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ABSTRACT 
 
 
 
Treating neurodegenerative disease using Curcumin, a pigment from turmeric is 
found difficult due to its low bioavailability. To overcome this problem, polyvinyl 
alcohol multi-walled carbon nanotubes (PVA-MWCNT) was developed to improve 
its delivery and uptake by the brain cells. It was first prepared by oxidizing pristine 
MWCNT (p-MWCNT) in 3:1 sulfuric and nitric acid mixture. Three methods were 
employed to optimize  production of oxidized MWCNT (ox-MWCNT); which is 
stirring and sonication for 2 and 6 hours. The selected ox-MWCNT with minimal 
structural damage was then functionalized with PVA via carbodiimide esterification, 
and confirmed by field-emission scanning electron microscopy (FESEM), Fourier 
transform infra-red (FTIR) spectroscopy, dispersion test and thermal gravimetric 
analysis (TGA). Next, Curcumin was loaded onto PVA-MWCNT, p-MWCNT and 
ox-MWCNT, and evaluated their adsorption capacity and behaviour using adsorption 
kinetics, isotherm and thermodynamic studies. Percentage of Curcumin desorbed 
from the MWCNT was analyzed in physiological buffers of pHs 7.4 and 5.5. Lastly, 
potential of Curcumin loaded on PVA-MWCNT (Cur-PVA-MWCNT) to protect 
neurons was screened in neuroblastoma SH-SY5Y cells, including other Cur-loaded 
MWCNT samples. The cells were pre-incubated with hydrogen peroxide (H2O2) at 
half the maximal inhibitory concentration (IC50) for 1 hour, before concurrent 
treatment of the samples. Cell survival was compared to controls treated with 
Curcumin-unloaded MWCNT, i.e. PVA-MWCNT, ox-MWCNT and p-MWCNT. 
From the results, MWCNT was oxidized with minimal structural damage using 
stirring method. The evidence of PVA grafting was confirmed through the presence 
of matrix polymer embedded on ox-MWCNT in FESEM, high stability in water, 
identification C=O stretching of ester group at 1736 cm-1 in FTIR and its stable 
structure compared to ox-MWCNT and p-MWCNT in TGA. PVA-MWCNT 
adsorbed Curcumin at only 5.1 mg/g, which follows the Freundlich isotherm model 
(physisorption), while the highest amount was loaded on ox-MWCNT at 714 mg/g 
that follows the Langmuir model (chemisorption). Although Curcumin adsorption on 
PVA-MWCNT was only at minimal amount, it showed the most efficient desorption 
occurred at pH 5.5 (25%) rather than pH 7.4 (3%) with sustained release over a 3-day 
incubation. This suggests Curcumin weak binding through physisorption to the PVA-
MWCNT facilitated its release at lower pH. Cur-PVA-MWCNT also protected SH-
SY5Y cells from H2O2-induced oxidative stress most significantly at 100 ng/ml, 1 
µg/ml and 10 µg/ml compared to PVA-MWCNT. Cur-ox-MWCNT and Cur-p-
MWCNT indicated no obvious difference as compared to their controls. The change 
in the cell environment after damage perhaps encouraged the pH to become acidic 
which may facilitate Curcumin release from PVA-MWCNT. Overall, PVA-MWCNT 
was considered promising for loading and the release of Curcumin. The efficacy of 
the system in in vitro cell lines was also enhanced, demonstrating it as a prospective 
carrier for Curcumin in the treatment of neurodegenerative disease. 
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ABSTRAK 
 
 
 

Pengubatan penyakit neurodegeneratif menggunakan Curcumin, pigmen dari 
kunyit didapati sukar kerana bioketerdapatannya yang rendah. Untuk mengatasinya, 
polivinil alkohol tiub nanokarbon berbilang dinding (PVA-MWCNT) dibangunkan 
bagi memperbaiki penghantaran dan pengambilannya oleh sel-sel otak. 
Penyediaannya dimulai dengan oksidasi pristin-MWCNT (p-MWCNT) di dalam 3:1 
campuran asid sulfurik dan nitrik. Penghasilan MWCNT teroksida (ox-MWCNT) 
dioptimum melalui tiga kaedah; iaitu pengacauan, dan sonikasi selama 2 dan 6 jam. 
Ox-MWCNT dengan sedikit kerosakan struktur kemudiannya difungsikan dengan 
PVA melalui pengesteran karbodiimida, dan disahkan melalui mikroskop elektron 
imbasan pancaran medan (FESEM), spektroskopi Fourier transform inframerah 
(FTIR), ujian penyebaran dan analisis gravimetri terma (TGA). Seterusnya, 
Curcumin dimuatkan pada PVA-MWCNT, p-MWCNT dan ox-MWCNT, dan dinilai 
kapasiti dan tingkah laku jerapan melalui kajian kinetik dan isoterma penjerapan, 
serta termodinamik. Peratus pelepasan Curcumin dari MWCNT pula dikaji 
menggunakan larutan tampan pH 7.4 dan 5.5. Terakhir, potensi PVA-MWCNT 
muatan Curcumin (Cur-PVA-MWCNT) melindungi neuron disaring dalam sel 
neuroblastoma SH-SY5Y, termasuk sampel MWCNT-muatan Cur lain. Sel diaruh 
hidrogen peroksida (H2O2) pada kepekatan separuh perencatan maksima (IC50) 
selama 1 jam sebelum diuji serentak dengan sampel. Kebolehhidupan sel dibanding 
dengan kumpulan kawalan MWCNT-tanpa-muatan-Cur, iaitu PVA-MWCNT, ox-
MWCNT dan p-MWCNT. Menurut hasil kajian, teknik pengacauan mengoksidasi 
MWCNT dengan sedikit kerosakan struktur. Bukti cantuman PVA pada ox-MWCNT 
ditunjukkan oleh matrik polimer tertanam pada ox-MWCNT dalam FESEM, 
kestabilan tinggi dalam air, pencaman regangan C=O dari kumpulan ester pada 1736 
cm-1 dalam FTIR serta kestabilan struktur berbanding ox-MWCNT dan p-MWCNT 
dalam TGA. PVA-MWCNT menjerap Curcumin hanya pada 5.1 mg/g dan mematuhi 
model isoterma Freundlich (jerapan fizikal), manakala jumlah tertinggi sebanyak 714 
mg/g dimuat keatas ox-MWCNT yang mengikuti model isoterma Langmuir (jerapan 
kimia). Walaupun jerapan Curcumin oleh PVA-MWCNT di kadar yang rendah, 
penyahjerapannya didapati paling cekap pada pH 5.5 (25%) berbanding pH 7.4 (3%) 
dengan pelepasan tertahan yang berterusan selama 3 hari. Ia mencadangkan interaksi 
lemah Curcumin pada PVA-MWCNT melalui jerapan fizikal menggalakkan 
pelepasannya pada pH yang rendah. Cur-PVA-MWCNT juga melindungi sel-sel SH-
SY5Y dari tekanan oksidatif aruhan H2O2 dengan ketara pada 100 ng/ml, 1 µg/ml 
dan 10 µg/ml berbanding PVA-MWCNT. Cur-ox-MWCNT dan Cur-p-MWCNT 
pula tidak menunjukkan perbezaan berbanding kumpulan kawalannya. Perubahan 
persekitaran sel SH-SY5Y setelah aruhan berkemungkinan mempengaruhi pH ke 
arah keasidan, seterusnya menggalakkan penyingkiran Curcumin dari PVA-
MWCNT. Keseluruhannya, PVA-MWCNT berpotensi memuat dan menyahjerap 
Curcumin. Keberkesanan sistem ini di dalam sel in vitro juga menunjukkannya 
sebagai pembawa prospektif Curcumin bagi rawatan penyakit neurodegeneratif. 
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CHAPTER 1 
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

 

Curcumin (diferuloylmethane) is a bioactive compound found in turmeric 

rhizomes of Curcuma longa linn. This natural compound has been used for centuries 

as a spice for cooking curry, as food colouring and as ailments, particularly as an 

anti-inflammatory agent (Aggarwal et al. 2003). It has also shown other 

pharmacological effects including anti-oxidant, anti-proliferative and anti-angiogenic 

activities to treat various pathological conditions such as cancer, cardiovascular 

disease, Alzheimer’s disease and so on (Anand et al. 2007). Despite such 

phenomenal advances in medicinal applications, the clinical implication of native 

Curcumin is hindered by its low solubility, physico-chemical instability, poor 

bioavailability, rapid metabolism, and poor pharmacokinetics. These problems 

nevertheless, can be circumvented by utilizing an efficient delivery system (Yallapu 

et al. 2015).  

 

 

With the development of nanotechnology, a number of formulations have 

been developed and explored upon achieving successful outcomes for pre-clinical 

and human clinical trials. They involve the use of adjuvants, stabilizers, 
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nanoparticles, liposomes, and polymer-drug conjugates (Yallapu et al. 2015). Carbon 

nanotubes (CNT) have recently received considerable attention as an efficient drug 

delivery carrier due to their unique physicochemical properties. They enable easy 

surface modification for immobilization of therapeutic molecules, such as drugs, 

proteins, DNA and antibodies (Zhang et al. 2011). Compared to other drug delivery 

carriers, CNT offers several advantages such as exceptionally high drug loading due 

to its high surface area (Kushwaha et al. 2013). Different kinds of therapeutic 

molecules can also be incorporated into their inner cavity to improve efficacy, for 

instance providing protective environment for drugs with poor stability. Many 

studies show that adsorbed molecules could be released from CNT under different 

conditions (Zhang et al. 2014, Wang et al. 2012b, Heister et al. 2012) and that it can 

be controlled by varying pH value, temperature and different diameter type (Kumari 

et al. 2014, Liu et al. 2007a). The targeting agents attached to the CNT also enable 

the molecules, for example drugs, to be selectively transported and released to the 

diseased sites (Zhang et al. 2011).  

 

 

 Other important issues such as opsonisation, phagocytosis by macrophages 

and sequesterian by the liver and spleen that lead to its eventual elimination from the 

body need to be taken into account when developing a nanocarrier (Kotagiri and 

Kim, 2014). Hence, careful strategies in CNT functionalization are required for it to 

reach its full clinical potential.  The design of CNT that combined coatings made of 

ligands or polymer in a complete and uniform manner helps to stabilize the carrier 

and prevents non-specific cell uptake in the bloodstream. A famous example is 

polyethylene glycol (PEG), a known polymeric steric stabilizer in pharmaceutical 

and food products, including in the development of CNT nanocarriers (Heister et al. 

2010, Lay et al. 2010). The PEG-CNT did not only show good biocompatibility in 

biological mileu but also demonstrated prolonged blood circulation. As a result, the 

drug can be released when reaching the targeted cells. Advances using alternative 

biocompatible polymers incorporated with CNT have been well-described too, such 

as poly(lactic-co-glycolic acid) (Gupta et al. 2015), phosphatidylcholine (PC) and 

polyvinylpyrrolidone (PVP) (Zhang et al. 2014) and polyvinyl alcohol (PVA) (Sahoo 

et al. 2010). Their efficiency to improve stability, loading and release of Curcumin in 

a slow manner was, however, scarcely reported.  
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1.2 Problem statement 

 

 

 It was known that many formulations were developed to improve Curcumin 

delivery, except for CNT where studies are still in its infancy. To date, there is only 

one report that worked on Curcumin-loaded CNT system, which focused on 

Curcumin’s anti-cancer potential (Zhang et al. 2014). The group functionalized 

single-walled CNT (SWCNT) with PC and PVP polymer for Curcumin loading, and 

the results showed fast release of the compound to suit its applicability for 

photothermal therapy. 

 

 

 In this study, the aim is to develop multi-walled CNT (MWCNT) as a carrier 

for Curcumin towards neurodegenerative treatment. The possible route of 

administration is through blood circulation; the time taken to reach the blood-brain 

barrier (BBB) might slow down before the drug can be released. Commonly, CNT 

was functionalized with PEG, as PEG is the most widely used polymer for increasing 

various nanocarrier’s stability. CNT-PEG was known to provide shielding to the 

nanotubes to render its resistance to opsonin, macrophage and reticuloenthelial 

system (RES); showed by its increased blood circulation time in in vivo and in vitro 

experiment (Kotagiri and Kim, 2014). The prolonged circulation time of CNT helps 

the drug to be released effectively at the relevant/ targeted sites, which makes it an 

ideal drug carrier. In the current situation, there is a need to explore more coating 

materials that have PEG-like properties due to a number of limitations. First, studies 

have found anti-PEG antibodies in a population of healthy humans due to an 

increased exposure of PEG through food product, pharmaceutical formulation and 

cosmetics (Kinnear et al. 2014). These antibodies caused a reduction in circulation 

time of the PEGylated agent and accelerated clearance from the body due to repeated 

administration. Secondly, the “stealth” of PEG is potentially undesirable if there is a 

specific biological target on the carrier, such as the immune system. Also 

controversial is that PEG requires further synthetic steps to introduce a high number 

of functional moieties to bind with other therapeutic molecules, such as targeting 

peptides. The conventional PEG was known to have a low degree of functionality, 
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where only its end is reactive for attachment. This study has therefore explored new 

polymer alternatives for functionalization with MWCNT.  

 

 

 

 

1.3 Research objectives 

 

 

The present study was dedicated to develop nanocarriers using MWCNT and 

biocompatible PVA for Curcumin delivery. This work is regarded as the first study 

using MWCNT, with the main aim to graft PVA to ox-MWCNT, achieve stability of 

the PVA-MWCNT and to successfully load and release the compound in a slow 

manner. Additionally, the study is also aimed at providing recommendations for its 

potential implementation as a neuroprotective agent. 

 

 

The specific objectives of the experimental study are as follows: 

 

i. To develop functionalized MWCNT with PVA for the attachment of 

Curcumin  

ii. To determine loading and release behavior of Curcumin on PVA-

MWCNT in comparison to pristine MWCNT (p-MWCNT) and 

oxidized MWCNT (ox-MWCNT) 

iii. To determine neurotoxicity and neuroprotective effect of Cur-PVA-

MWCNT, Cur-ox-MWCNT and Cur-p-MWCNT, in comparison to 

PVA-MWCNT, ox-MWCNT and p-MWCNT using neuroblastoma cell 

line SH-SY5Y 
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1.4 Scope of study 

 

 

This research project investigates the potential of functionalized MWCNT as 

an effective delivery carrier for Curcumin. In the first step of the study, the p-

MWCNT was modified to ox-MWCNT using acid oxidation. The methods include 

stirring and sonication in the acid mixture and were optimized for its ability to 

provide substantial functional groups on ox-MWCNT with minimal structural 

damage. The best method was then selected to reproduce ox-MWCNT for grafting 

with PVA. Conformation of functional groups generated on ox-MWCNT and PVA-

MWCNT were evaluated using field-emission scanning electron microscopy 

(FESEM), energy dispersive X-ray (EDX), Fourier transform infra-red (FTIR) 

spectroscopy, dispersion test and thermal gravimetric analysis (TGA). In the second 

objective, Curcumin was loaded to the PVA-MWCNT, as well as on ox-MWCNT 

and p-MWCNT for comparison. The Curcumin attached to the MWCNT samples 

were named Cur-PVA-MWCNT, Cur-ox-MWCNT and Cur-p-MWCNT. Their 

adsorption behavior was predicted by examining adsorption kinetics, isotherm and 

thermodynamics using mathematical models. In the drug desorption study, 

Curcumin’s ability to disperse from the MWCNT samples, and its release pattern 

were determined in physiological buffers. Finally, investigations on neurotoxicity 

and neuroprotection effect of Cur-PVA-MWCNT, Cur-ox-MWCNT and Cur-p-

MWCNT were evaluated using SH-SY5Y cells, which were conducted at Universiti 

Teknologi MARA, Shah Alam, Selangor. The correlation between Cur-loaded 

MWCNT and Cur-unloaded MWCNT was statistically validated using paired t-test.  

 

 

 

 

1.5 Significance of study  

 

 

In developing a CNT-based drug delivery carrier, careful design of functionalization 

is crucial. Polymer functionalized CNT has been reported to increase its circulation 

time in blood due to its “stealth”, which helps to regulate drug release more 
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efficiently to cells and tissues. The present study hence optimized MWCNT 

functionalization strategies using biocompatible PVA.  The discovery made from this 

study will disseminate knowledge that solved fundamental problems in the use of 

CNT as a drug carrier, such as their water solubility. The PVA that was employed as 

an alternative polymer for CNT functionalization will also help overcome PEG 

limitations that were recently reported. This was investigated through drug 

adsorption and desorption studies that used Curcumin as a drug model. Although 

there is still a long way to go for practical use, this study helps increase 

understanding on polymer-functionalized MWCNT for pharmaceutical industries 

application. The developed PVA-MWCNT before and after loading with Curcumin 

was studied for neuroprotective capabilities that will be beneficial in 

neurodegenerative disease treatment. 
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