sample, Finite Element Analysis (FEA), results 

validation to the statistical analysis.  The results and discussions were delivered in 

Chapter 4 which is divided into five main sections; the morphology indices on the 

trabecular bone model, behaviour of bone marrow towards physical structure, FSI 

modelling of bone marrow through trabecular bone under uniaxial compression, 

trabecular bone mechanic of gait loading with a presence of bone marrow, and the 

effect of bone marrow within the trabecular structure by comparing between 

multiphysics and single approach.  Lastly, Chapter 5 concludes the findings 

accomplished in this study.  The limitations and recommendations also are highlight 

for future works.   
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