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ABSTRACT 

Short-Term Load Forecasting (STLF) is an essential input for power system 

operation computations to achieve proper system balancing. General economy and 

security of power system depend on accurate STLF. The accuracy of forecasting model 

depends on the number and types of the forecasting variables. Furthermore, a day-

ahead hourly-load forecast has to reach the decision makers before the elapse of a pre-

set time. Conventional methods used in determining future load demand were not able 

to explore all the available variables in a particular forecasting region. Moreover, 

artificial intelligence methods like Adaptive Neuro-Fuzzy Inference System (ANFIS), 

are associated with computational difficulties, thus influence the speed and accuracy 

of the model. Therefore, these variables need to be investigated so as to make the 

forecasting model simple and easy to use. Similarly, the forecasting speed needs to be 

improved. This thesis presents the development of short-term electric load demand 

forecasting algorithm, with the aim to improve the forecasting accuracy and speed. It 

starts with the development of data selection and data processing framework, through 

the use of correlation analysis, hypothesis test and wavelet transform. Variables of the 

four seasons in one year were investigated and were classified based on the available 

weather and historical load data in each season. To reduce the variability in the 

forecasting data, wavelet transform is used. The whole forecasting algorithm has been 

developed by integrating Cuckoo Search (CS) algorithm with ANFIS to produce CS-

ANFIS model. CS was used to improve the forecasting capability and speed of the 

traditional ANFIS, by replacing the derivative-based gradient descent optimization 

algorithm with CS in backward pass. Its purpose is to update the antecedent parameters 

of the traditional ANFIS, through the determination of an optimal value of the error 

merging between the ANFIS output and targeted output. The whole system is validated 

by the comparison with an existing ANFIS model, and two other ANFIS models 

optimized with Particle Swarm Optimization (PSO-ANFIS) and Genetic Algorithm 

(GA-ANFIS). The developed CS-ANFIS model proved to be superior to these models 

in terms of accuracy and forecasting time. A reduction in average mean absolute 

percentage error of 84.48% for one year forecast is recorded using the developed CS-

ANFIS, and 77.32% with the proposed data selection approach. The model was found 

to forecast the future load demand within an average period of 37 seconds, as 

compared to the traditional ANFIS which recorded an average forecasting time of 219 

seconds. It can therefore, be accepted as a tool for forecasting future energy demand 

at utility level  to improve the reliability and economic operation of the utility. 
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ABSTRAK 

Ramalan beban jangka pendek (STLF) merupakan input penting untuk 

pengiraan operasi sistem kuasa bagi mencapai keseimbangan sistem yang betul. 

Ekonomi am dan keselamatan sistem kuasa bergantung kepada ketepatan STLF. 

Ketepatan model ramalan bergantung kepada bilangan dan jenis pembolehubah 

ramalan. Tambahan pula, ramalan beban yang dibuat sehari sebelumnya bagi setiap 

jam perlu mencapai sebuah keputusan sebelum masa yang telah ditetapkan berlalu. 

Kaedah konvensional yang digunakan dalam menentukan permintaan beban masa 

depan tidak dapat meneroka semua pembolehubah tersedia dalam kawasan ramalan 

tertentu. Selain itu, kaedah kecerdikan buatan, seperti sistem inferens neural kabur 

ubah suai (ANFIS), dikaitkan dengan masalah pengiraan, sekali gus mempengaruhi 

kelajuan dan ketepatan model. Oleh itu, pembolehubah ini perlu dikaji supaya model 

ramalan yang mudah dan senang digunakan dapat dibina. Begitu juga, kelajuan 

ramalan perlu diperbaiki. Tesis ini membentangkan pembangunan algoritma ramalan 

permintaan beban elektrik jangka masa pendek, dengan tujuan untuk meningkatkan 

ketepatan dan kelajuan ramalan. Ia bermula dengan pembangunan pemilihan data dan 

kerangka kerja pemprosesan data, melalui penggunaan analisis sekaitan, ujian 

hipotesis dan jelmaan wavelet.  Pembolehubah daripada empat musim dalam setahun 

telah dikaji dan dikelaskan berdasarkan data cuaca yang ada dan sejarah beban dalam 

setiap musim. Untuk mengurangkan kebolehubahan dalam data ramalan, jelmaan 

wavelet digunakan. Keseluruhan algoritma ramalan telah dibangunkan daripada 

integrasi algoritma carian cuckoo (CS) dengan ANFIS bagi menghasilkan model CS-

ANFIS. CS telah diguna untuk meningkatkan keupayaan ramalan dan kelajuan ANFIS 

tradisional, dengan menggantikan algoritma pengoptimuman terbitan berasaskan 

kecerunan keturunan dengan CS dalam laluan mengundur. Tujuannya adalah untuk 

mengemas kini parameter anteseden dari ANFIS tradisional, melalui penentuan nilai 

optimum gabungan ralat antara keluaran ANFIS dan keluaran yang disasarkan. 

Keseluruhan sistem disahkan oleh perbandingan dengan model ANFIS sedia ada, dan 

dua model ANFIS lain yang dioptimumkan dengan pengoptimunan kerumunan zarah 

(PSO-ANFIS) dan algoritma genetik (GA-ANFIS). Model CS-ANFIS yang 

dibangunkan terbukti lebih hebat berbanding model-model ini dari segi ketepatan dan 

masa ramalan. Pengurangan dalam purata min ralat peratus mutlak sebanyak 84.48% 

untuk unjuran setahun direkod menggunakan CS-ANFIS yang dibangunkan dan 

77.32% dengan cadangan pendekatan pemilihan data. Model ini didapati meramal 

permintaan beban masa depan dalam tempoh purata 37 saat, berbanding ANFIS 

tradisional yang mencatatkan masa ramalan purata 219 saat. Oleh itu, ia boleh diterima 

sebagai alat untuk meramal permintaan tenaga masa depan pada tahap utiliti untuk 

meningkatkan kebolehpercayaan dan operasi ekonomi utiliti. 
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CHAPTER 1 

1INTRODUCTION 

1.1 Background  

This research is focussed on Short-Term Load forecasting using artificial 

intelligence approach. Load forecasting is very essential in the planning and operation 

of power systems, and its accuracy improves the reliability and economy of power 

systems [1]. Mao et al [2] reported that, unit commitment, economic dispatch, energy 

scheduling and real-time control benefitted more from Short-Term Load Forecasting 

(STLF). Thus, reduction in forecasting error can save the utility and co-generators 

notably [3], [4]. Other benefits of load forecasting are producing environmentally 

friendly energy that can enhance the use of renewable energy resources. One of the 

objectives outlined by European Union (EU) is to reduce greenhouse gases by 20%, 

and increasing renewable energy resources by 20% is believed to be realistic through 

load forecasting and distributed energy resources forecasting [5]. The idea presented 

is to introduce demand side management criteria so as to modify the load profile at 

specific nodes in the network, thereby potentially issuing economic benefits to the 

system operators [6]. This means that load forecasting can be classified as a way of 

enhancing energy management techniques [7] and improving environmental safety. 

An example of a typical load consumption pattern for one day is presented in Figure 

1.1 [8]. It can be seen that consumption changes from low to high from early morning 

to afternoon and become peak in the late evening. 
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Figure 1.1: Example of One-day Load demand profile [8]  

The importance of STLF in power system operation should never be 

overemphasized. It affects almost all the areas of power system operation. As reported 

by Qamar and Khosravi [9], accurate STLF can improve the generation scheduling 

through determination of generation resources, operational limitations and constraints 

associated with equipment usage and environment. Optimal control of reservoir and 

optimal generation scheduling in the case of hydropower generation system can be 

achieved through accurate STLF. Operations such as optimal production cost in unit 

commitment for thermal generation units can be obtained with good load forecasting 

algorithm [9]. Power system security depends on accurate STLF. Information on future 

energy demand can help the utility to arrange the system accordance with the 

subsequent demand state, and take corrective actions [9]. Also, accurate STLF can 

improve system reliability. Underestimating the demand may bring overloading and 

therefore affects the quality of the supply [9]. Potential benefits of load forecasting in 

electric utility operations are presented in Table 1.1 [1].   

 



3 

Table 1.1: Summarised STLF benefits to electric utility operations [1] 

S/N Function Forecasting 

horizon 

Forecasting 

intervals 

1 Automatic Generation Control Next 15 min 5 sec 

2 Economic Dispatch Next hour 30 sec 

3 Power Flow Next 2 days 5 min 

4 Contingency Analysis Next 2 days 10 min 

5 Situational Awareness Next hour 120 samples per sec 

6 Voltage Stability Next hour 120 samples per sec 

7 Unit Commitment Next 14 days Hourly 

8 Transaction Evaluation and 

Management 

Next 14 days Hourly 

9 Wind Forecasting Next 5 - 60 min 30 sec 

10 Hydro forecasting Next 14 days Hourly 

11 Fuel Scheduling Next 1 – 6 months Weekly 

Consequently, these benefits brought about dedicating a discipline in 

determining what the demand might be for a prescribed future period, subject to 

previous demand, metrological factors and economic issues [10]. This is possible 

through developing a good forecasting algorithm.  

On the other hand, forecasting accuracy depends on selecting the right 

variables (model inputs) in the forecasting activity [11]. Recent researches are attracted 

towards variables selection, because appropriate selection improves the forecasting 

accuracy significantly [12]. Also, the number and type of these variables improve the 

accuracy, or otherwise [13]. These pave a way for developing many data selection and 

processing approaches, that can improve the forecasting accuracy. 

From the literature studies it is found that many researchers, including the 

utility companies, use traditional methods of Time Series (TS) and Regression 

Analysis (RA) [11], [14]–[18], Neural Networks (NN) [19]–[22] and Adaptive Neuro-

Fuzzy Inference System (ANFIS) [23]–[28] to forecast the load in short-term time 

frame. Others [29]–[31] use a hybrid of these methods. But these methods are deficient 

in different ways. The well-known time series and regression methods cannot handle 

the non-linearity nature of the load series [27]. Because the load series is non-linear 
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and complex due to time different cycles, and contains random features due to different 

customers’ behaviours [32].  

The Artificial Intelligence (AI) methods require tuning and finding many 

parameters and need to assign weights randomly to inputs and hidden biases, thus 

result in overtraining [33]. Among which Neural network methods are suffering from 

network topology, parameters identification and selection [2], [34]. It also uses 

gradient descent (GD) in the backward propagation, which is associated with the 

calculation of partial derivatives of weights and biases, making the training to be very 

slow [35]. Not only NN, ANFIS also suffers from such training complexity associated 

with GD [36], and therefore gives researchers the mandate to reduce the computational 

difficulties, and consequently improve the forecasting accuracy. This chapter 

summarises the existing problems within the STLF context, it also consists of the 

formulated research objectives, the scope of the research and the significance of the 

research. 

1.2 Problem Statement 

Recently developed methods used Artificial Intelligence (AI) methods, like 

Neural Network (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Support 

Vector Machine (SVM) and Radial Basis Function (RBF), in forecasting the demand 

within the short-term time frame. On the other hand, only historical load data and 

temperature are used as model input parameters. Very few used relative humidity in 

addition to load and temperature. There might be other weather variables that affect 

the load consumption different from temperature and relative humidity, and the 

relationship between the load and these variables needs to be investigated.   

Most of the developed forecasting methods used modelled equations of only 

temperature and historical load data. They did not justify using the equation or why 

only these variables are selected. The coefficients used in the equations are based on 
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forecasting accuracy. This will delay the forecasting results.  These equations are only 

applicable to a particular season, or forecasting region. 

Moreover, some methods such as TS and RA lack the ability to trace the actual 

load pattern, which is nonlinear and complex. The use of AI methods is limited in 

operation due to dependence on initial parameters, choice and finding weights and 

biases, determination of appropriate activation function and its parameters, longer 

training time, choice of network structure and falling into local minima.  

On the other hand, the hybrid learning in ANFIS requires determination of 

consequent parameters in forward pass using Least Squares Estimation (LSE), and 

premise parameters in backward pass using Gradient Descent (GD). The main problem 

of ANFIS is associated with training, in which the backward pass involves using GD 

in every step from layer-to-layer and from node-to-node. Thus, resulting to 

convergence of the network into local optima and slow convergence. Thus, it 

necessitates for development of a successful training approach that will get rid of these 

problems. 

This research is aimed at providing an approach that can handle all the 

available forecasting data in any season and in any region or area. It is designed to 

formulate a data selection and analysis framework that can ease the computational 

difficulties of the forecasting algorithm, using Correlation Analysis, Hypothesis Test 

and Wavelet Transform. It also focused on developing an algorithm that will replace 

the GD in the conventional ANFIS with CS Algorithm. A Cuckoo Search based 

Adaptive Neuro-Fuzzy Inference System will be developed to forecast the future load, 

with maximum accuracy and within the shortest possible time.  

Based on the problems highlighted above, the following are the summary of 

the problem statement: 

i. The inability of the current researchers to investigate and incorporate all the 

available weather variables in the forecast. In addition, the data selection is 
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based on modelled equations, which cannot be applied in all the available data, 

season and region. The coefficients used in the modelled equations are based 

on the forecasting accuracy after a number of trails. It is necessary to formulate 

an approach for selecting and analysing the forecasting variables without using 

modelled equations and tuning the equation coefficients.  

ii. Presence of GD (a derivative based optimization technique) in ANFIS network 

is making the computation within the network to be complex, and has a 

tendency of being trapped in the local optima. There is need of replacing the 

GD in the ANFIS network with search-based optimization algorithm that has 

fewer parameters to be tuned, and has a very wide and deep search capability. 

iii. The big data problem associated with load forecasting is beyond just 

incorporating calendar variables in the model inputs. This is because the load 

profile has taken care of seasonal effect in the load series. The proper way to 

handle overlapping of one timeframe (season, week, day or hour)  over the 

other is to formulate the forecasting in such a way that each season is treated 

separately. 

1.3 Motivation  

The relation between power system operation and load forecasting explained 

in section 1.1 brought about three statistical challenges in power system. Firstly, the 

need to forecast future load demand so as to improve the security and reliability of the 

grid, and also make the financial commitments lower [37]. Secondly, the need of 

forecasting the energy price because it influences the decisions by energy companies 

in the energy market [38]. Lastly, the need to forecast energy production ability of 

renewable energy resources [37] for proper integration into the main grid, or planning 

and operations of microgrid and smart grid networks. These challenges are associated 

with the gathering of huge amount of data, processing the data and then formulating 

the forecasting algorithm in such a way that accuracy is assured.   

Since the introduction of ANFIS network, a lot of researchers focus on its 

various applications. The reason behind this is the prospectus associated with ANFIS 
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in modelling time series problems, and ability to match the non-linear relationship 

between input and output variables [39]. This makes it more reliable in forecasting 

future events than other forecasting methods [13]. Moreover, it has the ability to 

combine the advantages associated with fuzzy logic and neural network.  

In the same vein, CS is a newly introduced meta-heuristic algorithm that has 

the capability of utilizing 75% of its search time in global search and 25% in local 

search [40]; thus it easily converges in the global minima when compared to other 

classical optimization methods, such as GA and PSO. This motivates the combination 

of ANFIS with Cuckoo Search (CS) algorithm; resulting to a Modified Adaptive-

Network-based Fuzzy Inference System (CS-ANFIS) model. CS was used to improve 

the forecasting capability of conventional ANFIS, by replacing the GD algorithm in 

its backward pass. It is purpose is to find the minimum error between the actual and 

target output of the ANFIS, which can be used to update the antecedent parameters of 

the conventional ANFIS. 

1.4 Objectives  

The main aim of this research is to develop modified ANFIS with CS that will 

forecast electricity load within the allowable error. This can be achieved through the 

following objectives:  

i. To develop data selection and analysis framework that can be applied in 

selecting the variables that influence the load demand in any region and 

season, using Correlation analysis, Hypothesis test, and Wavelet Transform.  

ii. To develop a modified load forecasting model through combining the 

optimization capabilities of CS with ANFIS network. 

iii. To develop a seasonal forecasting approach that can identify the effect of 

changes in the forecasting variables due to seasonal changes in each season, 

using the developed CS-ANFIS algorithm. 
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1.5 Scopes  

Because of the fact that different data affect the load at different region, and 

the variety of the forecasting algorithms, the research is limited to the following items. 

i. Historical load and weather data from Nova Scotia region for December 2010 

to November, 2014 is going to be used in this study. This is because the data is 

available online for public use.  

ii. Data selection and analysis approach using correlation analysis, hypothesis test 

and wavelet transform are incorporated to investigate the actual variables that 

enhance the load demand, and reduce the variability of the data. 

iii. The focus of this research is the development of AI model by upgrading 

conventional ANFIS using CS, and simulate the whole system in Matlab® 

environment. 

iv. The modified model will be applied in forecasting the hourly energy demand 

from November 2013 to December 2014. 

v. Evaluation analysis will be applied to validate the results obtained using 

conventional ANFIS and two optimized ANFIS networks using GA and PSO. 

vi. The approach is specified to forecast load at the utility level, which covers both 

domestic, commercial and industrial load demands.  

vii. Only historical load and weather variables are considered, loads demand due 

to special occasions and calendar variables are not within the scope of this 

research, because the seasonal pattern of the load has taken care of calendar 

effect.   

 

1.6 Significance of Study 

The significance of this research is drawn from major aspects of power system 

operations that require forecasting future energy demand within the short-term time 

frame.   
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i. The power system operation must be ensured irrespective of any disturbance 

and load requirements. Demand responses should influence the generation and 

by extension, the available generation resources. Therefore, foreseeing the 

demand with required accuracy enables the system operators to allocate the 

corresponding generations and resources optimally.  

ii. Power system performance depends on load forecasting methods that can 

produce minimum error, and promote economy within the energy market and 

at utility level. Therefore, producing models that can forecast the load with 

maximum accuracy is necessary. 

iii. The inability of Electricity industry to device a means of storing its products in 

vast quantity like in other industries make it necessary to generate and deliver 

electricity according to consumption. Meaning that supply should be according 

to demand all the time. Complexity in the seasonal patterns and introduction of 

new technologies that can collect data across the grid at all time, and the need 

for highly accurate forecast are integral part of load forecasting. These 

characteristics together with social needs of electricity brought about the 

interesting features of demand forecasting. 

iv. Introduction of energy management schemes such as Demand Side 

Management (DSM), in which customers are encouraged to modify their 

demand at certain period through monetary incentive, has tremendous impact 

on the daily load curve. These demand and supply sides issues challenge the 

system operators on grid maintenance. Thus, necessitate the determination of 

the future demand before generation, and allocation or purchase of electric 

energy in the case of deregulated system.    

1.7 Thesis Outline 

This thesis is categorized into five chapters, current chapter consists of general 

introduction of the thesis, problem statement, research objectives, scope of the research 

and significance of the research.  
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Chapter Two consists the general literature under the subject area. All the 

relevant components of Short-Term Load Forecasting are reviewed. It starts with load 

forecasting error and power system operation, followed by load feature selection and 

data analysis, load forecasting models and their applications. 

Chapter Three covers the methodology of the research. A research framework 

is outlined in the beginning of the chapter, followed by preliminary study, and the main 

study. The developed forecasting models are also presented in this chapter, followed 

by assessment of the models.  

Results obtained in this work are discussed in Chapter Four. The results include 

both preliminary experiment and main study results. Comparison was made using 

benchmark model and two other optimization algorithms.  

Finally, Conclusion and Recommendation for Future Work are narrated in 

Chapter Five. Major research achievements are discussed and untouched areas within 

the context of Short-Term Load Forecasting using the proposed approach were 

recommended for futureresearch.
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