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Carbon dioxide reforming of methane (CDRM) utilizes two major 
greenhouse gases (GHG) of methane (CH4) and carbon dioxide (CO2) for syngas 
production.  The transformation of GHG satisfies the requirements of synthesis 
processes and is a great interest for reducing gas emission.  In this work, cobalt 
catalysts were synthesized by wet impregnation method onto oil palm shell activated 
carbon (OPS‒AC) and zeolite socony mobil-5 (ZSM‒5). The characterizations of 
supported cobalt catalysts were performed by elemental analysis, Brunauer-Emmett-
Teller, thermogravimetric analysis, x-ray diffraction, temperature programmed 
reduction, temperature programmed desorption, scanning electron microscope, field 
emission scanning electron microscopy and transmission electron microscopy 
analysis. In comparison of both supported cobalt catalysts, OPS‒AC supported 
catalysts exhibited superiority in physical and chemical properties than that of 
ZSM‒5.  Four manipulated parameters of the micro reactor system namely operating 
pressure, operating temperature, feedstock ratio of CH4/CO2 and gas hourly space 
velocity (GHSV) were investigated.  In catalyst screenings, cobalt 14wt% of 
OPS‒AC (OPS-AC(14)) gave better catalytic performance than cobalt 14wt% of  
ZSM‒5 (ZSM‒5 (14)) with 15 % conversion and 60 % yield at 1023 K. The 
feedstock gases and products of syngas were analyzed by gas chromatography with 
thermal conductivity detector for yield of hydrogen (H2) and carbon monoxide (CO) 
and conversion (CH4 and CO2).  Then, activity testings of OPS-AC(14) showed high 
temperature at 1173 K which favoured the conversion (CH4, 15 %; CO2, 12 %) and 
yield (H2, 80 %; CO, 47 %). However, conversion and yield disfavoured at high 
pressure of 7 bar and less effect by CH4/CO2 ratio and GHSV.  Multi-responses of 
both yields (H2 and CO) were optimized at 903 °C, 0.88 bar, 1.31 CH4/CO2 and 4488 
mL/h.g-catalyst for a global optimum value by desirability function analysis.  
Kinetics study of CDRM was performed for OPS-AC(14) using a power law, 
Arrhenius plot and equation. The reaction orders of CH4 and CO2 were 0.92 and 
0.88, respectively which are close to the first order.  The average activation energy of 
CO2 was lower (66.0 kJ/mol) than that of CH4 (77.3 kJ/mol). The potential side 
reactions were graphically plotted using Mathematica. 
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Pembentukan semula metana daripada karbon dioksida (CDRM) 
menggunakan dua gas utama rumah hijau (GHG) iaitu metana (CH4) dan karbon 
dioksida (CO2) bagi penghasilan singas. Transformasi GHG kepada singas adalah 
sememangnya memenuhi keperluan proses sintesis dan juga menarik minat dalam 
menyokong mengurangkan pelepasan gas. Dalam kajian ini, pemangkin kobalt 
disintesiskan melalui kaedah impregnasi basah ke atas karbon teraktif tempurung 
kelapa sawit (OPS‒AC) dan zeolit socony mobil-5 (ZSM‒5). Pencirian pemangkin 
kobalt tersokong dijalankan melalui analisis unsur, Brunauer-Emmett-Teller, analisis 
termogravimetri, pembelauan sinar-x, penurunan berprogram suhu, penyahjerapan 
berprogram suhu, mikroskop elektron pengimbas, mikroskop elektron pengimbas 
pancaran medan dan mikroskop elektron penghantaran.  Dalam perbandingan bagi 
kedua-dua pemangkin kobalt tersokong, OPS‒AC mempamerkan prestasi yang lebih 
baik disebabkan ciri-ciri unggul secara fizikal dan kimia pemangkin tersebut 
berbanding ZSM‒5. Empat  parameter yang dimanipulasikan di dalam sistem reaktor 
mikro seperti tekanan operasi, suhu operasi, nisbah bahan suapan CH4/CO2 dan 
halaju ruang gas setiap jam (GHSV) telah disiasat. Dalam penyaringan mangkin, 
14wt% kobalt OPS‒AC (OPS-AC(14)) telah memberikan prestasi pemangkin yang 
lebih unggul daripada 14wt% kobalt ZSM-5 (ZSM-5(14)) dengan 15 % penukaran 
dan 60 % hasil pada 1023 K.  Gas suapan dan produk singas dianalisis menggunakan 
kromatografi gas dengan pengesan kekonduksian terma untuk hasil hidrogen (H2) 
dan karbon monoksida (CO) dan penukaran (CH4 dan CO2). Kemudian, pengujian 
aktiviti pemangkin terhadap OPS-AC(14) menunjukkan suhu tinggi pada 1173 K 
yang mengutamakan penukaran (CH4, 15 %; CO2, 12 %)  dan hasil (H2, 80 %; CO, 
47 %). Walau bagaimanapun, penukaran dan hasil berkurangan pada tekanan tinggi 
sebanyak 7 bar dan kurang berkesan pada nisbah CH4/CO2 dan GHSV. Gerak balas 
berbilang bagi kedua-dua hasil (H2 dan CO) dioptimumkan pada 903 °C, 0.88 bar, 
1.31 CH4/CO2 dan 4488 mL/h.g-pemangkin bagi nilai optimum global menggunakan 
analisis fungsi kebolehinginan. Kajian kinetik CDRM telah dijalankan untuk OPS-
AC(14) menggunakan hukum kuasa, persamaan dan plot Arrhenius. Kadar tindak 
balas bagi CH4 dan CO2 masing-masing adalah 0.92 dan 0.88 yang menghampiri ke 
tertib pertama. Tenaga pengaktifan purata untuk CO2 adalah rendah (66.0 kJ/mol) 
berbanding dengan CH4 (77.3 kJ/mol). Tindak balas sampingan yang berpotensi 
diplotkan secara grafik menggunakan Mathematica. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Research Background  

A decreased reliance on petroleum is currently demanded worldwide.  A 

forecast on a critical quantity of petroleum and the replenish process which takes 

many years have paid a great notice to the scientific communities and industries.  

Many researchers investigated the transformation of nonpetroleum feedstock such as 

natural gas (NG), coal and biomass into synthetic petroleum products such as 

gasoline or diesel.  Fischer-Tropsch synthesis (FTS) reaction has received attention 

as one of the methods to synthesize high quality substituted diesel fuels because FTS 

provides liquid hydrocarbons with practically no S and N compounds.  Furthermore, 

the demand for energy resources in the world has dramatically increased during the 

last two decades.  Globally, the depletion of petroleum resources in the next 50–100 

years has rekindled new research and developed interests to convert nonpetroleum 

feedstock such as NG, coal or biomass to fuels.  

Gases of CO2, CH4, nitrous oxide and ozone are the primary green house 

gases (GHG) that contribute to the critical issue of global warming.  Therefore, 

carbon dioxide reforming of methane (CDRM) produces synthesis gases (H2 and 

CO), is one of the available methods to utilize two major GHG contributors (CO2 and 

CH4).  In the last two decades, huge consideration has been paid on the catalytic 
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CDRM owing to both commercial and environmental reasons.  In addition, CDRM 

results in a lower H2/CO ratio if compared with steam reforming and partial 

oxidation of methane.  Hence, lower H2/CO ratio is favorable for certain chemical 

processes such as the synthesis of oxygenated compounds, FTS and 

hydroformylation reactions.  In fact, CDRM process simultaneously consumes two 

important GHG (CO2 and CH4) and converts them into a valuable intermediate 

product of syngas.  Therefore, the consumption of two gases in a single process has a 

great impact on environmental protection.  Furthermore, CO2 is less expensive and a 

clean oxidant agent for the replacement of pure O2. Consequently, the consumption 

of pure O2 as an oxidant agent could be avoided or reduced.  In short, converting 

these two GHG into valuable syngas may not only reduce the emission of CO2 and 

CH4 in the atmosphere but also satisfy the requirement of synthesis processes in 

chemical industries [1]. 

Emission control of CO2 as one of GHG is the most demanding 

environmental policy faces by many countries [2].  One of the key contributors to 

climate change is due to the uncontrolled emission of CO2.  Despite the unequivocal 

evidence that CO2 is warming the globe, the growth in its emission is inexorable [3].  

CH4 as a primary constituent of NG is also considered as a relatively potent GHG 

[4].  Methane is more effective for entrapping heat in the atmosphere and its global 

warming potential (GWP) is approximately 20 times more prevailing at warming the 

atmosphere than CO2.  Recently, many researchers have endeavoured to reduce the 

concentration of both GHG in the atmosphere through their utilization [5].  

Therefore, CDRM has equally attracted much attention from both industrial and 

environmental sectors because of utilizing simultaneously two GHG [6-19] in the 

substitution of steam with CO2 as reactant.  Aside the advantages of using GHG, 

another great advantage of CDRM is the very low H2/CO ratios emerging from the 

process.  A theoretical ratio of H2/CO lies closely in unity when H2O is eliminated as 

a source of H2 in the “steam” reforming process [20-27].  The unity of H2/CO fits 

well for any additional process treatment of the produced syngas or as a feedstock in 

another chemical industry processes e.g. in FTS [28-35].  
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Noble metal catalysts were already employed in several industrial plants but 

soaring in the costs of catalytic materials have made the process less valuable and 

unprofitable.  In order to overcome this drawback, proper selection of appropriate 

metals is one of the major factors in CDRM research.  Thus, the metal catalysts can 

catalyze CDRM with particular requirements such as resistance to deactivation at 

high-temperature profiles. The requirement at high temperature is owing to the 

endothermic of CH4 conversions and also due to high activation energy (439 kJmol-1) 

of a strong C-H bond. Therefore, this severe operating at high temperature 

exacerbates the poor resistance of catalytic materials, which is mainly due to carbon 

accumulation, or coking, and sintering of both support and active metal particles [36-

40].   

Many researchers have focused on the development of catalysts which exhibit 

high activity and stability for CDRM catalytic reaction.  Hence, numerous literatures 

have reported an extensive range of catalysts for CDRM that is basically similar to 

the choices of catalysts for steam reforming [41-46].  Although noble metal catalysts 

have been well reported to be more resistant to coking of catalysts, they are widely 

discouraged to be employed in the industrial application due to high cost and limited 

in availability.  Ni supported catalysts are broadly employed as a substitution for the 

precious noble metals due to their low price.  In addition, Ni based catalyst exhibited 

high reaction activities but suffered from serious drawbacks caused by metal 

sintering and carbon deposition onto the active metal sites [47-52].  Therefore, 

researchers comprehensively investigated more on the augmentation of the catalytic 

activities of Ni based catalytic systems [53-65].  Even though noble metal catalysts 

such as Rh, Ru and Pt exhibited high catalytic activity and selectivity with barely 

carbon deposition, the high cost and limited in availability hinder them for 

commercialization.  Thus, non-noble metal catalysts such as Fe, Ni and Co are lower 

in cost and more practical.  Cobalt based catalyst from the transition metals group 

has also attracted much attention to the researchers as a substitution of Ni based 

catalyst [66, 67].  Cobalt has attracted interest as an active metal for CDRM and 

several variables related to cobalt catalyst such as effect of support, optimization of 

cobalt content, preparation method addition of small amount of noble metal and the 

use of Ni-Co bimetallic catalyst were investigated to improve the reaction of CDRM. 
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1.2 Problem Statements  

Problem statements were identified and selected based on the literature 

reviews, triggered interests of research, potential problems and highlighted future 

works.  Therefore, three identified problem statements have been raised as follows; 

The first problem statement was related to a suitability of catalyst to be 

applied in the reaction process.  At an experimental laboratory stage, fewer studies 

have reported the attempt to utilize oil palm shell activated carbon (OPS-AC) as a 

support of catalyst in heterogeneous reaction [68, 69].  However, most studies have 

been using OPS-AC as an adsorbent for the removal of die, color, and heavy metals 

[70-73].  Furthermore, other researchers have used OPS-AC as a support for catalyst 

in biodiesel production, as well as the feedstock in both pyrolysis and gasification.  

There are studies that have used activated carbon extensively derived from the 

commercial coconut shell as a support for catalytic reaction but rarely used OPS-AC 

as the support.  Hence, the suitability problem in finding a well-suited support of 

catalysts which caters the reaction of CDRM is highlighted in this problem 

statement. 

Another problem statement is interrelated to the optimizing molar ratio of 

feedstock gases which is regarded as the second problem statement.  Cobalt based 

catalysts are considered the most suitable transition metals in terms of giving 

superior activity and selectivity, lower in water gas shift (WGS) activity, moderate in 

the operating conditions and comparatively lower in price than the noble metals.  

Generally, CDRM has a tendency in producing lower molar ratio (1:1) of synthesis 

gases of CO and H2.  Furthermore, the stoichiometric ratio of 1:1 for syngas (H2 and 

CO) is essential for the downstream processes such as FTS using cobalt supported 

catalysts.  Therefore, the identified major problem is to optimize the molar ratio 

feedstock of GHG (CO2 and CH4) by producing unity ratio of syngas for the 

succeeding production of FT synthetic fuels. 
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The third identified problem statement is associated with the optimization of 

temperature and pressure of carbon dioxide reforming of methane (CDRM).  

However, CDRM is strongly endothermic and requires high temperatures (700 – 900 

°C) with the ambient operating pressure of 1 atm.  On the contrary, CDRM tends to 

produce more carbon deposition at elevated pressure.  In addition, the key problem of 

maintaining the entire system at high pressure induces high cost in the actual 

operation.  Therefore, a trial to reduce and optimize higher operating pressure and 

temperature without adversely affecting the catalytic activity is appreciated due to 

greater deposition of carbonaceous can hinder the catalytic activities. 

1.3 Research Objectives 

Research objectives are established based on the respective problem 

statements and hypothesis.  Currently, the research objectives are divided into three 

main parts, which are: 

(i). To synthesize and characterize cobalt catalysts using two supported materials 

of OPS-AC and mesoporous zeolite (ZSM-5). 

 
 
(ii). To conduct screening and activity testing of catalyst by investigating the 

performance of the selected catalysts in correlation of product yield with 

various variables such as feedstock ratios (CH4/CO2).  

 

(iii). To optimize the manipulated variables such as reaction temperature, pressure 

based on the multi-response optimization of both yields (H2 and CO).   

 

(iv). To conduct kinetic studies of the reaction. 
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1.4 Research Scopes 

One of the highlighted research objectives is related to the preparation of 

catalysts which involves several processes, such as synthesis of catalysts and catalyst 

characterization.  The cobalt-supported catalysts are using two types of porous 

materials of OPS-AC and mesoporous zeolite (ZSM-5).  The cobalt (0 ̶ 16 wt%) is 

loaded onto support by wetness impregnation method.  The synthesized cobalt 

supported catalysts are characterized by elemental analysis, TGA, XRD, SEM, 

FESEM, TEM, TPR, TPD, and BET in order to examine the physical and chemical 

properties of the respective catalysts.   

The second research objective is related to conduct screening and activity 

testing of catalysts. Design of experiment (DOE) obtained from response surface 

methodology (RSM) is used to reduced the numbers of unnecessary experiments and 

to predict the correlations of variables.  The cobalt-supported catalysts are screened 

for the catalyst activity testing using MRS to investigate the catalysts performance. 

The screened catalyst that gave the best performance in correlation of product yield 

with four variables (operating temperature, pressure, feedstock ratios (CH4/CO2), gas 

hourly space velocity) is selected for further activity testing of the catalysts.   

The third research objective is associated with the optimization of four 

manipulated variables.  Desirability function analysis (DFA) is employed to 

simultaneously optimize the multiple responses of both H2 and CO yields.  Hence, 

both yields of H2 and CO are simultaneously optimized by DFA giving a global 

optimal condition as the most optimum reaction condition. 

As the fourth research objective, a fundamental reaction of kinetic study is 

also investigated based on the obtained experimental results.  Kinetic study of 

CDRM is performed using a power law, Arrhenius plot and equation. Then, the rate 

of reactions, rate constants, reaction orders and activation energies are calculated and 

compared between CH4 and CO2 of OPS-AC(14) catalyst. 
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