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ABSTRACT 

 

 

Amongst the several analytic methods available to obtain exact solutions of 

non-linear differential equations, Lie symmetry reduction and double reduction 

technique are proven to be most effective and have attracted researcher from 

different areas to utilize these methods in their research.  In this research, Lie 

symmetry analysis and double reduction are used to find the exact solutions of non-

linear differential equations.  For Lie symmetry reduction method, symmetries of 

differential equation will be obtained and hence invariants will be obtained, thus 

differential equation will be reduced and exact solutions are calculated.  For the 

method of double reduction, we first find Lie symmetry, followed by conservation 

laws using ‘Multiplier’ approach.  Finally, possibilities of associations between 

symmetry with conservation law will be used to reduce the differential equation, and 

thereby solve the differential equation.  These methods will be used on some 

physically very important nonlinear differential equations; such as Kadomtsev-

Petviashvili equation, Boyer-Finley equation, Short Pulse Equation, and Korteweg-

de Vries-Burgers equations.  Furthermore, verification of the solution obtained also 

will be done by function of PDETest integrated in Maple or comparison to exist 

literature. 
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ABSTRAK 

 

 

Antara beberapa kaedah analitis yang terdapat untuk mendapatkan 

penyelesaian tepat bagi persaman terbitan tidak linear, penurunan simetri Lie dan 

teknik penurunan dua kali ganda telah terbukti merupakan cara yang paling berkesan, 

dan telah menarik perhatian pengkaji dari berbeza bidang untuk menggunakan 

kaedah ini dalam pengkajian mereka.  Dalam kajian ini, analisis simetri Lie dan 

penurunan dua kali ganda digunakan untuk mencari penyelesaian tepat bagi 

persamaan-persamaan terbitan tidak linear.  Untuk kaedah penurunan simetri Lie, 

simetri-simetri persamaan terbitan akan didapatkan dan, maknanya koordinat 

berkanun akan didapati, oleh itu, persamaan terbitan akan diturunkan dan 

penyelesaian tepat akan dikira.  Untuk kaedah penurunan dua kali ganda, kami cari 

simetri Lie dulu, diikuti dengan hukum-hukum keabadian dengan menggunakan 

pendekatan Pendarab.  Akhirnya, kemungkinan kesekutuan antara simetri dan hukum 

keabadian akan digunakan untuk menurunkan persamaan terbitan dan dengan itu 

menyelesaikan persamaan terbitan tersebut.  Kaedah ini akan digunakan pada 

sesetengah persamaan terbitan tak linear fizikal yang sangat penting; seperti 

persamaan Kadomtsev-Petviashvili, persamaan Boyer-Finley, Persamaan Nadi 

Pendek, dan Persamaan Korteweg-de Vries-Burgers.  Tambahan pula, pengesahan 

untuk jawapan yang didapati juga akan ditentusahkan dengan fungsi PDETest yang 

diintegrasikan dalam Maple atau perbandingan dengan literatur yang wujud. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

In this thesis, Chapter One represents the basic direction of the research. 

Meanwhile, Chapter Two discusses the previous researches related to the topic focusing 

on how symmetry and conservation laws are obtained; hence showing the symmetry 

reduction and double reduction. Chapter Three, Chapter Four, Chapter Five, and Chapter 

Six presents the methods used to solve Kadomtsev-Petviashvili equation, Boyer-Finley 

equation, Short Pulse Equation, and Korteweg-De Vries-Burgers equations, respectively. 

The final chapter, which is Chapter Seven, focuses on addressing the conclusion of this 

study. 

 

This chapter contains the background of the study, problem statement, 

objectives, scope as well as the significance of study. 

 

 

 

1.2 Background of the Research 

 

Partial differential equations (PDEs) are often used in the modelling of nonlinear 

physical phenomena. However, nonlinearity is of a great challenge to the researchers. 

Several authors from different background have responded to this task and consequently, 

many methods (numerical, analytical) have been developed to determine the possible 

solutions for nonlinear equations. These types of PDEs normally involve high orders and 
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there is no universal method to solve all nonlinear PDEs. Apparently, there are some 

methods that can solve certain complex PDEs under certain restrictions. One of the 

approaches involves the invariance of PDEs under one parameter known as the Lie 

group of transformations, or often called the Lie symmetries. After finding Lie 

symmetry of a PDE, an invariant solution of the PDE via reduction process can be made 

using a change of variables. Compared to other exact methods that usually require extra 

conditions, this method is a universal method to solve PDEs and ODEs without many 

obstacles. Hence, a class of more general solutions can be obtained, which are very 

helpful in studying the equations under different boundary conditions. Among the many 

literatures available on the subject are the well known fundamental references including 

(Ibragimov & Lie, 1994), Application of Lie Groups to Differential Equations by Olver 

(2000), Elementary Lie Group Analysis and Ordinary Differential Equations by 

Ibragimov (1999), as well as the Symmetry and Integration Methods for Differential 

Equations by Bluman & Anco (2010). 

 

Another recently developed route for analysing differential equations is by 

finding the conservation laws. In addition to having physical interpretations like 

conservations of energy, momentum and volume, these laws provide a mechanism for 

reducing the differential equations. Many significant methods have been developed to 

construct conservation laws such as the Noether’s theorem for variational problems 

(Noether, 1971; Wang et al., 2014), multiplier approach (Anco & Bluman, 2002a, 

2002b; Bluman & Anco, 2010), symmetry action on a known conservation law (Bluman 

et al., 2006), partial Noether approach (Kara & Mahomed, 2006) and a new conservation 

method (Ibragimov, 2007). The classical approach is by Noether’s theorem for 

variational PDEs in which a Lagrangian has to be known. There are other PDEs that 

belonged to the evolution type equation, which do not admit Lagrangian. To handle 

these equations, one can use the direct method also known as the ‘multiplier’ approach 

(Anco & Bluman, 2002a, 2002b; Bluman & Anco, 2010), which directly utilises the 

definition. This approach has been actively pursued recently; it involves constructing 

multipliers for PDEs that are then further analysed to obtain corresponding conserved 

vectors.  
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The theory of double reduction of a PDE (or systems of PDEs) is well-known for 

the association of conservation laws with Noether symmetries (Bluman & Anco, 2010; 

Cariello & Tabor, 1991). Meanwhile, the association of conservation laws with Lie 

Backlund symmetries (Kara & Mahomed, 2000) and non-local symmetries (Sjöberg & 

Mahomed 2004) led to the expansion of the theory of double reduction for PDEs with 

two independent variables, which do not possess Noether symmetries (Sjöberg 2007).  

Solving PDEs through double reduction may not be as universal as symmetry method 

since some PDEs do not possess any unique and non-trivial conservation laws. 

However, if PDEs do possess non-trivial conservation laws, the double reduction 

method will be able to find such exact solution that may not be obtained through 

symmetry method. Besides, this method is straightforward and more effective in 

reducing the order and variable of an equation in one step. Furthermore, this method 

provides a mechanism to construct more solutions with less restrictions and limitations 

compared to other methods. Lastly, a PDE contains more conservation laws, which 

means that it has high integrability considering that one can perform double reductions 

through conservation laws.  

 

One way in which PDEs can be used is through models involving more than one 

independent variable. Plasma is a significant technology recently proposed. It is widely 

applied in the fields such as Biology, Physics and computing. An important equation in 

plasma to describe wave surface problem for an incompressible fluid with free surface 

and rigid horizontal bottom boundary conditions is called the Kadomtsev-Petviashvili 

(KP) equation (Kadomtsev & Petviashvili, 1970), which is originated from the study on 

Korteweg–de Vries (KdV) equations. 

 

Data deliver through silica optic are innovated by improving the technology in 

telecommunication. Huge amount of data can be sent in a short period using this silica 

optic. The model that describes the propagation of ultra-short light pulse in silica optical 

fibres is the one preferred for the study. In literature, this method refers to the Short 

Pulse equation (SPE) (Schäfer & Wayne, 2004).  
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General relativity theory plays an important role in many fields; for instance, 

general relativity theory as a backbone of quantum theory. Explanation on general 

relativity theory exposes many problems in finding all real, Euclidean, self-dual spaces 

with one Killing vector that was reduced, which was then replaced with another equation 

namely Boyer-Finley equation named after the Boyer and Finley III (1982) for their 

contribution in developing this equation. As for the importance of reveal general theory, 

this equation has been also examined within this study to find the exact solution.  

 

Finally, this study also considered the Korteweg-de Vries-Burgers (KdV-B) 

equation. This equation yields the famous Korteweg-de Vries (KdV) equation. KdV-B 

equation exists in various physical situations. Here, KdV-B equation model from the 

theory of ferroelectricity (Zayko, 1989) were chosen. Ferroelectricity is generally used 

in choosing suitable material for a capacitor. Basically, capacitors are the main 

components to construct battery for electronic applicants. Hence, it is worthy to study 

this equation to help understanding the material for the battery of electronic applicants 

including smartphone and laptop. 

 

This study was conducted to study the invariance, Lie symmetries and 

conservation laws of the above equations namely KP, Boyer-Finley, SPE and KdV-B 

equations, which were mentioned in the few last paragraphs. Meanwhile, the ultimate 

goal is to obtain the exact solutions that are not yet reported by existing literature. 

 

 

 

1.3 Statement of the Problem 

 

1) To study and tackle the nonlinearity of the following four nonlinear significant 

equations via Lie symmetry and conservation laws:  

 

i) Kadomtsev-Petviashvili (KP) equation, 
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where             This equation is modelled using the Euler Equation 

describing the wave surface problem for an incompressible fluid with free 

surface and rigid horizontal bottom boundary condition.  

 

ii) Boyer-Finley equation, 

 

            

 

where           . This is an equation of self-dual Einstein spaces of 

Euclidean signature with one rotational Killing vector.  

 

iii) Short Pulse equation (SPE), 

 

       
 

 
         

 

where           which the unknown real function and the subscripts denote 

differentiation with respect to x and t; α and β are nonzero real parameters. 

This model describes the propagation of ultra-short light pulses in silica 

optical fibres. 

 

iv) Korteweg-de Vries-Burgers (KdV-B) equation, 

 

                      

  
  

     
   

 

     
    

  

     
       

     

  
 

     
  

   

     
   

       

 

where   is the first term in expanding the series of polarisation with respect 

to small attenuation coefficient;        is the dispersive equation for wave 

velocity;    is the equilibrium value of  ;       are the frequencies of 
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wave, which vary according to different problems;   represents the velocity 

of light;   is the coefficient determined by the system. These equations 

describe a ferroelectric system. 

2) The method on the four equations, KP, Boyer-Finley equation, SPE and KdV-B 

equation will involve deriving the symmetry for these four differential equations 

with the aid of programming. 

3) Application of symmetry to reduce the KP, Boyer-Finley and KdV-B equation. 

4) Methods to obtain conservation laws for KP, Boyer-Finley equation, and SPE via 

Multiplier approach. 

5) Measuring the association between Lie symmetry and conserved vector. 

6) Applying the conservation laws combined with underlying associated 

symmetries to employ the ‘double reduction’ on KP equation, Boyer-Finley 

equation and SPE, thus calculating their solutions. 

 

 

 

1.4 Objectives of the Study 

 

The objectives of this study are as follow: 

1. To calculate the possible Lie symmetries and conservation laws for Short Pulse 

Equations (SPE), Boyer-Finley equation, Kadomtsev-Petviashvili (KP) equation, 

and Korteweg-de Vries-Burgers (KdV-B) equation. 

2. To determine the possible association between symmetry and conserved vector 

of SPE, Boyer-Finley equation and KP equation. 

3. To utilise symmetry in reducing Boyer-Finley, KP and KdV-B equations. 

4. To apply the association of conservation laws and symmetry in double reduction 

to the equation, and to obtain the exact solution for SPE, Boyer-Finley and KP 

equations. 
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1.5 Scope of the Study 

 

This study concentrates on using symmetry approach and/or double reduction 

approach with the combination of symmetry and conservation laws to reduce non-linear 

differential equations namely Short Pulse Equation, Boyer-Finley Equation, Kadomtsev-

Petviashvili (KP) Equation, and Korteweg-de Vries-Burgers (KdV-B) Equation. 

Multiplier approach was selected to find the conservation laws of these equations instead 

of other methods.  

 

 

 

1.6 Significance of the Study 

 

The method of Lie symmetry and double reduction provides a mechanism to 

tackle a considerable amount of nonlinear differential equations that are not easily 

handled by other integration methods. In some cases, even analytic methods failed to 

produce any results. In fact, this method is the only universal method that produces 

analytics solutions (Kara & Mahomed, 2000). For instance, in fluid flow problems, # 

mathematicians, physicists or engineers often faced many complicated nonlinear high 

order dimensional differential equations in complex domain with a number of unknown 

parameters. Nonetheless, the order of equation can be easily reduced using the Lie 

symmetry and conservation laws technique, thus aiding in solving or investigating the 

system with much ease. Moreover, as compared to numerical methods, this method is 

more efficient and cheaper. Besides, the exact solutions obtained by this method can 

serve as the benchmark for testing the algorithms and accuracy of numerical solutions. 

Exact solutions of differential equation may also help scientist or physicist to detect or 

measure the accuracy and sensitivity of various variables in their physical interest that 

involved in the equation. 
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