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ABSTRACT 

The concerns towards radiation–induced cancer from Computed Tomography 

(CT) examinations have led to the encouragement of CT dose monitoring and further 

optimization of the scanning parameters. Therefore, in this study, radiation dose from 

CT scan and its related risks to the patients from current CT practice were analysed. 

In the first stage, this thesis started the discussion on the level of current knowledge 

among radiology personnel towards CT radiation risk and its optimization. There is 

no significant difference of the current knowledge of CT optimization between the 

two professions of interest herein, the medical and the allied health groups. A CT 

dose survey was conducted in 8 CT facilities for a 6-month period, encompassing 

data for 1024 patients with various CT examinations that included regions of the 

abdomen, brain and thorax. CT-EXPO (Version 2.3.1, Germany) software was used 

to validate the dose information such as CT Dose Index (CTDI) and dose-length 

product (DLP). The proposed Diagnostic Reference Levels (DRLs) were indicated 

by rounding off the third quartiles (Q3s) of whole dose distributions for weighted 

CTDI (CTDIw) (in mGy), volume CTDI (CTDIvol) (in mGy) and DLP (in mGy.cm) 

and their values were; 16, 17, and 650 respectively for CT abdomen; 70, 70, and 

1030 respectively for CT Brain and 15, 16, and 670 respectively for CT thorax. In 

the second stage, the cancer risks of the CT examinations were estimated and the 

calculation was based on International Commission on Radiation Protection (ICRP) 

Publication 103 Report and Biological Effects of Ionizing Radiation (BEIR) VII 

Report. Based on BEIR VII recommendation, the study discovered that the lifetime 

attributable risks (LARs) of 100,000 populations who underwent abdominal CT 

examinations for stomach cancer were 2.3 for male and 1.0 for female; while for 

colon cancer the LARs were 2.3 for male and 0.7 for female. The effectiveness of 

optimization of CT parameters and application of shielding in routine CT procedures 

were evaluated. Of 7 protocols (P1 – P7), the k factors were constant for all protocols 

and decreased by ~8% compared to the universal k factor. It is of interest that k 

factors from CT-EXPO were found to vary between 0.010 for protocol P5 and 0.015 

for protocol P3 due to inconsistency in tube potential and pitch factor. The 

application of breast shielding to routine CT thorax protocols reduced by 14% the 

breast’s equivalent dose. Hence, this study supports the importance of initiating 

protection and optimization processes of routine CT examinations in order to offer 

safer imaging practices.  



ABSTRAK 

Kebimbangan terhadap kanser teraruh sinaran daripada pemeriksaan 

tomografi berkomputer (CT) mengarahkan kepada penggalakan pemantauan dos CT 

dan pengoptimuman parameter imbasan. Oleh itu, dalam kajian ini, dos sinaran 

daripada imbasan CT dan risiko yang berkaitan kepada pesakit daripada amalan CT 

semasa telah dianalisis. Pada peringkat pertama, tesis ini memulakan perbincangan 

mengenai tahap pengetahuan dan kesedaran di kalangan kakitangan radiologi 

terhadap risiko sinaran CT dan pengoptimumannya. Tidak ada perbezaan yang 

signifikan mengenai pengetahuan semasa bagi pengoptimuman CT antara dua 

profesion yang berkaitan, perubatan dan kesihatan bersekutu. Kajian dos CT telah 

dijalankan di 8 kemudahan CT untuk tempoh 6 bulan, merangkumi data bagi 1024 

pesakit dengan pelbagai pemeriksaan CT yang termasuk kawasan abdomen, kepala 

dan toraks. Perisian CT-EXPO (Versi 2.3.1, Jerman) telah digunakan untuk kesahan 

maklumat dos seperti indeks dos CT (CTDI) dan hasil darab panjang dos (DLP). 

Aras Rujukan Diagnostik (DRLs) yang dicadangkan telah ditunjukkan dengan 

membundarkan kuartil ketiga (Q3) taburan dos keseluruhan bagi pemberat CTDI 

(CTDIw) (dalam mGy), isipadu CTDI (CTDIvol) (dalam mGy) dan DLP (dalam 

mGy.cm) dan nilainya; masing-masing ialah 16, 17, dan 650 untuk CT abdomen; 

masing-masing ialah 70, 70, dan 1030 untuk CT otak dan masing-masing ialah 15, 

16, dan 670 untuk CT toraks. Di peringkat kedua kajian, anggaran dan kiraan risiko 

kanser daripada pemeriksaan CT berdasarkan kepada Laporan Suruhanjaya 

Antarabangsa Perlindungan Sinaran (ICRP) Penerbitan 103 dan Laporan Kesan 

Biologi Sinaran Mengion (BEIR) ke-VII. Berdasarkan cadangan oleh BEIR-VII, 

kajian ini merangkumi risiko agihan jangkahayat (LARs) 100,000 populasi yang 

menjalani pemeriksaan CT abdomen untuk kanser perut ialah 2.3 bagi lelaki dan 1.0 

bagi perempuan; sementara LARs bagi kanser kolon ialah 2.3 bagi lelaki dan 0.7 

bagi perempuan. Keberkesanan pengoptimuman parameter CT dan aplikasi alat 

pelindung dalam prosedur CT rutin dinilai. Daripada 7 protokol (P1 - P7), faktor k 

adalah malar untuk semua protokol dan berkurang ~ 8% berbanding dengan faktor k 

semesta. Didapati kesemua faktor k daripada CT-EXPO berubah antara 0.010 bagi 

protocol P5 dan 0.015 bagi protocol P3 disebabkan oleh ketidakmalaran dalam 

keupayaan tiub dan faktor jarak. Aplikasi pelindung payudara kepada protokol CT 

toraks rutin berkurang kepada 14% dos setara payudara. Oleh itu, kajian ini 

menyokong kepentingan memulakan perlindungan dan proses pengoptimuman 

dalam pemeriksaan CT rutin untuk menawarkan amalan pengimejan yang lebih 

selamat.
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INTRODUCTION 

 Overview 

Since the discovery of X-rays by Wilhelm Conrad Roentgen in the year 1885, 

the field of medicine has been revolutionized and utilized by a medical field known 

as radiology. Radiology is one of the branches of medicine that uses various imaging 

techniques and modalities to produce high-quality images of human anatomy with 

the aim to provide an accurate diagnosis of diseases. Henceforth, a lot of imaging 

modalities use X-rays as the main emitting source due to its advantages in providing 

high contrast radiographic images, including the Computed Tomography (CT) scan. 

CT is one of the most vital imaging modalities in radiology, capable of 

producing high contrast sectional images. The X-rays that transmit through the 

human body are detected by a detector in a circular motion along the x-y axis. 

Subsequently, computer processing of the raw data produced from the received 

detector using Rando transform algorithm, reproducing sectional images in the form 

of axial, sagittal-coronal and 3D images, as in Figure 1.1 and the details in Chapter 2. 

The sectional images allows the Radiologist to diagnose diseases accurately in a 

clinical situation better than 2D radiographic images of conventional X-ray machines 

(Goo, 2012; Lee et al., 2004). 
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Figure 1.1  CT images of a thorax. The upper right side is axial images of CT 

thorax and it is followed by sagittal images in lower right side. On the left upper side 

is a 3D image of CT pulmonary and below on the left side is a coronal image of CT 

thorax (Workstation images). 

 

Nowadays, CT has become a one of the recognized diagnostic imaging tools 

for radiological investigation since the inception of the CT scan EMI Mark I by 

Godfrey Hounsfield in 1972 (Jessen et al. 1999; Tsapaki et al. 2010; Rehani 2012; 

Kalender 2014; Hounsfield 1976a). Unlike film-cassettes techniques, which use a 

larger but passive detector, CT has minimized the unnecessary amount of scattered 

radiation by allowing sequential irradiation slabs of tissue and collimation of the 

detector. Furthermore, in the year 1988, a slip-ring technology was introduced that 

made a continuous rotation of the gantry and detectors possible (Kalender et al., 

2008). Thus, during helical mode acquisition, the table is able to move continuously 

while the detectors are rotating and produce images by utilizing interpolation 
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techniques. This allows spiral CT capable in obtaining a larger volume of 

information in sub-second time, resulting in shorter breath hold and subsequently, 

minimizes motion artifacts. However, despite its benefits, the CT scan is considered 

as one of the most hazardous imaging modality as it contributes greater dose 

exposure. 

 

Figure 1.2 G.F Hounsfield with his first commercial CT scanner, EMI Mark I 

(Buzug et al., 2009). 

 Background of study 

The advancement of CT technology and requisite for better image quality 

lead to the geometry of the CT systems becoming much more complex and with the 

employment of more detectors (Fuchs et al., 2000). Therefore, the dosimetry in CT 

has become a challenging task for many researchers with the addition of the 

increasing demand for individual dose tracking in medical imaging (Fearon et al., 

2011). 

In the year 2001, the International Commission on Radiological Protection 

(ICRP) raised concern that with increased use of CT there was a possibility that the 
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radiation dose from CT examinations was high. A 2006 United States (US) radiation 

dose survey categorized CT exams as the largest source of medical exposure in the 

USA (National Academy of Sciences, 2006). This trend is due to the advantages of 

CT modality in providing the high diagnostic value of images with faster and 

accurate diagnosis which steered to a number of unjustified request for CT 

examinations by physicians. With increase in public concern, many agencies 

introduced monitoring processes also establishing Diagnostic Reference Levels 

(DRLs). As expected, the multinational surveys show that with radiation doses from 

CT exceeding reference levels this could increase the risk of cancer (radiation-

induced cancer) (Brenner, 2012; Hall and Brenner, 2008; Feng et al., 2010; 

Swanson, 2012).). 

 

Figure 1.3  The number of CT scans examinations performed in the US (Smith-

Bindman et al., 2009) 

 

 

In 2003, a survey conducted in the UK by Health Protection Agency (HPA) 

indicated that the total effective population radiation dose to be 47% even thougt it 

only represented 9% of all x-ray examinations done in the country (Jones and 

Shrimpton, 1991; Shrimpton et al., 2006). According to Naumann et al. (2014), the 

risk of radiation is greater for pediatric patients as they receive higher absorbed dose 
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compared to an adult even using the same scan parameters (Naumann et al., 2014; 

Rehani et al., 2012). As illustrated in Figure 1.4, the radiation dose to patients was 

varies based on the type or region of examinations, the abdominal CT investigations 

have the highest effective dose values (Sokolovskaya and Shinde, 2016; Pantos et 

al.,  2011; Sabarudin et al., 2015) 

 

Figure 1.4  Effective dose values from radiological examinations were based on 

the type of examinations, modality used and region of scanning (Australian 

Radiation Protection, 2013). 

 

 

As a result of the increased utilization of CT and increasing radiation dose to 

the population, CT optimization techniques have become a major focus of the 

medical research community. Furthermore, much research has focused on finding the 

most accurate means of dosimetry, patient-specific, although current existing 

dosimetry for CT system are still usable worldwide (Edyvean, 2013; Fearon et al., 

2011; Jessen et al., 1999; Tsalafoutas et al., 2012). This includes the use of the 

Monte Carlo (MC) simulation method such as anthropomorphic mathematical 
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simulation as well as the use of direct methods using small dosimeters, for instance 

thermoluminescence dosimeters (TLD).  

Generally, the biological risk associated with the exposures of individual or 

populations to ionizing radiation can be categorized into two effects; deterministic 

and stochastic effects (Alpen, 1998). Deterministic effects are the acute outcomes of 

the absorbed dose when exceeding a certain threshold (> 1 Gy). The doses received 

from CT examinations typically are much lower compared to dose threshold, ranging 

from 10 – 50 mGy. The dose delivered from CT to a specific anatomical region is 

sometimes repeated up to three phases depending on the clinical needs (Kalender, 

2014). As consequences, effects such as hair loss, skin injuries and erythema have 

been reported, especially from CT brain perfusion studies as shown in Figure 1.5. 

  

Figure 1.5  Patients suffering from epilation due to CT brain perfusion 

examinations (New York Times Magazine, 2009) 

 

Stochastic effects of radiation describe the potential chronic risks of radiation 

exposure. Generally, the typical doses from radiological examinations do not cause 

immediate cell death, but the ionization process could result in DNA strand breaks. 

The DNA strand breaks are commonly caused by the interaction of DNA hydroxyl 

with the ionized atoms and become hydroxyl radicals. These DNA breaks are usually 

repaired by cellular repair mechanism or the cell is into apoptosis. In the case of 

incorrect repair of DNA, cell proliferation continues despite genetic mutation and led 

to carcinogenesis effects. 
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Normally, the risk from radiation has been defined by using the linear non-

threshold model (LNT), based on epidemiological studies including data from 1945 

atomic bomb survivors (Figure 1.6) (National Academy of Sciences, 2006). 

Although the LNT models at low dose have been questioned for accuracy, many 

researchers show great interest in estimating cancer risk from CT examinations as 

radiation dose from CT is quite high and potentially more hazardous compared to 

other modalities. The various techniques of calculation and new applications have 

been introduced in order to demonstrate an overview of cancer risk from CT. 

Concerning the above matter, it is necessary to properly assess and monitor radiation 

dose from CT examinations, in particular, estimating the patient- and organ- specific 

dose (POSDE) and risk. 

 

Figure 1.6 The LNT model uses for estimate risk from low dose exposure 

(Canadian Nuclear Safety Commission, 2013)  

 

 

 

 

LNT model 

Hypersensitive 

 Threshold 

Hormesis 

Epidemiological data 
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 Problem statement and motivation 

A number of studies have related that exposure from CT scans is responsible 

for increasing the risk of cancer (Brenner and Hall, 2007; Berrington de Gonzalez et 

al., 2009). Brenner predicted radiation-related risks in a population by using the data 

from survivors of the atomic bombs dropped on Japan in 1945, where the average 

effective dose is around 20 mSv (Brenner and Hall, 2007; Naumann et al., 2014).  

As conclusion, they have established finding that the dangers of malignant 

neoplastic disease are greater for paediatrics than adults as paediatric patients are 

more radio-sensitive to radiation and have a longer lifespan to get cancer. 

Furthermore, Berrington et al. reported that 29,000 of future cancers could be linked 

to CT scans performed in the USA in 2007 (Berrington et al., 2009). Consequently, 

this has alarmed responsible agencies such as the ICRP, United Nation Scientific 

Committee on Effects of Atomic Radiations (UNSCEAR), American Association of 

Physicist in Medicine (AAPM), the International Atomic Energy Agency (IAEA) 

and have alerted the public that the radiation risk from CT may possibly be harmful 

and dangerous (Rehani, 2012; AAPM Task Group 23, 2008; UNSCEAR, 2010; 

Balonov and Shrimpton, 2012).  

The primary goal of this study is to measure radiation dose from routine CT 

examinations and to introduce accurate CT dosimetry that matches to Malaysian 

clinical practice. It is also essential to estimate the risk to Malaysian populations that 

have undergone CT examinations since there are several issues related to the 

inaccuracy of standard CT dosimetry that need to be addressed. Figure 1.7 shows 

schematically the problem statement of the current study. In general, the present 

study is intended to provide information on the issues of current dosimetry in CT 

technology. The data obtained from the study forms part of the review of the present 

situation of CT dosimetry and its related health risks. In future, this thesis could also 

be used as a supplementary document in support of baseline information on the 

recent situation of CT dosimetry in Malaysia. 
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 Figure 1.7  The schematic diagram of thesis problem statement 
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 Research Objectives 

The objectives of this study are:  

 

1) To assess knowledge and awareness of radiology personnel towards 

optimization techniques and radiation risk of CT examinations. 

 

2) To evaluate the standard acquisition protocols and radiation dose exposure 

received by the patient from current CT practice, finally establishing local 

DRLs. 

 

3) To measure the radiation risk from CT scan cohort studies using a variety of 

calculation methods. 

 

4) To investigate organ absorbed dose and CT optimization techniques on an 

adult anthropomorphic phantom. 

 

5) To introduce a method for the determination of patient- and organ- specific 

dose (POSDE) by using Monte Carlo simulation method. 

 Scope of study 

The scope of the study involves determination of the accuracy of organ 

radiation dose measurement from CT examinations and the evaluation of related 

radiation risk. To achieve this, the study was divided into three parts; 

1) Part I: The data was obtained from the survey method and cross-validated 

with standard mathematical stylized phantom measurements. Local DRLs 

were established and radiology personnel awareness relationship was 

evaluated. 
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2) Part II: Various methods of calculation based on ICRP and BEIR VII were 

used to estimate patient organ dose and radiation risk. The risk calculation 

was made on the whole perspective and then narrowed down to specific 

clinical CT examinations. 

3) Part III: Direct measurements were used to estimate patient organ dose by 

inserting dosimeters such as TLDs into a physical anthropomorphic phantom. 

Further, steps for optimization techniques of current CT practice were 

introduced. 

 Thesis outlines 

This thesis gives a comprehensive overview of CT practice in Johor state 

including dose exposure evaluation, organ absorbed dose assessment, radiation risk 

among the population, steps for optimization and the introduction of novel applicable 

method for evaluating individual specific dose. The basics of the dosimetry and 

estimation of risk is undoubtedly mathematics. However, the beauty of computed 

tomography cannot be understood without a basic knowledge of X-ray physics and 

signal processing. With respect to the title of this thesis, it is structured to provide 

understanding in current CT practice.  

In Chapter 2, the fundamentals of CT dosimetry, the milestones and current 

research in CT dosimetry and its related risks are briefly explained. In Chapter 3, the 

materials and method used are discussed briefly. In Chapter 4, Chapter 5 and Chapter 

6 the results and discussion will be presented on; the establishment of DRLs, 

radiation risk measurement, and optimization process, respectively. Furthermore, the 

conclusion of the thesis will be provided in Chapter 7. 
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