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ABSTRACT 

 

 

 

 

A new evolvement towards 5G technology requires a super high frequency to 

provide large channel capacity, low power consumption and low interference.  Up to 

the present, the passive microwave devices with the super high frequency range are 

becoming necessity to be deployed due to the great features that are capable in 

representing significant advances in wireless communications. However, high 

interference occurs due to multiple signals coexisting in the super high frequency.  

Integration of switched-beam antenna that employs scanning of multi-beams with a 

proposed Nolen Matrix can be a solution to overcome this issue.  The coupler with 

loaded T-shaped stubs, loaded stubs and Schiffman phase shifters as well as edge 

chamfered inset feeding microstrip patch array antenna are designed as the key 

components for the dual-series 2   4 switched-beam Nolen matrix.  The loaded T-

shaped stubs are introduced at each side of the microstrip lines nearby the square 

patch of the couplers to achieve various coupling values.  All simulation results  

are obtained using Computer Simulation Technology software.  The S-parameter 

measurement of the proposed couplers and dual-series 2   4 switched-beam Nolen 

matrix are performed using vector network analyzer, while its radiation pattern 

measurement is executed in an anechoic chamber. The amplitude and phase 

imbalances are ± 1 dB and 5° between 24.75 GHz and 27.25 GHz for the proposed 

couplers as well as between 25.75 GHz and 26.25 GHz for the phase shifters, 

respectively.  Whereas, the respective amplitude and phase imbalances of 2   4 

switched beam Nolen matrix are ± 3.5 dB and 10° across the designated frequency 

range of 25.75 GHz to 26.25 GHz.  Meanwhile, at the center frequency of 26 GHz, 

the simulated and measured main beam directions are 10° and 12°, respectively when 

signal is fed at port 1, whereas -31° and -31.5°, respectively at port 2, with the 

highest measured gain of 10.19 dB and percentage of radiation efficiency of 59.98 %. 
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ABSTRAK 

 

 

 

  

Perkembangan baru ke arah teknologi 5G memerlukan rangkaian frekuensi 

amat tinggi untuk menyediakan kapasiti saluran yang besar, penggunaan kuasa 

rendah dan gangguan rendah.  Kini, peranti gelombang mikro pasif dengan frekuensi 

amat tinggi menjadi keperluan untuk digunakan kerana kehebatan ciri-cirinya yang 

mampu mewakili kemajuan yang signifikan dalam komunikasi tanpa wayar.  Namun, 

gangguan tinggi berlaku disebabkan oleh kewujudan pelbagai isyarat bersama dalam 

julat frekuensi amat tinggi. Gabungan suis alur antena yang menggunakan 

pengimbasan pelbagai alur dengan matrik Nolen dapat menyelesaikan masalah 

ini.  Pengganding dengan pemasangan puntung berbentuk T dan penganjak fasa 

Schiffman serta antena tatasusunan mikrojalur suapan sisipan bersisi serong 

direkabentuk sebagai komponen utama bagi dua siri 2   4 suis alur matrik Nolen.  

Pemasangan puntung berbentuk T diperkenalkan di setiap sisi garisan mikrostrip 

berdekatan tampalan empat segi pengganding bagi mencapai pelbagai nilai 

gandingan.  Semua hasil simulasi diperoleh dengan menggunakan perisian Computer 

Simulation Technology. Pengukuran parameter-S pengganding berpuntung dan dua 

siri 2   4 suis alur matrik Nolen diperoleh dengan menggunakan Penganalisa 

Rangkaian Vektor, manakala pengukuran corak radiasi dilaksanakan dalam kebuk 

tak bergema.  Ketidakseimbangan amplitud dan fasa adalah ± 1 dB dan 5° masing-

masing di antara 24.75 GHz dan 27.25 GHz  bagi pengganding dan di antara 25.75 

GHz dan 26.25 GHz bagi penganjak fasa yang dicadangkan. Sementara, 

ketidakseimbangan amplitud dan fasa bagi 2   4 suis alur matrik Nolen adalah ± 3.5 

dB dan 10° pada julat frekuensi di antara 25.75 GHz dan 26.25 GHz.  Sementara itu, 

di frekuensi tengah 26 GHz, hasil simulasi dan ukuran arah alur utama adalah 10° 

dan 12° apabila isyarat diberikan pada terminal satu, manakala -31° dan -31.5°  pada 

terminal dua dengan ukuran gandaan sebanyak 10.19 dB dan peratus kecekapan 

radiasi tertinggi sebanyak 59.98 %.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Introduction 

  

 

Up to the present, there are myriad evolvements from the first generation 

(1G) to fourth generation (4G) in the realm of communication technologies.  In order 

to improve the current generation of technologies with better features concerning fast 

multi-services to end users, extreme data rates, energy efficient networks, ultra-low 

latency and large data bandwidth [1], a new evolution is targeted to be deployed 

beyond 2020 in all over the world by introducing the fifth generation (5G) mobile 

communication technology that covering all aspects in daily life, which include 

unlimited communication between humans, machine-to-machine and vehicle-to-

vehicle.   

 

 

In addition, higher capacity, lower power transmission and larger system 

coverage that expected to be offered by 5G technology can be achieved by using 

smart antenna systems such as switched-beam antenna and adaptive antenna array 

[2]. The switched-beam antenna and the adaptive antenna array are consisting of a 

beamforming network as a key component of multiple-input and multiple-output 

(MIMO) system, which provides the multiple beams looking in various directions.  

However, the adaptive antenna array has a more complex design because an 
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individual RF transceiver chain at end of each antenna element and a precise real-

time calibration are required [3].  Moreover, the adaptive antenna array has more 

extortionate price than the switched-beam antenna due to the presence of a 

sophisticated digital signal processing algorithm [2].  Therefore, the beamforming 

network of the switched-beam antenna system is more frugal to be developed 

because no device is required for downconverting the received signal to a baseband 

[2].  There are myriad examples of these beamforming networks [4] such as Butler 

matrix [5], [6], Nolen matrix [7], [8], Blass matrix [9], [10] and Rotman lens [11], 

[12].   

 

 

The configuration circuit of Butler matrix consists of passive components 

such as couplers, crossovers and phase shifters.  As stated in [13], the Butler matrix 

has N input (beam) and N output (antenna) ports according to a standard squared 

number of integer (N = 2
n
) and generates orthogonal beams, whereas the Blass and 

Nolen matrices have distinct M input and N output ports.  In term of loss, the Blass 

matrix becomes lossy when matched loads are connected at the end port of every 

transmission line [13].  Besides that, the presence of power loss due to the non-

perfect pointing of the rays limits the performance of the Rotman lens [14].  In 

contrast with the Butler matrix, the planar realization of the serial Nolen matrix 

becomes more interesting since the crossovers are eliminated.  Moreover, flexibility 

in deciding the number of ports enables the Nolen matrix to be easily matched with 

any specific application [15].    

 

 

By comparing to the other aforementioned beamforming networks, the serial 

configuration of output ports facilitates the Nolen matrix to be easily connected to 

the antenna array to develop switched-beam beamforming network.  Therefore, the 

best configuration design of the beamforming networks to be selected in this research 

project is the Nolen matrix. 

 

 

 

 

  



3 

 

1.2  Problem Statement  

 

 

 The innovation of mobile and wireless communication applications towards 

5G technology requires a higher frequency range compared to 4G technology.  The 

World Radiocommunication Conference 2015 (WRC-15) [16] decides to invite the 

International Telecommunication Union Radiocommunication Sector (ITU-R) to 

investigate the spectrum requirements for International Mobile Communication 

(IMT) between 24.25 GHz and 86.0 GHz.  The European Conference of Postal and 

Telecommunications Administrations (CEPT) supports compatibility studies at 26 

GHz [17].  Owing to the relatively small wavelength at super high frequency towards 

5 G [7], [8], the adjacent ports of the couplers, phase shifters, antenna array and 

switched-beam matrix designs must be fixed with suitable distance to ensure easy 

connection of RF cables between the ports.  Therefore, the appropriate type of 

configuration design needs to be taken into account due to this issue.    

 

 

  In addition, the appropriate beamforming configuration with low hardware 

complexity and ease fabrication will be the vital design keys.  The crossovers are 

required in Butler and Blass matrices except in Nolen matrix [7], [8] and Rotman 

lens [11], [12].  The crossovers in Butler matrix suffers from mismatch loss, cross-

coupling and high path loss [15]. The Rotman lens provides multiple beam 

directions, broad beam scanning and wideband operation due to a true time delay 

(TTD) characteristic, which develops frequency independent beam steering [18], 

however, it suffers from presence of phase error across the aperture, power loss 

within the lens [19] and high ohmic loss [20].  Meanwhile, the Blass matrix becomes 

lossy due to inherent loss when matched loads are connected to the ports [13].  

Therefore, Nolen matrix is the most suitable beamforming network to be chosen as 

no crossovers are needed [15]. 
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 Another arising issue is flexibility on a standard number of beam ports.  The 

Butler matrix requires a standard number of beam ports to be equal to a power of 

two, whereas the Nolen and Blass matrices flexible in deciding the number of beam 

ports [15].  Furthermore, both Butler and Nolen matrices develop orthogonal beams 

that are not couple to each other wherein other beams are at the trough while one 

beam reaches a certain highest point [21].  The orthogonal beams have limitations on 

the beam shape, beam direction and sidelobe level [22]–[24] but provide lossless 

characteristic.  The Blass matrix has flexibility in the number of non-orthogonal 

beams but has higher insertion loss [15].  The Nolen matrix can be developed by 

altering the diagonal couplers with some simple bent lines of the Blass matrix [25].  

  

  

 The suitable layer topology either a single layer or multi-layer technique 

needs to be considered to develop simple designs of the couplers, phase shifters and 

Nolen matrix.  The recent reported beamforming networks in [11], [26]–[35] have 

been developed using the multi-layer technique at less than 14 GHz.  The multi-layer 

technique enhances the bandwidth of the basic beamforming network configurations 

such as Butler matrix that eliminates the crossovers [36], which consequently reduce 

the insertion loss, mismatched junctions and size.  However, it needs much attention 

in aligning the two substrate layers since the fabrication tolerance between each layer 

is difficult to handle.  The existence of air gap [37] between substrate layers will 

yield degradation in the performance.  Therefore, a single layer technique is chosen 

in this research project to avoid the air gap between the substrate layers. 

 

 

 Besides, the antenna array is required to be integrated with the beamforming 

network.  The antenna array maximizes gain and directivity in the required signal 

direction [38].  The antenna gain is directly proportional to the number of antennas, 

N when the spacing between the antennas, d is unchanged [2].  Meanwhile, the 

distance of the inter-element antenna array should be in the range of λ/2 ≤ d < λ to 

improve the array spatial resolution as well as to prevent aliasing when d is greater 

than λ/2 [38] and grating lobe when dmax less than λ [2].  
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 In order to circumvent these arising issues towards achieving the 

requirements of 5G technology at the super high frequency, the most suitable 

beamforming network without crossover to be proposed is Nolen matrix that has the 

flexible number of standard beam ports using single layer technique.  In this research 

project, the number of antennas, N = 4 and spacing between the antennas, d = 0.67 λ 

are taken into account in order to develop high gain, good beam-shaping, narrow 

main lobe and reduce sidelobes of the antenna array.  A suitable configuration of an 

antenna array is developed and integrated with the Nolen matrix to implement the 

switched-beam Nolen matrix.  

 

  

 

 

1.3 Objectives of the Research  

 

 

The works undertaken in this research are aiming on the following objectives: 

 

i) To design the couplers with loaded T-shaped stubs and, loaded stubs  

  and Schiffman phase shifters that can operate at center frequency of  

  26 GHz. 

 

ii) To design a Nolen matrix that formed by the designed couplers with  

  loaded T-shaped stubs and, loaded stubs and Schiffman phase shifters  

  at center frequency of 26 GHz. 

 

iii) To integrate Nolen matrix with antenna array to perform switchable   

  beams at center frequency of 26 GHz. 
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1.4 Scope of the Research  

 

 

 This research emphasizes on the designs of cross-slotted couplers with loaded 

T-shaped stubs, loaded stubs and Schiffman phase shifters, four elements inset 

feeding microstrip patch antenna array as well as the switched-beam Nolen matrix 

that can operate at the center frequency of 26 GHz.  The selected type of couplers, 

phase shifters and antenna array are designed using single layer technique.  The 

Nolen matrix is developed by interconnecting the designed couplers and phase 

shifters.  The traditional 4  ×  4 Nolen matrix architecture is reduced to the dual-series  

2 × 4 switched-beam Nolen matrix due to a limitation of additional path loss which 

is attributed by extending the lengths of the feed lines for the proposed couplers.  The 

dual-series 2 × 4 switched-beam Nolen matrix is developed by integrating the 

antenna array to the output ports of the designed Nolen matrix in order to produce 

radiation pattern with two beam directions.   

 

 

The individual components and the Nolen matrix are simulated and optimized 

using Computer Simulation Technology (CST) Microwave Studio software.  The 

design is fabricated onto a Rogers RO5880 board with thickness, h of 0.254 mm and 

dielectric constant, εr of 2.2.  The measurement process is carried out using a vector 

network analyzer (VNA).  The performance results of the designed Nolen matrix are 

studied and analyzed at the center frequency of 26 GHz.  The radiation patterns of 

the switched-beam Nolen matrix are measured at 26 GHz in anechoic chamber to 

investigate the beam directions. 
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1.5 Contributions of the Research 

 

 

One of the contributions in this research is the design of compact coupling 

tuning based T-shaped stubs-loaded patch couplers as a new approach of coupling 

tuning for the cross-slotted patch couplers to achieve the required coupling values, 

S31 such as 1.26 dB, 1.76 dB and 3 dB.  The T-shaped stubs are introduced at every 

side of the microstrip lines nearby the square patch coupler.  This approach has the 

ability to exchange the values of S21 and S31 for the cross-slotted patch couplers  

at the super high frequency.  The performance effects of the microstrip cross slot, 

rectangular shaped patch slots, circularly slots and T-shaped stubs around the  

square patch of the coupler are investigated.  The parametric studies regarding length 

variations on performances of scattering parameters and phase differences between 

the output ports are studied and discussed for each coupler.   

 

 

The second contribution is the topology of the dual-series 2 × 4 switched-

beam Nolen matrix.  An additional 0° phase delay is added in the first row of the 

Nolen matrix configuration to maintain the flatness of phase differences between the 

output ports across the designated frequency range.  The dual-series 2 × 4 switched-

beam Nolen matrix which consists of loaded T-shaped stubs couplers (1.76 dB, 1.26 

dB and 3.00 dB), loaded stubs (0° and 45°) and Schiffman phase shifters (0°, 90°, 

135°, 180°) as well as an additional 0° phase delay are designed.  In this research 

work, the phase shifters ranging from 45°, 90°, 135°, 180° are set as main lines, 

whereas the 0° loaded stubs and 0° Schiffman phase shifters are set as reference 

lines.  The performance of S-Parameters, phase differences and radiation pattern of 

the dual-series 2 × 4 switched-beam Nolen matrix is investigated and analyzed.  The 

dual-series 2 × 4 switched-beam Nolen matrix demonstrates good performance in 

terms of S-Parameters, phase differences and radiation pattern with low phase 

imbalance and small deviations of transmission coefficients.  The highest deviation 

of the simulated transmission coefficients, phase differences and main beam 

directions (when the signal is fed at port 1 and port 2) compared to the theoretical 

values at the center frequency of 26 GHz are ± 3.46 dB, ± 2.86° and ± 3.36°, 

respectively.    
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1.6 Thesis Organization 

 

 

 Basically, the entire content of this thesis is divided into six main chapters.  

The contents of Chapter 1 are concerning the research project overview, problem 

statement, research objectives, research scope, contributions of the research and last 

but not least, the thesis organization. 

 

 

 Chapter 2 covers the relevant theoretical background involved in this  

research project.  The literature review describes the related previous works that have 

been carried out by other researchers.  It also contains all relevant terms, theories and 

equations regarding the smart antenna system, beamforming network, coupler and 

phase shifter.  The qualitative comparisons between various configuration designs of 

the beamforming network, coupler as well as phase shifter are well described.   

 

 

 Meanwhile, Chapter 3 emphasizes the methodology of the research project, 

which constitutes a research flowchart to represent graphically the logical decisions 

and progression of each step involved while completing this research project.  The 

design specifications of the proposed couplers, Nolen matrix and antenna array are 

discussed in details.  The substrate specifications and measurement setups of the 

proposed couplers and switched-beam Nolen matrix are described in this chapter. 

 
 

 In Chapter 4, the designed couplers with respect to various coupling values 

for this research are presented.  The design parameters and requirements of the 

couplers are also introduced.  The operation and performance results of the designed 

couplers are analyzed.  The simulation software, Computer Simulation Technology 

(CST) Microwave Studio is utilized to get a comprehensible visualization of the 

entire design.  The performance results of the proposed couplers are verified by the 

experimental validation between 24.75 GHz and 27.25 GHz. 
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Chapter 5 presents the proposed antenna array and Nolen matrix.  The design 

parameters and requirements of the antenna are also introduced.  The performance 

results for the designed switched-beam Nolen matrix are further discussed and 

analyzed.  The simulation results are performed by CST software.  The performance 

of scattering parameters and radiation pattern results of the dual-series 2 × 4 

switched-beam Nolen matrix are verified by the experimental validation between 

25.75 GHz and 26.25 GHz. 

 

 

 Last but not least, the conclusion of the overall progress in this research 

project is drawn in Chapter 6.  Several future works are recommended and described 

in this chapter.   
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