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ABSTRACT 

Fracture characterization and fracture dip prediction can provide the desirable 

information about the fractured reservoirs. Fractured reservoirs are complicated and 

recent technology sometimes takes time and cost to provide all the desired 

information about these types of reservoirs. Core recovery has hardly been well in a 

highly fractured zone, hence, fracture dip measured from core sample is often not 

specific. Data prediction technology using Artificial Neural Networks (ANNs) can 

be very useful in these cases. The data related to undrilled depth can be predicted in 

order to achieve a better drilling operation, or maybe sometimes a group of data is 

missed then the missed data can be predicted using the other data. Consequently, this 

study was conducted to introduce the application of ANNs for fracture dip data 

prediction in fracture characterization technology. ANNs are among the best 

available tools to generate linear and nonlinear models and they are computational 

devices consisting of groups of highly interconnected processing elements called 

neurons, inspired by the scientists' interpretation of the architecture and functioning 

of the human brain. A feed forward Back Propagation Neural Network was run to 

predict the fractures dip angle for the third well using the image logs data of other 

two wells nearby. The predicted fracture dip data was compared with the fracture dip 

data from image logs of the third well to verify the usefulness of the ANNs. 

According to the obtained results, it is concluded that the ANN can be used 

successfully for modeling fracture dip data of the three studied wells. High 

correlation coefficients and low prediction errors obtained confirm the good 

predictive ability of ANN model, which the correlation coefficients of training and 

test sets for the ANN model were 0.95 and 0.91, respectively. Significantly, a non-

linear approach based on ANNs allows to improve the performance of the fracture 

characterization technology. 
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ABSTRAK 

Pencirian retakan dan peramalan kemiringan retakan boleh memberi 

maklumat yang diperlukan tentang reservoir retak. Reservoir retak adalah kompleks 

dan teknologi masa kini kadang kala mengambil masa dan kos untuk memperoleh 

semua maklumat yang dikehendaki berkaitan reservoir terbabit. Perolehan teras 

adalah sukar bagi zon berkeretakan teruk. Dengan itu, kemiringan retakan yang 

diukur daripada sampel teras biasanya kurang tepat. Teknolgi peramalan data yang 

menggunakan Rangkaian Neural Buatan (ANNs) mungkin berguna dalam kes ini. 

Data pada kedalaman yang tidak digerudi boleh diramal untuk melancarkan operasi 

penggerudian, atau mungkin bagi sekelompok data yang tersasar, data terbabit boleh 

diramal menggunakan data yang lain. Dengan demikian, matlamat kajian adalah 

untuk memperkenalkan penggunaan ANNs bagi meramal data kemiringan retakan 

dalam teknologi pencirian retakan. Rangkaian Neural Buatan ialah satu daripada 

peralatan sedia ada yang paling baik untuk menghasilkan model selanjar dan model 

tak selanjar. Rangkaian terbabit ialah peranti komputer yang terdiri daripada 

himpunan unsur pemprosesan saling berkait yang dikenali neuron, yang terhasil 

daripada pentafsiran ahli sains tentang seni reka dan fungsi otak manusia. Suapan ke 

depan bagi Rangkaian Neural Rambatan Buatan Balik telah dilaksanakan untuk 

meramal sudut kemiringan retakan bagi telaga ketiga menggunakan data imej log 

milik dua buah telaga berhampiran. Data kemiringan retakan yang diramal 

kemudiannya dibandingkan dengan data imej log bagi telaga ketiga untuk 

menentusahkan kebergunaan ANNs. Berdasarkan keputusan yang diperoleh, 

kesimpulannya ialah ANNs boleh diguna dengan jayanya untuk memodel data 

kemiringan retakan bagi ketiga-tiga buah telaga yang dikaji. Pekali sekaitan yang 

tinggi dan ralat ramalan yang rendah telah mengesahkan kemampuan model ANN 

dalam menghasilkan ramalan yang baik, dangan pekali sekaitan bagi set latihan dan 

set ujian model ANNs masing-masing bernilai 0.95 dan 0.91. Akhir kata, pendekatan 

tak selanjar yang berdasarkan ANNs boleh meningkatkan prestasi teknologi 

pencirian retakan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background  

Fractures in subsurface reservoirs are known to have significant impacts on 

petroleum reservoir productivity. Quantifying their importance, however, is 

challenged by limited subsurface observations, and intense computations for 

modelling and upscaling. In carbonate reservoirs, the permeability field is commonly 

influenced by the presence of fracture networks. Detailed fracture characterization 

then becomes crucial in order to improve our ability to predict the flow behaviour in 

subsurface reservoirs (Cappa et al., 2005). 

In Geology, a fracture is defined as any separation in a geologic formation, 

such as a joint or a fault that divides the rock into two or more pieces. It is a surface 

along which a loss of cohesion in the rock texture has taken place. The orientation of 

the fracture can be anywhere from horizontal to vertical. The rough surface separates 

the two faces, giving rise to fracture porosity. Fractures are caused by stress in the 

formation, which in turn usually derives from tectonic forces such as folds and 

faults. These are termed natural fractures.  

Naturally fractured reservoirs are elusive systems to characterize and difficult 

to engineer and predict. It is important to establish some basic criteria for 

recognizing when fractures are an important element in reservoir performance and to 
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recognize the nature and performance characteristics of a naturally fractured 

reservoir. Fractures occur in preferential directions, determined by the direction of 

regional stress. This is usually parallel to the direction of nearby faults or folds, but 

in the case of faults, they may be perpendicular to the fault or there may be two 

orthogonal directions (Crain, 2015). 

Naturally fractured reservoirs contain a significant amount of the world’s 

remaining oil and gas reserves (World Energy Outlook, 2006). Mostly, naturally 

fractured reservoirs are associated with brittle rocks. Natural fractures are more 

common in carbonate rocks. However, there are also authors who argue that all 

sedimentary rock reservoirs contain natural fractures to some extent (Nelson, 2001). 

Natural fractures in reservoir rocks contribute significantly to productivity. 

Therefore, it is important to glean every scrap of information from open hole logs to 

locate the presence and intensity of fracturing. Even though some modern logs, such 

as the formation micro-scanner and televiewer, are the tools of choice for fracture 

indicators, many wells lack this data. 

 Most natural fractures are more or less vertical. Horizontal fracture may 

exist for a short distance, propped open by bridging of the irregular surfaces. Most 

horizontal fractures, however, are sealed by overburden pressure. Both horizontal 

and semi-vertical fractures can be detected by various logging tools. In sedimentary 

basins, the fracture orientations are dominated by structural patterns. Fractures open 

at depth tend to be oriented normal to the direction of minimum in-situ compressive 

stress.  

The characterization of fractured rock formations, specifically their fluid 

conductivity properties, has application in petroleum production. By far the most 

potentially conductive elements of a formation are its laterally connected, discrete 

fracture systems, as permeability upper bounds of an extensive discrete fracture 

system may be orders of magnitude larger than that of porous media.  

https://en.wikipedia.org/wiki/Thrust_fault%7Cthrust
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Fracture characterization means identifying the fracture type, fracture 

density, fracture aperture, fracture dip, fracture strike, fracture azimuth and any other 

relevant information about the primary and secondary fractures. By using the data 

gained from fracture characterization, a fracture model can be created in order to 

have the better understanding of the fracture system (Sirat, 2013). The 

characterization of these local, high conductivity geologic elements, is therefore 

critical, albeit extremely difficult, due to their illusive geometry. 

Fracture characterization is important in oil and gas industry because of the 

significant role that fractured reservoirs play in an industry. The large amount of oil 

and gas reserves are placed in these reservoirs and having enough knowledge of 

fracture system is an essential matter as such that fracture characterization and 

modelling technology are the key for oil and gas exploration objective. Fractures can 

be characterized using core data, fluid flow data, and well test data and so on but, the 

most advanced technology to characterize the fractures is by means of image log 

technology. 

Image log tools are advanced tools including Formation Micro Scanner 

(FMS), Oil-Base-Mud Imaging (OBMI), Ultrasonic Borehole Imager (UBI) and 

Formation Micro Imager (FMI). They can provide images from the well so that by 

using these images the fracture characterization job can be done properly, but the 

problem is that if there is a lack of input data the softwares using image log data can 

not do the fracture characterization properly.  

The conventional fracture characterization softwares that use the image log 

data such as Petrel and Geoframe will receive all the input data and will give the 

information about the fracture system. But they can not be useful if there is a lack of 

input data or if they want to predict the fracture system for other undrilled wells.  

For instance, if there is a field with a few wells and in one of them there is 

not any fracture dip data, or another case is that if data from one of the wells are 

missing in some depth, or another case that if the engineers are not sure about the 

interpreted data from the logs or samples, these tools will have difficulties to do the 



4 

fracture characterization. In this case Artificial Neural Networrks (ANNs) are useful 

because they can predict the fracture system for un drilled wells and also if there is a 

lack of input data they have this ability to cover this lack using the other input data.  

ANNs are among the best available tools to generate linear and nonlinear 

models. ANNs are computational devices consisting of groups of highly 

interconnected processing elements called neurons. ANNs inspired by the scientist’s 

interpretation of the architecture and functioning of the human brain. The new 

technology of ANNs have been used in other sciences and fields to predict the data 

and the future of ANNs are very wide (Foroud et al., 2014). 

In this study, a novel application of ANNs will be introduced and verified 

using the image logs data of the three wells, located in one of the naturally fractured 

reservoirs. A feed forward Back Propagation Neural Network (BPNN) will be run to 

predict the fractures dip angle for the third well using the image logs data of the two 

other wells nearby. The predicted data will be compared with the image logs data of 

the third well to verify the usefulness of the ANNs in fracture characterization and 

modelling technology. 

1.2 Statements of the Problem 

i. Core analysis usually focuses on the worse portion of the reservoir due 

to the fact that core recovery has rarely been well in a highly fractured 

zone, therefore, fracture dip measured from core sample is often not 

characteristic. There are some limitations in the core technique such as 

high expensive, unidirectional and low recovery in fractured zone.  

ii. Data prediction in complicated fractured reservoirs has always been an 

important issue for engineers in oil and gas industry, and every year 

companies are trying to find new ideas to improve this important matter. 

By predicting the data, the decision for next step and planning for future 

work will be more reliable and operational. 
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iii. Sometimes a group of data is missed or the data is related to undrilled 

depth .This data can be predicted can be predicted using the other data 

in order to achieve a better drilling operation. Data prediction 

technology using ANNs can be very useful in these cases. 

iv. The application of ANNs in oil and gas industry is not very wide same 

as the other sciences. Consequently, this study is conducted to introduce 

the application of ANNs for data prediction in fracture characterization 

and modeling technology. 

1.3 Objectives  

The objectives of the research are: 

a) To Characterize fractures in wells (GS-325, GS-264 and GS-245) for 

selecting best fracture data and better data match for ANN modeling 

technology. 

b) To predict the fracture dip in third well by using data from 2 other wells 

in ANN model.  

c) To improve ANN application in fractured reservoirs and determining 

the suitable ANN type. 

d) To adapt the ANN applications in fracture dip predictions. 

e) To validate the value of fracture attribute from image logs. 

1.4 Scopes  

The scope of this study are: 
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i. Interpreting the image log data FMS, FMI, OBMI, UBI) and 

petrophysical logs of the three wells with (GS-264 between GS-245 with 

3 km distance and GS-325 with 5 km distance). 

ii. Selecting a good fractured reservoir data (Asmari reservoir which is a 

carbonate reservoir). 

iii.  Using Fracture dip as input for Neural network Analysis. 

iv. Finding the suitable type of ANNs (BPNN) for this study. 

v. Writing the computer programs using ANNs method. 

vi. Applying the image logs data in computer programs. 

vii. Predicting the fractures dip angle of the third well using the image logs 

data of the two other wells nearby. 

viii. Comparing the predicted data by ANNs and actual data of image logs for 

the third well. 

ix. Verifying the usefulness of image log fracture data and ANNs to predict 

the dip. 

1.5 Significance of Study 

The following significant of study are consequently delineated as below: 

i. Naturally fractured reservoirs play an important role in oil and gas 

industry and this study will introduce the new application of ANNs to 

predict fracture dip for better understanding of the fracture system in 

this kind of reservoirs.  

ii. An ANN has many known benefits and along the best feature is the 

ability to learn from the input data. ANNs can save both time and 

money because it takes data samples rather than a complete set of 

data to obtain the solutions and it can simply estimate the best and 

shortest way to solve the problems by employing the previous data 
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and creating the most effective model. ANNs use the simple 

mathematical models to increase the data analysis technology, and 

scientists believe that it can be effective in any single technology and 

method, but it takes time for researchers to find the way to apply them 

in different aspect of the sciences and engineering applications. 

iii. ANNs are made to solve the hardest tasks that the other computer 

programs and methods are unable to solve using the unique structure 

that are patterned from the human brains. One of these tasks is speech 

recognition using the similar method for handwriting recognition 

using more complicated programs. ANNs will be more complicated 

when the task is more difficult and every year these tasks had become 

more complex and comprehensive. Modern technology is aiming to 

simulate the actual human brain abilities using ANN technique.  

iv. According to the obtained results, it is concluded that the ANNs can 

be used successfully for modeling fracture dip data of the three 

studied wells. High correlation coefficients and low prediction errors 

obtained confirm the good predictive ability of ANN model, which 

the multiple R of training and test sets for the ANN model is 0.95099 

and 0.912197, respectively. A non-linear modeling approach based on 

artificial neural networks allows to significantly improve the 

performance of the fracture characterization and modeling 

technology. 

v. The time and cost that can be saved by this method cannot exactly be 

estimated and it depends on the situation. It depends on the type of 

the well if it's horizontal or deviated and also the place that well is 

located, if the access to the well is easy or difficult. It also depends 

how much depth is going to be drilled and logged. Subsequently, an 

exact estimate of cost and time that will be saved using this method 

cannot be estimated.  

vi. In distinction, there tends to be a suspicion and even a suspicion of 

those logging tools that make measurements which impend to imitate 

or even replace the cores. Consequently, image logs are more 



8 

valuable to study the subsurface fractures in these such cases and the 

logs which come closest to accomplishing this are the high resolution 

image logs.  
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