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ABSTRACT 

 

 

 

 

Viscoelastic dampers (VEDs) are widely used to protect structures against 

earthquake.  Conventional VEDs are generally installed within a diagonal brace 

configuration which provides a stiff structural system and reduces their effectiveness. 

In addition, the aforementioned configuration is not suitable for retrofitting purpose 

and violates architectural requirements.  In this study, a new type of viscoelastic 

damper is proposed in order to improve the seismic performance of steel structures 

and to overcome the drawbacks of the conventional VEDs.  In order to evaluate the 

performance of the proposed VED, dynamic responses of a 3-story scaled down steel 

frame equipped with the proposed VED were obtained experimentally and numerically 

under harmonic excitations.  In this stage, ABAQUS software was used to establish a 

detailed finite element analysis.  The results obtained were compared with a frame 

equipped with the conventional VED as well as a moment resisting frame and braced 

frames.  The effects of the size of viscoelastic layer on its dynamic characteristics were 

also investigated.  In addition, a nonlinear time history analysis of a 10-story full scale 

steel frame was performed using SAP2000 software to demonstrate the effectiveness 

of the proposed VED for tall buildings.  The results of this study showed that the 

frames equipped with dampers performed better than the braced frames in terms of 

reduction in the maximum displacement, acceleration and base shear responses of the 

3-story moment resisting frame.  Compared to the conventional VED, the proposed 

VED was more effective in reducing displacements, while it was slightly less effective 

in reduction of accelerations and base shears. It was also found that smaller thickness 

of the viscoelastic layer decreased displacement responses, however, it increased 

acceleration and base shear responses.  The larger cross-section area of the viscoelastic 

layer resulted in smaller displacement responses, but larger acceleration and base shear 

responses.  Thus, analysis of the 10-story frame showed that the effectiveness of VEDs 

for reducing maximum displacement and acceleration responses were strongly 

dependent on the characteristics of earthquake records.  The proposed VED was more 

effective in reducing responses of the lower floors.  Based on the results obtained, the 

maximum base shear response of the frame equipped with the conventional VED was 

smaller than the frame equipped with the proposed VED and larger than the bare frame 

regardless of the characteristics of earthquake records.  The results showed that the 

viscoelastic dampers have more advantage in preventing the formation of plastic 

hinges in the frames even under severe earthquake.  In addition, compared to the 

conventional VED, the proposed VED resulted in less damage to the structural 

members due to less plastic hinge formation.  Therefore, the implementation of the 

proposed VED can overcome the deficiency of the VED in seismic protection of 

structures. 
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ABSTRAK 
 

 

 

 

Peredam visco-elastik (VED) digunakan secara meluas untuk melindungi struktur 

terhadap gempa bumi. VED konvensional umumnya dipasang di antara konfigurasi 

perembat pepenjuru yang menghasilkan sistem struktur yang kukuh dan mengurangkan 

keberkesanannya.  Di samping itu, konfigurasi ini adalah tidak sesuai untuk tujuan 

pengubahsuaian dan boleh melanggar keperluan seni bina. Dalam kajian ini, peredam 

visco-elastik jenis terbaru dicadangkan bagi meningkatkan prestasi seismik struktur keluli 

dan mengatasi kelemahan VED konvensional. Bagi menilai prestasi VED yang 

dicadangkan, gerak balas dinamik bagi kerangka keluli 3 tingkat yang dilengkapi dengan 

VED yang dicadangkan telah diperolehi daripada eksperimen dan kiraan berangka di 

bawah pengujaan harmonik.  Pada tahap ini, perisian ABAQUS telah digunakan untuk 

menjalankan analisis unsur terhingga secara terperinci.  Hasil yang diperoleh 

dibandingkan dengan kerangka yang dilengkapi dengan VED konvensional sepertimana 

kerangka penahan momen dan kerangka dirembat.  Kesan saiz bagi lapisan visco-elastik 

terhadap ciri-ciri dinamik turut disiasat.  Di samping itu, analisis sejarah masa tak linear 

bagi kerangka keluli 10 tingkat berskala penuh dijalankan menggunakan perisian 

SAP2000 bagi menunjukkan keberkesanan VED yang dicadangkan untuk bangunan 

tinggi. Dapatan kajian menunjukkan bahawa kerangka yang dilengkapi dengan peredam 

adalah lebih baik berbanding kerangka dirembat dari segi pengurangan anjakan 

maksimum, pecutan dan gerak balas ricih asas untuk kerangka penahan momen tiga 

tingkat. Berbanding dengan VED konvensional, VED yang dicadangkan adalah lebih 

berkesan dalam mengurangkan anjakan, namun ia kurang berkesan dalam pengurangan 

pecutan dan ricih asas. Kajian juga menunjukkan ketebalan yang lebih kecil bagi lapisan 

visco-elastik mengurangkan gerak balas anjakan, walau bagaimanapun, ia boleh 

meningkatkan pecutan dan gerak balas ricih asas.  Keluasan keratan lintang yang lebih 

besar bagi lapisan visco-elastik boleh menghasilkan gerak balas anjakan yang lebih kecil, 

namun pecutan dan gerak balas asas ricih adalah lebih besar. Oleh itu, analisis kerangka 

10 tingkat menunjukkan bahawa keberkesanan VED dalam pengurangan anjakan 

maksimum dan gerak balas pecutan adalah amat bergantung kepada ciri-ciri rekod gempa 

bumi. VED yang dicadangkan adalah lebih berkesan dalam pengurangan gerak balas bagi 

tingkat bangunan yang lebih rendah. Berdasarkan keputusan yang diperolehi, gerak balas 

ricih asas maksimum bagi kerangka yang dilengkapi dengan VED konvensional adalah 

lebih kecil berbanding kerangka dilengkapi dengan VED yang dicadangkan dan lebih 

besar berbanding kerangka penahan momen tanpa mengambil kira ciri-ciri rekod gempa 

bumi. Keputusan juga menunjukkan bahawa peredam visco-elastik mempunyai kebaikan 

dalam menghalang pembentukan engsel plastik dalam kerangka walaupun di bawah 

gempa bumi yang teruk. Di samping itu, berbanding dengan VED konvensional, VED 

yang dicadangkan boleh mengurangkan kerosakan kepada anggota struktur disebabkan 

pembentukan engsel plastik yang lebih sedikit. Oleh itu, pelaksanaan VED yang 

dicadangkan dapat mengatasi kekurangan VED konvensional dalam perlindungan seismik 

struktur. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

An earthquake is the perceptible shaking of the surface of the Earth, resulted 

by the sudden release of energy in the Earth’s crust that creates seismic waves.  They 

are among the most feared natural hazards which cause devastating consequences 

every year due to destruction of buildings and other structures.  For example, the Bam 

(Iran) earthquake of magnitude 6.6, happened on Dec. 26, 2003, led to enormous loss 

of life and property.  More than 27000 people died, eighty-five to ninety percent of 

buildings and infrastructures were either damaged or destroyed, and left an estimated 

100000 people homeless.  Even more recently, the April 2015 Nepal earthquake killed 

more than 8800 people and injured more than 23000.  Hundreds of thousands of people 

were made homeless with entire villages flattened.  It also destroyed century-old 

buildings at the UNESCO World Heritage sites. 

 

 

Seismic events usually caused damages in structures that have not been 

properly designed for earthquake or are constructed prior to the formulation of seismic 

design guidelines.  The seismic performances of these buildings are often 

unsatisfactory.  They often have inadequate lateral strength, stiffness and inadequate 
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ductility.  Figure 1.1 shows some of the structural failure around the world due to 

earthquake.  Widespread damage from the 1929 Murchison and 1931 Hawke’s Bay 

earthquakes had a profound effect on public perceptions of the hazard posed by 

earthquakes.  Attention was focused on weaknesses in building construction, 

especially poor building standards and lack of any provision for earthquake-resistant 

design.  This led to formulation of seismic design guidelines which was incorporated 

into the building codes.  The current building codes (i.e., ASCE, Eurocode 8) 

recommend that earthquake loading must be considered in design in addition to the 

gravity load for constructing a structure in a seismically active zone.  In addition, the 

buildings constructed prior the current seismic design codes also require retrofitting or 

upgrading to be protected from earthquakes. 

 

 

      

       New Zealand earthquake (2011)                    Iran earthquake (Bam 2003) 

 

 

     

              Nepal earthquake (2015)                            Japan earthquake (2011) 

Figure 1.1 Structural failure around the world due to earthquake [1, 2] 
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Nowadays, due to construction of tall and super tall buildings demand for safe 

and economical seismic design has increased.  Therefore, protecting structures 

together with their occupants and contents from destructive natural hazards such as 

earthquakes have become a constant challenging task for civil engineers.  In general, 

there are two fundamental approaches in seismic design of building structures; to 

increase structural capacity (conventional approach) or to decrease seismic demand 

(innovative approach).  Conventional seismic design relies on strategies that increase 

the strength, stiffness and ductility of a building to control earthquake induced 

motions.  According to the conventional approach, structures should not collapse under 

a major earthquake, even if the building itself is severely damaged.  Therefore, 

conventional seismic design is not appropriate for structures such as hospital and fire 

station which must remain functional after earthquake to continue their serviceability.  

Moreover, this approach does not provide an appropriate safety margin for the design 

of tall building structures. 

 

 

To overcome the shortcomings inherent in the philosophy of the conventional 

seismic design, a number of innovative approaches have been introduced in recent 

years [3, 4].  These approaches rely on dissipating the seismic energy through 

improving dynamic characteristics of structures.  Therefore, vibration induced by 

dynamic loads is controlled and the amount of seismic force transmitted to the 

structure is reduced.  The modern approach of seismic design can be classified into 

two groups including systems that increase the natural period of the structures and 

those that increase their damping ratio.  The latter aims to increase the damping level 

of structure and reduce their seismic demand by adding some supplemental devices 

known as dampers.  Usage of supplemental damping devices for dissipating seismic 

induced energy of buildings has gained increasing interest in the past few decades.  

Variety of energy dissipation systems have been developed and investigated while new 

types of dampers is under development.  Example of typical energy dissipating devices 

are shown in Figure 1.2.  These control system devices can act in passive, active and 

semi-active method or a combination of them.  Active and semi-active control systems 

are evolution of passive control technologies to improve the effectiveness and 

efficiency of vibration control devices.  In such systems, controlling forces are applied 

to the damper through external source powers like actuator(s) based on the feedback 
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from sensors that measure the excitation and/or the response of the structure.  The 

major drawback of these systems is that the power source which is essential to activate 

the dampers might be disrupted during seismic events.  In addition, instruments of 

active or semi-active systems such as actuators, sensors or computer are very costly 

and a relatively short service life is still a problem for these instruments [5]. 

 

 

 

Figure 1.2 Example of typical passive energy dissipating devices based on Soong T.T. 

et al, 1997 [6] 

 

 

Because passively controlled devices do not require an external power source 

for operation and utilize the motion of the structure to develop the control forces, the 

implementation of this type of devices has outdistanced significantly the 

implementation of others [7].  In this study, a novel viscoelastic damper is proposed to 

improve the seismic performance of structures and to overcome the drawbacks of the 

conventional viscoelastic damper.  The proposed damper consists of a single layer 

viscoelastic material sandwiched between two steel plates.  The damper is placed in 

the mid-span of a beam and connects to two braces that form an inverted V shape.  The 

effectiveness of the proposed viscoelastic damper was evaluated experimentally and 

numerically.  The proposed viscoelastic damper shares the advantages of a variety of 

existing dampers and can dissipate input energy under all levels of vibrations.  The 
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Typical Hysteric Damper Typical Viscous Damper 

Typical Viscoelastic Damper Typical Friction Damper 

Bolts Viscoelastic Material 

Seal 

Retainer 
Seal 

Compressible 

Silicone Fluid 

Accumulator 

Housing 

Piston 

Rod 
Piston Head 

with Orifices 

Control 

Valve 
Rod Makeup 

Accumulator 



5 
 

main advantage of this new damper is that it does not occupy the span of entire frames.  

Therefore, from architectural point of view such configuration is preferable especially 

when it comes to seismic retrofit via viscoelastic (VE) damper. 

 

 

 

 

1.2 Problem statement 

 

 

The use of passive energy dissipation devices has become very popular in 

recent years.  The performance of these devices in reducing the seismic response of 

buildings was extensively investigated experimentally as well as numerically and their 

effectiveness were widely proven.  Currently, viscoelastic dampers are widely used in 

many countries as energy dissipation devices to reduce earthquake-induced vibrations 

in new and existing buildings.  Viscoelastic dampers do not only have the advantages 

of easier installation as well as manufacturing, good durability and low cost, but also 

they have high energy dissipation capacity.  Conventionally, viscoelastic dampers are 

generally installed within a diagonal brace configuration for structures such as 

buildings.  The application of the devices in the traditional configuration, however, 

could present some disadvantages, particularly when they are applied in building 

retrofits.  In fact, even if in new structures the columns are designed to bear the 

additional axial forces induced by the dampers, in existent buildings these forces can 

create an untimely failure of the columns that are connected to the VE dampers [8].  In 

addition, the aforementioned configuration provides a stiff structural system which 

may lead to lower shear deformation in VE material, thus lowering their efficiency and 

energy dissipation.  Excluding these matters, the application of this type of retrofitting 

often interferes with architectural requirements such as open space and unobstructed 

view as the configuration occupies entire bays in frames [8].  In recent years, several 

new configurations have been developed including the toggle-brace and the scissor-

jack dissipation system [9, 10].  However, analysis and detailing of these 

configurations are so complex.  In this research, a novel viscoelastic damper is 

proposed in order to improve the seismic performance of steel structures and to 

overcome the drawbacks of the conventional VEDs.  The proposed VED can be used 
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in design of new structures or retrofitting of existing structures.  The configuration of 

the proposed VED results in magnifying the displacement of the damper and increases 

its efficiency.  In addition, using the proposed VED results in less axial forces applied 

to the column and is preferred for retrofitting purpose.  In this research, damper 

induced column axial forces are addressed quantitatively by degree of plastic hinge 

formation and are fully explained later.  On the other hand, the configuration is 

preferred from architectural point of view as it does not occupy the span of entire 

frames in contrast to the conventional VED. 

 

 

 

 

1.3 Objective of the research 

 

 

The main aim of this project is to develop a novel viscoelastic damper for 

seismic retrofit of steel structures.  Specific objectives are: 

 

i) To study dynamic behavior of frame with and without the conventional 

viscoelastic damper. 

 

ii) To propose a new type of viscoelastic damper considering drawbacks of the 

conventional viscoelastic dampers. 

 

iii) To investigate experimentally and numerically the efficiency of the proposed 

viscoelastic damper installed inside a scaled down steel structure. 

 

iv) To determine numerically the effect of different viscoelastic layer dimensions 

on the performance of the proposed viscoelastic damper. 

 

v) To propose a simplified numerical model for the viscoelastic dampers in 

structural analysis of multi-storey structures. 
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vi) To evaluate numerically the seismic performance of the proposed viscoelastic 

damper in multi-storey structures by using the proposed simplified model. 

 

 

 

 

1.4 Scope of the research 

 

 

This research is intended to propose a novel viscoelastic device to improve 

seismic performance of structures and to overcome the deficiency of the conventional 

viscoelastic damper.  Effectiveness of the proposed damper is evaluated through 

comparing responses of a 3-story scaled down bare frame to a frame with and without 

the conventional and proposed viscoelastic damper.  Both experimental and numerical 

approaches are employed for this purpose.  In addition, seismic performance of the 

damper is investigated by nonlinear time history analysis of full-scale 10-story frame.  

The main response parameters that are studied in this research are displacement and 

acceleration through the height of the building.  The scope of this investigation is as 

follow: 

- Conventional viscoelastic damper uses two layers of viscoelastic material with 

the size of 60 mm×20 mm×5 mm. 

- In this research, the effect of changes in the dimensions of viscoelastic layer 

on performance of the proposed viscoelastic damper are only investigated. 

- In this study, different sizes of viscoelastic layers are employed for the 

proposed viscoelastic damper.  The size of viscoelastic layers includes 900 

mm2 (30 mm×30 mm), 2500 mm2 (50 mm×50 mm) and 4900 mm2 (70 mm×70 

mm) in area with thickness of 3 mm, 5 mm and 7 mm. 

- The mechanical properties of viscoelastic material are tested at various 

frequencies ranged from 0.1 Hz to 5 Hz and strains of 5 %, 20 % and 50 %. 

- The effect of temperature on the properties of viscoelastic material are not 

considered in this research. 

- Performance of the damper installed at the first level of a 3-story steel frame 

with scale of 1:3 is investigated experimentally under harmonic excitation 

only. 



8 
 

- Due to limitation of harmonic shaking table, responses of the fully damped 

frame is studied numerically using ABAQUS software. 

- Excitation frequency included 20 % below and above the frame’s resonance 

frequency. 

- Response of a 10-story building equipped with the proposed damper was 

studied numerically using SAP2000 software. 

 

 

 

 

1.5 Outline of the research 

 

 

This research is subdivided into six chapters.  The chapters are organized as 

follow: 

 

i. Chapter 1 presents an introduction and background of the study as well 

as objectives and scope of the research, and explains problem statement 

and motivation of this research. 

 

ii. Chapter 2 presents a literature review on technical background of issues 

related to the viscoelastic dampers.  In addition, nature of seismic loads 

and an overview of several supplemental damping devices are 

explained. 

 

iii. Chapter 3 describes research methodology to attain the objectives of 

this study.  In this chapter, both experimental and numerical approach 

are discussed in details. 

 

iv. Chapter 4 presents the results obtained experimentally for performance 

evaluation of the proposed viscoelastic damper.  The results of 

mechanical properties of materials used for experimental tests are also 

displayed in this chapter. 
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v. Chapter 5 presents the results obtained by numerical studies for 

performance evaluation of the proposed viscoelastic damper.  In 

addition, effect of the viscoelastic layer sizes on the performance of the 

proposed viscoelastic damper is investigated in this chapter.  Finally, a 

simplified model is proposed for analysis of high rise buildings. 

 

vi. Chapter 6 summarizes the results and presents a final conclusion along 

with recommendations for future work. 
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