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ABSTRACT 

This study initiated the development of clean technology in carbon dioxide 
(CO2) capture using ceramic membrane inspired by gas–liquid contacting system.  The 
main objective in this study is to prepare inexpensive, high performance and 
superhydrophobic ceramic hollow fibre membranes for effective CO2 separation. 
Malaysian kaolin was used as the primary material for the membrane preparation. A 
range of additives were used in this work including alumina of different particle sizes. 
The hollow fibre membranes were prepared via phase inversion-based extrusion and 
sintering techniques, followed by grafting with fluoroalkylsilane (FAS). The effect of 
the addition of alumina to the pure kaolin with monosized or multisized particles on 
the ceramic membrane gas permeation, mechanical strength, pore size, porosity, 
tortuosity, morphology, and contact angle were investigated. By varying the overall 
loadings and particles sizes of alumina addition, different morphologies of the 
membrane were obtained due to alumina with multiparticle sizes exerts a 
thermodynamic destabilisation effect within the kaolin, accelerating the onset of 
demixing rate between solvent and nonsolvent, thus reducing the time during bath 
immersion. All fabricated kaolin-alumina membranes with multisized particles 
possessed higher porosity, gas permeability, mechanical strength, than the membranes 
prepared from pure kaolin. Finger-like structure was obtained when the suspension 
containing multisized particles instead of of monosized particles due to the different 
particles promoted the exchange between the solvent and non-solvent. In addition, the 
small particles moved faster to the surface during phase inversion process than those 
of large, resulting, multisized particle in shorter inversion time, hence, fast 
precipitation. The superhydrophobic membrane was obtained when kaolin with or 
without alumina were used as membrane materials, since kaolin surface possessed a 
large number of O-H groups which can easily reacting with FAS during the grafting 
process. The successful grafting with FAS was evidenced by the increase in contact 
angle from nearly equal to zero degree before grafting to 140 degrees after the grafting 
process. The kaolin-alumina membrane was subsequently applied in membrane 
contactor for CO2 absorption. The CO2 absorption flux as high as 0.18 mol m-2 s-1 was 
achieved at the liquid flow rate of 100 ml min-1 which was far above the fluxes of some 
commercial and in-house made polymeric and ceramic membranes. In conclusion, the 
modified kaolin-alumina hollow fibre membrane with the superhydrophobic surface, 
high permeability, and absorption flux is suitable for CO2 post-combustion capture, 
due to its outstanding chemical and thermal stabilities.  

    



vi 

 

  

ABSTRAK 

Kajian ini menjadi permulaan pembangunan teknologi bersih dalam 
penangkapan karbon dioksida (CO2) menggunakan membran seramik berdasarkan 
sistem sesentuh gas-cecair. Objektif utama kajian ini adalah untuk menyediakan 
membran seramik berongga yang murah, berprestasi tinggi dan super hidrofobia untuk 
pemisahan CO2 yang berkesan. Kaolin Malaysia telah digunakan sebagai bahan utama 
dalam penyediaan membran. Pelbagai bahan tambahan telah digunakan dalam kajian 
ini termasuklah alumina dengan saiz zarah yang berbeza. Membran gentian berongga 
telah disediakan melalui teknik penyemperitan dan pensinteran berasaskan-
penyongsangan fasa, diikuti dengan cantuman dengan fluoroalkilsilana (FAS). Kesan 
penambahan alumina dengan saiz mono atau saiz campuran terhadap kadar 
kebolehtelapan gas, kekuatan mekanikal, saiz liang, keliangan, keliukan, morfologi, 
dan sudut sentuh membran seramik telah dikaji. Dengan memvariasikan jumlah 
campuran keseluruhan dan penambahan alumina bersaiz multipartikel, morfologi yang 
berlainan daripada membran diperoleh kerana alumina dengan saiz multipartikel 
menghasilkan kesan ketidakstabilan termodinamik dalam kaolin, mempercepatkan 
permulaan kadar pertukaran antara pelarut dan bukan pelarut, dengan itu 
mengurangkan tempoh rendaman. Semua membran kaolin-alumina yang dihasilkan 
dengan campuran pelbagai saiz memiliki keliangan, kebolehtelapan gas, kekuatan 
mekanikal dan sudut sentuh yang lebih tinggi daripada membran yang dihasilkan 
dengan kaolin tulen. Struktur seperti jejari telah diperoleh apabila ampaian 
mengandungi campuran pelbagai saiz berbanding ampaian yang bersaiz mono kerana 
zarah yang berbeza telah menggalakkan proses pertukaran antara pelarut dan bukan 
pelarut. Di samping itu, zarah kecil bergerak lebih pantas ke permukaan semasa proses 
penyongsangan fasa berbanding zarah yang besar, hasilnya, masa rendaman yang lebih 
singkat, maka, proses pemendakan juga cepat. Membran super hidrofobia telah 
diperoleh apabila kaolin bersama atau tanpa alumina digunakan sebagai bahan 
membran, kerana permukaan kaolin mempunyai sejumlah besar kumpulan O-H yang 
mudah bertindak balas dengan FAS semasa proses cantuman. Kejayaan cantuman 
dengan FAS terbukti dengan peningkatan dalam sudut sentuhan daripada hampir sama 
dengan sifar darjah sebelum cantuman kepada 140 darjah selepas proses cantuman. 
Membran kaolin-alumina kemudiannya digunakan dalam penyentuh bermembran 
untuk penyerapan CO2. Fluks penyerapan CO2 setinggi 0.18 mol m-2s-1 telah dicapai 
pada kadar aliran cecair 100 ml min-1 yang jauh lebih tinggi daripada fluks beberapa 
membran komersil dan membran polimer dan seramik yang lain. Kesimpulannya, 
membran gentian berongga kaolin-alumina yang telah diubah suai dengan permukaan 
super hidrofobia, kebolehtelapan tinggi, dan fluks penyerapan sangat sesuai untuk 
penangkapan CO2 selepas pembakaran, disebabkan oleh kestabilan kimia dan haba 
yang sangat baik. 
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CHAPTER 1 

1 INTRODUCTION 

 Research Background 

 It is no secret that one of the most serious problems facing the world in the 

third millennium is global warming, in which CO2 is primarily responsible for human-

induced climate change as shown in Figure 1.1. There has been a steady increase in 

the volume of gas emissions over the last decades caused by the population growth 

and the frequent use of fossil fuels as the main source of energy, and this lead to the 

increase in the concentration of CO2 in the atmosphere from 275 to 387 ppm (Merkel 

et al., 2010; Nakajima et al., 2016). In addition, it is estimated that the average global 

surface temperature shall increase an additional 1.1 ± 0.62°C during the 21st century if 

the emission of greenhouse gases are not governed (Dai, 2016; Pachauri, 2008). Hence, 

the mitigation of CO2 content in gas streams and its emission to the atmosphere seem 

unavoidable. There are numerous developed technologies for the removal of CO2 that 

absorption of CO2 by means of direct contact between gas and liquid through packed 

columns is widely established. 
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Figure 1.1  Greenhouse gases (Ramaswamy et al., 2001) 

Gas separation membranes are likely to play a key role in the CO2 capture 

system owing to their light weight, operational flexibility, compactness, less energy 

consumption and their ability to minimise overall environmental impacts (Ismail et al., 

2015a). Significant attention has been paid by engineering communities to acquire a 

new technology that would lead us to the goal of technological sustainability. Among 

others, membrane contactor is one of the promising technology seen as reliable for 

substituting conventional system. Its unique characteristics such as high interfacial 

area per unit volume, small size, easy to scale up and down, and independent control 

of gas and liquid flowrates make the membrane contactors as a superior option 

compared to conventional methods (Rezaei et al., 2014a).  

The capture of CO2 from gas streams by a membrane contactor process has 

been the attention of researchers since the 1980s. Qi and Cussler (1980) introduced 

microporous membrane contactor in the application of CO2 capture, subsequently 

many investigations to improve the idea (Qi and Cussler, 1985a, 1985b). Ultimately, 

researchers have considered several factors such as membrane materials, absorption 

solutions, modules and operating conditions to improve the performance of CO2 

capture. Yu et al. (2015) had successfully developed a superhydrophobic ceramic 
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membrane for CO2 absorption after coating the surface of the alumina tube with a 

(ZrO2) layer. Lee et al. (2015) modified the surface of alumina hollow fibre membrane 

by fluoroalkyl silane (FAS) for CO2 capture using H2O as low-cost absorbent at room 

temperature. Moreover, Wei and Li (2009) developed pre-treatment by alkaline to the 

YSZ membrane before grafting to get robust hydrophobic membrane.  

Overall, membrane contactors for gas absorption have proven to be an 

attractive, effective and competitive alternative for conventional gas absorption 

devices since they combine both membrane separation (compactness) and 

conventional absorption (high selectivity).  

 Problem Statement 

Porous asymmetric hollow fibre membranes in gas-liquid membrane 

contactors process are indisputably favourable for CO2 capture. Though this 

technology is confirmed to have several advantages over conventional absorption 

devices, the presence of membranes introduces supplementary resistance to the overall 

mass transfer process. The phenomenon becomes of serious concern when the liquid 

absorbent is penetrated to the pores of the membrane which render the stability of the 

process due to the wetting issue.  The essential requirements of membrane contactor 

include high porosity and hydrophobicity that allow easy diffusion of the gas into the 

liquid and prevent liquid from penetrating into pores  (Aroon et al., 2010). Since the 

membrane materials play the most crucial role in governing the gas transport through 

the membrane, there is a need to wisely select the membrane materials to fulfil the 

requirement of the gas/liquid contacting processes. Currently, most of the 

commercially available hollow fibre membranes are made from polymeric materials 

such as, but not limited to polyvinylidene fluoride (PVDF), polypropylene (PP), 

polysulfone, polyethene (PE) and polyimide (Rezaei et al., 2014a). Porous polymeric 

membranes applied in membrane gas absorption process appear to undergo wetting 

especially during the long-term operation which significantly reduces the performance 

(Rezaei et al., 2014b). Moreover, there are reports that the currently available 



4 

 

polymeric membranes are often encountered with significant morphological and 

properties changes during a long-time contact with the absorbent (Li, 2007). For 

example, it was found that the performance of polymeric membrane contactors 

completely stopped after a couple weeks of operation due to the membrane wetting 

(Dindore et al., 2004a). Therefore, there is a need to find an alternative to the 

polymeric materials. A promising example that could exhibit superior structural, 

chemical and thermal stabilities over polymeric membrane is the ceramic membrane.   

Ceramic hollow fibre membranes have been recently used for membrane 

contactor applications after some modification (Abdulhameed et al., 2016; Faiz et al., 

2013; Koonaphapdeelert et al., 2009; Yu et al., 2015). Ceramic membrane is 

hydrophilic in nature owing to the O-H group on the membrane surface 

(Koonaphapdeelert and Li, 2007). Hence in order to make the membrane surface 

hydrophobic, the chemical modification needs to be applied. Many literatures reviews 

have reported on the grafting of different FAS on the surface of alumina, titania, 

zirconia and silica (Lee et al., 2015; Wei and Li, 2009). Unfortunately, these materials 

are expensive and/ or need high sintering temperature, which have adverse impacts on 

membrane cost. In addition, there is a trade-off between the hydrophobicity and the 

sintering temperature of the membrane. Koonaphapdeelert and Li (2007) found that 

when sintering temperature increased, the contact angle of alumina hollow fibre 

decreased due to the number of (OH-) group on the surface have effected by increasing 

the sintering temperature and as a result, it is no longer enough (OH-) group could 

react with FAS. Therefore, new materials recently have been proposed to lower the 

ceramic membrane cost and make it more affordable. Thus, to lower the cost, recent 

investigation on the preparation  of ceramic membrane is to focus toward the utilization 

of inexpensive raw materials, such as fly ash (Fang et al., 2011), apatite powder (Fang 

et al., 2011; Masmoudi et al., 2007), dolomite (Saffaj et al., 2006), natural raw clay 

and kaolin (Boudaira et al., 2009; Saffaj et al., 2005).  

The unique features of kaolin clay (Al2Si2O5(OH)4), such as good availability, 

effectiveness, low melting point. and ease of processing (Han et al., 2011; Johnson and 

Arshad, 2014), makes this material an attractive option. However, the fabrication of 

kaolin membrane by the phase inversion technique has been rarely reported. One of 
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the reasons may be the low density of kaolin. The kaolin powder has a density of 2.4 

g/cm3 compared to 3.95 and 4.23 g/cm3 for alumina and titania, respectively. The 

density of kaolin is able to create difficulty in preparing dope with higher loading 

especially when exceed more than 50%wt. It is worth noting, that the optimal ceramic 

content in the dope is 50-60 wt.% (Li, 2007) in order to fabricate well-structured 

membranes with small pore sizes and a narrow pore size distribution. To overcome 

this problem, alumina particles of various sizes were added to reach the desired total 

ceramic powder loading. Alumina is suitable as an additive due to its compatibility 

with kaolin during the sintering process. The sintering reaction may also take place 

between kaolin and alumina to produce the mullite. The formation of kaolin-alumina 

ceramic material is also beneficial since it can be produced from relatively low-cost 

materials and at lower sintering temperatures than pure alumina.  

Therefore, ceramic membrane preparing from low-cost material would be 

beneficial due to it combines the advantages of each phase may be an easy and 

effective material for utilising in gas sweetening process. At present, and to the best of 

our knowledge, no study has been reported on the application of ceramic hollow fiber 

membrane prepared from low cost material in membrane contactor for the removal of 

CO2. It is indicated that the addition of alumina with multiparticle sizes can play a role 

in modifying the properties of kaolin membranes. Meanwhile, the selection of ceramic 

materials should be based on fulfilling the requirements of the absorption process. 

 Objectives of the Study 

Based on the above-mentioned problem statements, the main goal of this thesis 

is to develop high performance ceramic membrane contactor from inexpensive, 

abundantly available kaolin material for carbon dioxide capture. The specific 

objectives are to: 



6 

 

i.  fabricate ceramic hollow fiber membranes from local kaolin at different 

composition and manipulate their structures by blending alumina particles into 

spinning solution. 

ii. investigate the effects of kaolin/polymer binder ratio and sintering temperature 

on the resultant ceramic membrane properties. 

iii. investigate the effects of alumina particles loading and size on the resultant 

kaolin membrane properties.  

iv. evaluate the performance of the modified ceramic membranes for CO2 

absorption. 

 Scope of the Study 

The following activities have been selected as the scope of this research to 

achieve the above-mentioned objectives: 

i. Selection of alumina particles with three different sizes average size of 1 µm 

, 0.05 µm, and 0.02 µm for preparing kaolin-alumina membranes  

ii. Preparation of ceramic suspensions with various ratio of kaolin to 

polyethersulfone (PESf) binder (5:1, 7:1 and 9:1) 

iii. Fabrication of hollow fibre membranes by dry/wet spinning technique at air 

gap 4.5 cm 

iv. Undergoing the precursor to the heat treatment that is called sintering process. 

The sintering temperature would be varied from 1200 to 1500ºC. 

v. Modification of the surface of sintered hollow fibre membrane from 

hydrophilic to hydrophobic by immersing the membrane into 0.01 mol/L FAS 

solution in hexane at room temperature 

vi. Investigation of the effect of the ceramic loading, sintering temperature and 

alumina particles addition on the resultant membrane properties  
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vii. Studying membrane morphology and structure using various techniques 

including scanning electron microscopy (SEM), X-ray diffraction (XRD), gas 

permeation, three-point bending test, critical water entry pressure, water 

contact angle and mass transfer resistance. 

viii. Testing CO2 absorption performance of fabricated membranes via membrane 

contactor using water and pure CO2 as absorbent and solute gas respectively. 

 Organisation of the Thesis 

This thesis consists of seven chapters, which describes the fabrication of 

ceramic membranes for CO2 absorption through gas-liquid membrane contactors. 

Chapter 1 outlines a brief introduction on the membrane contactor for the capture of 

CO2 and background of the research. It is followed by the problem statement, which 

identifies the research direction. Based on the problem statement defined, the objective 

and scope of the study are explained in detail.  

Chapter 2 describes a general overview of the methods of CO2 capture. Brief 

information about the advantages of membrane CO2 capture in comparison with the 

other removal processes is provided. After that, the challenges faced by CO2 

absorption membranes and the proposed prevention methods are also presented. Then, 

comprehensive study about the combination of ceramic as novel materials and 

applicable ceramic materials for membrane gas-liquid contacting application are 

provided. The methodologies for the fabrication of ceramic hollow fibre membranes 

and related characterizations in membrane absorption processes are described in detail 

in Chapter 3. 

In Chapter 4, fabrication of pure kaolin hollow fibre membranes via dry/wet 

phase inversion process. The effects of polymer binder ratio in the kaolin spinning 

dopes on the phase inversion process, structure, and performance of the membranes 

are also discussed. The prepared kaolin was characterised in terms of gas permeability 
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and mechanical strength. Furthermore, the effects of sintering temperature and on the 

structure of the kaolin hollow fibre were studied intensively.  

Alumina particles with mono and multiparticle sizes addition in the kaolin 

spinning dopes are used and the results are discussed in Chapter 5. The purpose of this 

chapter is to improve hydrophobicity on the membrane surface and observe the effect 

of addition alumina with two different particle sizes (mono-particle, graded particles) 

to the kaolin on structure and pore size. 

Chapter 6 presents the performance of prepared membrane was investigated by 

the absorption of CO2 in distilled water in a contactor system and the results were 

compared with commercial and in-house made membranes. 

Finally, the general conclusions are drawn from this research and some 

recommendations for the future research are provided in Chapter 7. 

 Significant of Research 

The development of ceramic membrane has gained much attention nowadays 

due to its characteristics that provide high chemical resistivity, temperature stability 

and mechanical strength that able to sustain harsh and extreme condition. However, 

preparation of ceramic membrane often connected to complex preparing routes i.e 

involve with multistep or complex treatment and modification and high-cost 

production material (expensive ceramic material i.e. alumina, silica, titania, etc.) has 

limited their applications. The development of ceramic membrane with regard to the 

above problem from inexpensive material i.e kaolin will offer an initial idea to trim 

back the ceramic membrane production cost.  

The selection of phase inversion technique which provides better approach 

information of asymmetric membrane structure which in turn lead to reduce the 
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multistep in membrane layering structure and as a result give better structure. In this 

work, two parameters based on the result of addition alumina with mono or 

multiparticle size to the kaolin and overall loading were selected to be studied as its 

count as simple parameters that able to be controlled easily and can raise significantly 

the membrane performance.
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