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ABSTRACT 

 

 

 

 

The purpose of this research is to propose some new modified mathematical 

models to enhance the previous model in simulating, visualizing and predicting the 

heat and mass transfer in dehydration process using instant controlled pressure drop 

(DIC) technique. The main contribution of this research is the mathematical models 

which are formulated from the regression model (Haddad et al., 2007) to 

multidimensional hyperbolic partial differential equation (HPDE) involving 

dependent parameters; moisture content, temperature, and pressure, and independent 

parameters; time and dimension of region. The HPDE model is performed in 

multidimensional; one, two and three dimensions using finite difference method with 

central difference formula is used to discretize the mathematical models. The 

implementation of numerical methods such as Alternating Group Explicit with Brian 

(AGEB) and Douglas-Rachford (AGED) variances, Red Black Gauss Seidel (RBGS) 

and Jacobi (JB) method to solve the system of linear equation is another contribution 

of this research. The sequential algorithm is developed by using Matlab R2011a 

software. The numerical results are analyzed based on execution time, number of 

iterations, maximum error, root mean square error, and computational complexity. 

The grid generation process involved a fine grained large sparse data by minimizing 

the size of interval, increasing the dimension of the model and level of time steps. 

Another contribution is the implementation of the parallel algorithm to increase the 

speedup of computation and to reduce computational complexity problem. The 

parallelization of the mathematical model is run on Matlab Distributed Computing 

Server with Linux operating system. The parallel performance evaluation of 

multidimensional simulation in terms of execution time, speedup, efficiency, 

effectiveness, temporal performance, granularity, computational complexity and 

communication cost are analyzed for the performance of parallel algorithm. As a 

conclusion, the thesis proved that the multidimensional HPDE is able to be 

parallelized and PAGEB method is the alternative solution for the large sparse 

simulation. Based on the numerical results and parallel performance evaluations, the 

parallel algorithm is able to reduce the execution time and computational complexity 

compared to the sequential algorithm. 
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ABSTRAK 

 

 

 

 

Kajian ini dilakukan bertujuan untuk mengemukakan model baru yang diubah 

untuk menambah baik model sebelum ini dalam menjalankan simulasi, 

menggambarkan dan meramal pemindahan haba dan jisim dalam proses pengeringan 

menggunakan teknik kawalan segera kejatuhan tekanan (DIC). Sumbangan utama 

kajian ini ialah model matematik diformulasikan daripada model regresi (Haddad et 

al., 2007) kepada persamaan pembezaan separa hiperbolik (HPDE) pelbagai dimensi 

yang melibatkan parameter bersandar; kandungan air, suhu, dan tekanan, dan 

parameter tidak bersandar; masa dan rantau dimensi. Model HPDE dilaksanakan 

dalam pelbagai dimensi; satu, dua dan tiga dimensi menggunakan kaedah beza 

terhingga dengan rumus beza tengah telah digunakan untuk mendiskretasikan model 

matematik tersebut. Pelaksanaan kaedah berangka seperti Kaedah Tak Tersirat 

Kumpulan Berselang-seli dengan variasi Brian (AGEB), dan variasi Douglas-

Rachford (AGED), Gauss Seidel Merah Hitam (RBGS), dan Jacobi (JB), dalam 

menyelesaikan sistem persamaan linear juga merupakan satu lagi sumbangan dalam 

kajian ini. Algoritma berjujukan dibangunkan menggunakan perisian Matlab 

R2011a. Keputusan berangka dianalisis berdasarkan masa pelaksanaan, bilangan 

lelaran, ralat maksima, ralat punca min kuasa dua, dan pengiraan kompleksiti. Proses 

penjanaan grid melibatkan butiran halus data yang besar dan jarang iaitu dengan 

meminimumkan saiz selang ruang, meningkatkan dimensi model dan peringkat paras 

masa. Antara sumbangan lain ialah algoritma selari dicadangkan untuk 

meningkatkan kecepatan pengiraan dan mengurangkan masalah pengiraan 

kompleksiti. Model matematik yang diselarikan dilaksanakan menggunakan 

Pengkomputeran Teragih Matlab dengan sistem operasi Linux. Penilaian prestasi 

selari bagi model pelbagai dimensi berdasarkan masa pelaksanaan, kecepatan, 

kecekapan, keberkesanan, prestasi sementara, granulariti, pengiraan kompleksiti dan 

kos komunikasi dianalisis untuk prestasi algoritma selari. Sebagai kesimpulan, kajian 

ini membuktikan HPDE pelbagai dimensi dapat diselarikan dan kaedah PAGEB 

merupakan penyelesaian alternatif bagi simulasi yang besar dan jarang. Berdasarkan 

keputusan berangka dan penilaian prestasi selari, algoritma selari dapat 

mengurangkan masa pelaksanaan dan kompleksiti pengiraan berbanding dengan 

algoritma berjujukan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background of Research 

 

 

Food dehydration is one of the most ancient and efficient preservation 

methods.  Numerous food products are routinely preserved using dehydration 

techniques, which include grains, marine products, meat products, as well as fruits 

and vegetables.  There are several other food preservation techniques such as storing, 

freezing, pickling, and canning.  Some of the storage techniques require low 

temperatures and are difficult to maintain throughout the distribution chain (Sagar 

and Suresh Kumar, 2010).  Meanwhile, for pickling and canning, chemical 

preservative is added to extend the shelf life (Silva and Lidon, 2016).  On the 

contrary, the dehydration involves heat, mass transfer phenomena and frequently 

used in most food processing industries (Cohen and Yang, 1995; Kristiawan et al., 

2011).  It is a suitable alternative for post-harvest tasks. 

 

 

Dehydration is a process of removing the water vapor from food into the 

surrounding area under controlled conditions that cause minimum changes in the 

food properties (Chen and Mujumdar, 2008; Potter and Hotchkiss, 1998).  The 

purposes of dehydration are to extend the life of the food product, decrease weight 
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for transportation, enhance storage stability and minimize the packaging 

requirements.  Besides, it is necessary to remove the moisture content to a certain 

level in order to prevent the growth of bacteria, yeast, and molds thus slowing down 

or stopping food spoilage (Mujumdar and Law, 2010).  The conventional 

dehydration techniques found in the food processing industry are freeze, hot air, 

osmotic, solar, and vacuum (George et al. 2004).  Unfortunately, these conventional 

dryers have several limitations such as high operating cost, low quality and slow 

process.  Table 1.1 shows the advantages and disadvantages of these conventional 

dehydration techniques.  

 

 

Table 1.1 : Summary of the conventional dehydration techniques 

Drying 

techniques 
Characteristic Advantages Disadvantages References 

Freeze The frozen 

water is 

removed from 

food without 

going through 

liquid phase. 

Highest quality 

product, minimal 

reduction in 

shape, color and 

structure.  

High operating costs. Marques et 

al. (2006), 

Ratti 

(2001), 

Shishehgar

ha et al. 

(2007)   

Hot air The food is in 

contact with hot 

air.  

Product extends 

the life of a year. 

Low quality compared to 

the original food. 

Ratii (2001) 

Osmotic The food is 

soaked in 

hypertonic 

solution. 

High quality, 

little energy, 

reduces process 

temperature, 

short drying time. 

A slow process because 

depends on the cell 

membrane permeability 

and architecture. 

Ahmed et 

al. (2016), 

Amami et 

al. (2007) 

 

Solar The food is 

dried using 

solar light. 

Simple, low cost. Large space, labor-

intensive, difficult to 

control, slow process, 

bacterial contamination. 

Sagar and 

Suresh 

Kumar 

(2010) 

Vacuum The food is 

operated under 

low pressure 

and 

temperature. 

High quality 

product, low 

energy 

consumption 

A slow process. Saberian et 

al. (2014), 

Thorat et 

al. (2012) 
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Based on the limitations from Table 1.1, the conventional dehydration 

techniques have been improved to enhance the quality of end drying products in 

terms of color, flavor, nutritional value and texture (Alves-Filho, 2007; Chen and 

Mujumdar, 2008; Fernandes et al. 2011; Mujumdar, 2006).  Some of the novel 

dehydration techniques are microwave, fluidized-bed, ultrasonic and microwave-

augmented freeze (Cohen and Yang, 1995; Falade and Omojola, 2010; Fernandes et 

al., 2011; Jangam, 2011; Mujumdar and Law, 2010; Sagar and Suresh Kumar, 2010).   

 

 

 

 

1.2 DIC Technique 

 

 

Another alternative of dehydration is Détente Instantanée Contrôlée (DIC) 

technique. DIC is known as instant control pressure drop technique.  This technique 

has the potential to be the most commonly used dehydration methods for high value 

products.  DIC is developed by the Laboratory for Mastering Agro-Industrial 

Technologies (LMTAI) research team (Allaf et al.) since 1988 (Allaf et al., 1999; 

Setyopratomo et al., 2009) from the University of La Rochelle, France.  It is based 

on the high temperature short time heating (HTST) and followed by an instant 

pressure drop.  DIC consists of three main parts which are processing chamber, 

vacuum reservoir and valve.  The products are treated in the processing chamber at 

high temperature (up to 170°C) and at high pressure (up to 8×10
5
 Pa) with steam.  

The volume of vacuum tank is at least 50 times greater than the processing chamber.  

The DIC layout diagram is shown in Figure 1.1 (Haddad and Allaf, 2007).  Figure 

1.1 shows the vacuum pump, vacuum tank with cooling liquid jacket; instant 

pressure-drop valve, DIC reactor with heating jacket; and steam boiler.  Table 1.2 

shows the value of parameters used in DIC technique such as pressure, water content 

and processing time.  
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Figure 1.1 Schematic diagram of the DIC reactor 

 

 

Table 1.2 : Value of parameters for pressure, water content and processing time 

No Parameter Symbol Value References 

1 Pressure Pa 4-7x10
5
 Haddad and Allaf (2007), 

Haddad et al. (2007),  

Setyopratomo et al. (2012) 

4-5x10
5 

Haddad et al. (2008) 

2 Initial water 

content 

g water/100g 

dry matter 

30-50 Haddad and Allaf (2007), 

Haddad et al. (2007)  

3 Time s 40-60 Haddad and Allaf (2007), 

Haddad et al. (2007) 

10-20 Haddad et al. (2008) 

30-45 Setyopratomo et al. (2012) 

 

 

The temperature and pressure changes are presented in Figure 1.2 where 

stage (a) is at atmospheric pressure.  Then, a vacuum condition is created within the 

reactor to get the greatest contact between steam and materials surface by opening 

the discharge valve (Figure 1.2(b)).  Steam is injected to the materials to create a 

pressurized atmosphere (Figure 1.2(c)).  The materials are left in contact with high 

pressure for a few seconds (Figure 1.2(d)).  Then, a sudden pressure drop in the 

reactor is created by opening the discharge valve in less than a second (Figure 1.2(e)) 

which is called as instantaneous pressure drop since the value of 
∆𝑃

∆𝑡
 is higher than 

5105  Pa s
-1

.  This instantaneous pressure drop induces rapid auto-vaporization of 
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the moisture from the material and lead to texture change which results in higher 

porosity.  Besides, it also intensifies functional behavior of drying product 

(Setyopratomo et al., 2009).  The material is maintained in vacuum condition (Figure 

1.2(f)).  The final step is returning the reactor to atmospheric pressure (Figure 

1.2(g)).  DIC increases the material porosity and surface area and reduces the 

diffusion resistance of moisture during the final dehydration step. 

 

 

This technique has been successfully used for various products including: 

fruit swell drying and vegetables drying (Djilali et al., 2016; Haddad et al., 2008; 

Louka and Allaf, 2002; Tellez-Perez et al., 2015), texturing and drying various 

biological products by instant auto vaporization (Haddad and Allaf, 2007; Kristiawan 

et al., 2011; Louka and Allaf, 2004; Louka et al., 2004; Nouviaire et al., 2008; 

Setyopratomo et al., 2012), and microbiological decontamination (Setyopratomo et 

al., 2009), post harvesting or steaming paddy rice (Pilatowski et al., 2010) and 

essential oil extraction (Amor et al., 2008; Besombes et al., 2010).  Besides, some 

experiments have been done to investigate the effect of the DIC technique on Lupin 

(Haddad et al., 2007); soybean (Haddad and Allaf, 2007); glucose polymer (Rezzoug 

et al., 2000); and milk (Mounir et al., 2010).   

 

 

Figure 1.2 Temperature and pressure changes during DIC treatment 
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1.2.1 Mathematical Model in DIC Technique 

 

 

Researches on the experiment and mathematical model have been done in 

order to understand the dehydration mechanism since it is a very complex process.  

The development of mathematical models is to predict, design and control water 

losses, weight reduction, dehydration rates and temperature behavior. It is also able 

to perform an optimal strategy for dryer process control.  Parameters during 

dehydration can range from a very simple to complicated parameter in order to 

upgrade the quality of dehydration technology.   

 

 

The mathematical model in drying method can be classified as empirical, 

semi-empirical and theoretical models depending on the different applications 

(Vijayaraj et al., 2006).  The empirical and semi-empirical model take into account 

the external resistance to moisture transfer meanwhile the theoretical model 

considers the internal resistance to moisture transfer between the food product and 

air (Midilli et al., 2002; Panchariya et al., 2002).  Theoretical models require 

assumptions of geometry of food, its mass diffusivity and conductivity (Demirtas et 

al., 1998; Wang et al., 2007).  The fundamental of drying process is not taken into 

consideration for empirical model and this model presents a direct relationship 

between average time and drying time using regression analysis (Ozdemir and 

Devres, 1999). 

 

 

In DIC literature, most researches focused on statistical method of regression 

model (Haddad and Allaf, 2007; Haddad et al., 2007; Mounir et al., 2010; 

Setyopratomo et al., 2012).  The regression model estimated the relationships among 

a dependent variable and one or more independent variables.  Haddad and Allaf 

(2007) and Haddad et al. (2007) demonstrated the efficiency of DIC in drying the 

soybean trypsin inhibitors and phytate content, respectively.  The steam pressure, 

treatment time, and initial water content were the DIC operating parameters that were 

taken into consideration.  The results obtained show the reduction of trypsin 

inhibitors and phytate content were affected due to these operating parameters which 
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was in a quadratic form. Besides, it is found that pressure and treatment time gave 

high impact to the reduction of the trypsin inhibitors.  The regression model 

presented a good fit to the observed data but it is limited to a certain experiment 

(Kaushal and Sharma, 2014).  When the experiment is implemented under different 

conditions, the model did not provide good simulation of dehydration process.  

Besides, the regression model neglects the fundamental of dehydration process where 

the parameters involved have no physical meaning (Simal et al., 2005).   

 

 

Based on the limitations from the regression model, parabolic PDE is shown 

to be fit with the regression model.  The parabolic PDE or Fick’s law of diffusion 

equation is proposed to analyze the effect of DIC technique on the drying kinetics of 

drying materials but neglected the effects of possible shrinkage (Abdulla et al., 2010; 

Kamal et al., 2012; Mounir et al., 2011; Mounir et al., 2012; Pilatowski et al., 2010; 

Setyopratomo et al., 2009; Setyopratomo et al., 2012).  However, most of the 

researchers only discussed the fundamental of the dehydration model in DIC 

technique without solving the equation (Haddad et al., 2008; Mounir et al., 2012).  

Some of the authors solved the model using Crank (1975) solution according to the 

geometry of the solid matrix to solve the diffusion equation for mass transport of 

water within the drying material (Abdulla et al., 2010; Mounir et al., 2011; Mounir et 

al., 2014;  Setyopratomo et al., 2009; Setyopratomo et al., 2012; Tellez-Perez et al., 

2012).  Meanwhile, other authors (Albitar et al., 2011; Kamal et al., 2012) solved the 

PDE model with the logarithmic transformation.  Zarguili et al. (2009) solved the 

first order partial differential equation (PDE) of mass transfer equation by using 

integration method.  Only a few researchers in DIC technique solved the model using 

numerical methods.  

 

 

The existing parabolic model does not involve the main parameter in DIC 

technique which is pressure.  Besides, based on the simulation results obtained in 

Chapter 3, the diffusion is found to be a very slow process which contradicts to the 

DIC technique where it involves high temperature high pressure process.  Therefore, 

a new modified mathematical model based on the hyperbolic PDE (HPDE) is 

proposed.  This model is relevant based on Meszaros et al. (2004) and Reverbi et al. 
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(2008) where they stated that hyperbolic heat and mass transfer is an alternative 

model because the classical parabolic equation is impossible to solve the extreme 

condition such as high temperature.  The HPDE model is able to integrate between 

the dependent parameters; moisture content, temperature, and pressure, and 

independent parameters; time and dimension of region in order to simulate, visualize, 

and predict the heat and mass transfer during the dehydration process using DIC 

technique.  Further details on the formulation of the HPDE model will be discussed 

in Chapter 3.  

 

 

Numerical methods are able to solve a complex system of PDE which is 

almost impossible to be solved analytically.  The Finite Element (FEM), Finite 

Volume (FVM) and Finite Difference methods (FDM) are some alternative 

numerical methods to solve the PDE (Peiro and Sherwin, 2005).  For the other 

applications of drying, the FDM has been widely used to solve the heat and mass 

transfer models (Braud et al., 2001; Karim and Hawlader, 2005; Liu et al., 2014; 

Naghavi et al, 2010; Rovedo et al., 1995; Simal et al., 2000).  The FDM scheme is 

chosen because this method is simple to formulate a set of discretized equations from 

the transport differential equations in a differential manner (Botte et al., 2000; 

Chandra and Singh, 1994).  Besides, this method is straightforward in determining 

the unknown values (Incopera and DeWitt, 1996). Thus, due to this reason, the 

mathematical model in this research will be solved using FDM scheme. Further 

details of FDM will be discussed in Chapter 2.   

 

 

A large sparse data of system of linear equations (SLE) is governed by the 

FDM to present the actual region of the dehydration proses for numerical simulation.  

The grid generation process involved a fine grained of the large sparse data by 

minimizing the size of interval, increasing the dimension of the model and level of 

time steps.  However, using only one CPU will take too high execution time to 

compute for the solution.  Therefore, parallelization in solving a large sparse data is a 

great important process.  The objective is to speed up the computation and increase 

the efficiency by using massively parallel computers.  Thus, it is important to design 
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the parallel algorithm before implementing on the DPCS.  The strategy to design the 

parallel algorithm is illustrated in Figure 1.3.   

 

 

(a)  Domain problem 

 

(b)  Partitioning 

 

(c)  Communication 

 

(d)  Agglomeration 

 

(e)  Mapping 

 

Figure 1.3 Parallel algorithm design 

 

 

The domain depends on the problem where it can be in 1D, 2D or 3D domain 

(Figure 1.3(a)).  The domain problem is partitioned column-wise distribution into 

equal sized tasks, nTTT ,...,, 21  where n is number of processors involved in the 
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parallel algorithm (Figure 1.3(b)).  Then, the tasks are connected to each other 

through local and global communication (Figure 1.3(c)).  The local communication 

involves communication by sending and receiving data between the neighboring 

points where the data is sent by point for 1D, by line for 2D and by surface for 3D.  

Meanwhile global communication requires communication with other tasks.  The 

number of tasks is combined into a set of tasks; Block1, Block2, …, Blockn to 

improve the performance of parallelization.  This strategy is called as agglomeration 

(Figure 1.3(d)).  Lastly, each block is assigned to a processor (Figure 1.3(e)).  Static 

mapping is implemented because it is easier to design and implemented on the 

distributed parallel computing architecture compared to dynamic mapping which is 

more complicated in message passing program.   

 

 

The hardware computational tool to support the parallel algorithm is based on 

distributed parallel computing system (DPCS).  The software tool to support DPCS is 

based on Matlab Distributed Computing Server (MDCS) version 7.12 (R2011a).  The 

MDCS consists of a heterogeneous computing system contains 8 computers with 

Intel Core Duo CPUs under Fedora 8 featuring a 2.6.23 based Linux kernel operating 

system, connected with internal network 10/100/1000 NIC.  The DPCS and MDCS 

are discussed further in Chapter 2.  

 

 

 

 

1.3 Statement of Problem 

 

 

The existing mathematical model in dehydration process using DIC technique 

is focused on the statistical method of regression model.  However, this model limits 

to certain experiment (Kaushal and Sharma, 2014).  Besides, this model neglects the 

fundamental of dehydration process where the parameters involved have no physical 

meaning.  Thus, the dehydration process cannot be predicted using the regression 

model.  The second problem is some of the researchers in DIC technique only 

discussed the fundamental of the dehydration model in DIC technique without 
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produced any solution to the mathematical model. The third problem is some of them 

solved the PDE analytically which involves too many parameters.  Therefore, it is 

almost impossible to be solved and it is time consuming.    

 

 

Based on these limitations, the main aim of this research is to formulate a 

new modified mathematical model based on HPDE from the regression model 

obtained from Haddad et al. (2007).  The HPDE is able to integrate between the 

dependent parameters; moisture content, temperature, and pressure, and independent 

parameters; time and dimension of region in order to simulate, visualize, and predict 

the heat and mass transfer during the dehydration process using DIC technique.  The 

mathematical model performs in multidimensional problem and FDM is used to 

discretize the mathematical model.  Numerical methods such as Jacobi (JB), Red 

Black Gauss Seidel (RBGS), Alternating Group Explicit with Douglas-Rachford 

(AGED), and Brian (AGEB) variances are used to solve the SLE.  A large sparse 

matrix from the SLE is obtained from the discretization, thus, it performs high 

execution time using a single CPU.  Therefore, a DPCS is implemented on MDCS to 

reduce the computational time and increase the speedup performance.   

 

 

 

 

1.4 Objectives of Research  

 

 

This section explains the objectives of this research which are: 

a) To formulate the regression model from Haddad et al. (2007) to a new modified 

mathematical model of heat and mass transfer in DIC technique and discretized 

using FDM to approximate the solution of the mathematical model. 

b) To solve the SLE in (a) using some numerical methods such as AGEB, AGED, 

RBGS, JB methods. 

c) To develop sequential and parallel algorithms from (b) using MDCS. 

d) To analyze the results in (c) based on the numerical results for sequential 

algorithm and PPE for parallel algorithm. 
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1.5 Scope of Research 

 

 

The main research problem of this thesis is to solve the dehydration process 

involved using DIC technique.  Based on the limitations of the existing mathematical 

model in DIC technique, a new modified mathematical model based on the HPDE is 

formulated from the regression model.  HPDE model is chosen because this model is 

able to integrate between the time, dimension of region, moisture content, 

temperature and pressure.  The HPDE is discretized using FDM based on the central 

difference formula.  Then, the SLE obtained from the discretization is solved using 

some numerical methods such as AGEB, AGED, RBGS and JB methods where JB is 

the benchmark for the other numerical methods.  The numerical methods are solved 

using the sequential algorithm on the Matlab software.  Since it involves a large 

sparse matrix which results in high execution time and high computational 

complexity, thus, the parallel algorithm is implemented on the MDCS.  The scope of 

this research is illustrated in the table below:  
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1.6 Significance of Research 

 

 

The first significance of this research is the HPDE is the alternative model to 

simulate, visualize, predict and control the independent and dependent parameters of 

dehydration process.  The second significance is the implementation of the numerical 

methods such as AGEB, AGED, RBGS and JB methods are suitable to solve the 

multidimensional HPDE.  The third significance is the parallel implementation to 

solve the large sparse data for the multidimensional HPDE on DPCS successfully 

reduces the computational time and increases the performance of speedup.  The 

numerical results and PPE are the indicators to measure the performance of 

multidimensional HPDE and the large sparse simulation.  From the numerical results 

and PPE, AGEB is the best method to solve the HPDE model followed by AGED, 

RBGS and JB methods.  It is also found that the parallel algorithm is performed 

better than the sequential algorithm.   

 

 

 

 

1.7 Thesis Organization 

 

 

In this thesis, there are seven chapters including the introduction and 

conclusion parts.  Chapter 1 comprises a description of the research problem 

statement on DIC technique.  The dehydration process is described based on the 

previous literature review on mathematical model developed in DIC technique.  This 

chapter also discusses the research objectives, scope and the significance of the 

research.   

 

 

Chapter 2 discusses the literature review on the FDM and the basic scheme 

for PDE.  The numerical methods such as JB, RBGS, AGED, and AGEB, and its 

algorithm procedure are presented in this chapter. It follows by explaining the 

numerical analysis based on the consistency, convergence, stability, numerical errors 
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and computational complexity.  Finally, this chapter will discuss the platform of 

DPCS to support the MDCS and PPE based on speedup, efficiency, effectiveness, 

temporal performance, granularity and communication cost to measure the parallel 

algorithm.    

 

 

The new modified mathematical model development in DIC technique is 

covered in Chapter 3.  In this chapter, the formulation of the hyperbolic partial 

differential equation (HPDE) from the regression model from Haddad et al. (2007) is 

presented.  The simulations of the mathematical models are analyzed and shown 

through graphical representation using Matlab 7.12 (R2011a) software.  The HPDE 

is visualized in multidimensional model which are in 1D, 2D and 3D model. 

 

 

The contribution of Chapter 4 is the numerical results and parallel 

performance evaluations of sequential and parallel algorithms for 1D HPDE model.  

The SLE for 1D model is obtained from FDM and it is solved using some numerical 

methods such as 1D_SJB, 1D_SRBGS, 1D_SAGED, and 1D_SAGEB.  These 

numerical methods are compared according to execution time, number of iteration, 

maximum error and root mean square error.  Then, these numerical methods are 

parallelized to improve the performance of the sequential algorithm.  The parallel 

performances for these methods: 1D_PJB, 1D_PRBGS, 1D_PAGED and 

1D_PAGEB are measured based on speedup, efficiency, effectiveness, temporal 

performance and granularity.  

 

 

The 1D model is then upgraded into 2D because it reflects the real physical 

phenomena.  The numerical results and parallel performance evaluations for 2D 

HPDE model are the main contribution for Chapter 5.  The 2D HPDE model is 

discretized using FDM with central difference formula and numerical methods such 

as 2D_SJB, 2D_SRBGS, 2D_SAGED, and 2D_SAGEB are used to solve the SLE.  

The numerical results are compared based on execution time, number of iteration, 

maximum error and RMSE.  Meanwhile, the parallelization of these numerical 
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methods such as 2D_PJB, 2D_PRBGS, 2D_PAGED, and 2D_PAGEB are analyzed 

based on speedup, efficiency, effectiveness, temporal performance and granularity. 

 

 

Furthermore, the contribution of Chapter 6 focuses on the numerical results 

and parallel performance of the sequential and parallel algorithms for 3D HPDE 

model.  The discretization of the model is based on the FDM. It is then solved by 

some numerical methods which are 3D_ SJB, 3D_SRBGS, 3D_SAGED, and 

3D_SAGEB.  The numerical methods are parallelized into 3D_PJB, 3D_PRBGS, 

3D_PAGED, and 3D_PAGEB.  The PPE of these methods are measured using 

speedup, efficiency, effectiveness, temporal performance and granularity. 

 

 

Lastly, Chapter 7 concludes the research findings based on every chapter in 

the thesis.  Some general remarks on the recommendation for future research are 

discussed. 
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