SILVER NANOPARTICLE ENHANCED THE OPTICAL PROPERTIES OF THE RARE EARTH DOPED MEGNESIUM ZINC SULFOPHOSPHATE GLASS

FAHIMEH AHMADI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science Universiti Teknologi Malaysia I dedicated this thesis to my beloved father and mother for their support and encouragement.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof. Dr. Rosli Bin Hussin for his guidance, advice, constructive feedback, and critical review of this thesis. His support, time and help are the motivations for me to strive harder in my academic journey. I also would like to thank my co-supervisor Dr. Sib Krishna Ghoshal for his critical feedbacks on my research. I wish to thank Universiti Teknologi Malaysia for giving me the opportunity to do my research in a supportive academic environment.

My parents receive my deepest gratitude and love for their patience, pray, and the many years of support during my studies that provided the foundation for this work. I also would like to thank my brother for his love and support throughout the years. Special thanks to my husband for his understanding and love throughout the years. His support and encouragement was in the end what made this research possible.

ABSTRACT

Magnesium-zinc-sulfophosphate (P₂O₅-MgO-ZnSO₄) glasses prospective host for lasing active media require precise composition optimization and systematic characterization. A series of glass samples in the composition of (60.0 $x)P_2O_5-20.0MgO-20.0ZnSO_4-xRE_2O_3$ (0.0 $\le x \le 2.0$ mol% and rare earth (RE) = Sm, Dy, and Er), $(59.5-y)P_2O_5-20.0MgO-20.0ZnSO_4-0.5RE_2O_3-yAgCl$ $(0.0 \le y \le 0.5)$ mol% and RE = Sm and Dy) and $(59.5-z)P_2O_5-20.0MgO-20.0ZnSO_4-0.5Er_2O_3-zAgCl$ $(0.0 \le z \le 1.5 \text{ mol}\%)$ were synthesized using melt-quenching technique. The samples were thoroughly characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) absorption, photoluminescence (PL) and Raman spectroscopy. XRD verified the samples amorphous nature and TEM images manifested the nucleation of homogeneously distributed spherical silver (Ag) nanoparticles in the glass matrix. FTIR spectra revealed the bonding vibrations for P-O bonds, P-O-P linkages, and PO₂ units. There is no evidence in Raman spectra of RE (RE= Sm, Dy and Er) doped P₂O₅-MgO-ZnSO₄ glasses to confirm the incorporation of the sulfate ions to the network formation. The absorption spectrum of RE (RE = Sm, Dy and Er) doped P₂O₅-MgO-ZnSO₄ glasses with and without incorporation of Ag nanoparticles is originated from electronic transitions from the ground level to various excited levels belonging to the 4f⁹ electronic configuration of the RE ions. Absorption and emission spectra are used to evaluate the Judd-Ofelt (JO) intensity parameters and radiative transition probabilities, branching ratios and stimulated emission cross-sections of the three RE ion (RE = Sm, Dy, and Er) doped glass systems. The room temperature PL spectra of samarium-doped glass revealed four emission peaks centered at around 562, 599, 644, and 702 nm, which are assigned to the transitions from ${}^4G_{5/2}$ to ${}^6H_{5/2}$, ${}^6H_{7/2}$, ${}^6H_{9/2}$ and ⁶H_{11/2}, respectively. The PL spectra of dysprosium-doped glass displayed two prominent peaks at around 480 nm and 574 nm corresponding to the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ transitions, respectively and two weak peaks. Conversely, erbium-doped glass system exhibited two strong emission peaks centered at around 541 nm and 654 nm attributed to the ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$ and ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$ transitions, respectively. All glass series containing Ag nanoparticles showed considerable emission intensity enhancement, which is attributed to the nanoparticle surface plasmon resonance mediated intensified local field effect in the proximity of RE ions. Overall properties of each glass series are demonstrated to be modified due to the embedment of Ag nanoparticles. Among all the glass series produced, the stimulated emission crosssection for ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$ transition in erbium-doped glass system is discerned to be the highest.

ABSTRAK

Kaca magnesium-zink-sulfofosfat (P₂O₅-MgO-ZnSO₄) sebagai satu hos prospektif bagi media aktif las memerlukan pengoptimuman komposisi yang persis dan pencirian yang sistematik. Satu siri kaca dengan komposisi (60.0-x)P₂O₅- $20.0 \text{MgO} - 20.0 \text{ZnSO}_4 - x \text{RE}_2 \text{O}_3 \ (0.0 \le x \le 2.0 \text{ mol}\% \text{ dan nadir bumi (RE)} = \text{Sm, Dy,}$ dan Er), $(59.5-y)P_2O_5-20.0MgO-20.0ZnSO_4-0.5RE_2O_3-yAgCl (0.0 \le y \le 0.5 mol\%)$ dan $(59.5-z)P_2O_5-20.0MgO-20.0ZnSO_4-0.5Er_2O_3-zAgCl\ (0.0 \le z \le 1.5 mol\%)$ telah disintesis menggunakan teknik lebur-lindap kejut. Sampel telah dicirikan secara terperinci dengan menggunakan pembelauan sinar-x (XRD), mikroskopi elektron penghantaran (TEM), spektroskopi infra merah jelmaan Fourier (FTIR), spektroskopi serapan ultraungu-nampak (UV-Vis), spektroskopi kefotopendarcahayaan (PL) dan spektroskopi Raman. XRD telah menentusahkan sifat amorfus sampel dan imej TEM telah menunjukkan penukleusan zarah nano perak (Ag) berbentuk sfera yang teragih secara homogen dalam matriks kaca. Spektrum FTIR memperlihatkan getaran ikatan bagi ikatan P-O, rantaian P-O-P, dan unit PO₂. Tidak ada sebarang petunjuk pada spektrum Raman kaca P₂O₅-MgO-ZnSO₄ berdop RE (RE = Sm, Dy dan Er) yang mengesahkan penggabungan ion sulfat dalam pembentukan rangkaian. Spektrum penyerapan kaca P₂O₅-MgO-ZnSO₄ berdop RE (RE = Sm, Dy dan Er) dengan dan tanpa penggabungan zarah nano Ag berasal daripada peralihan elektronik dari aras asas ke pelbagai aras teruja ion RE yang berkonfigurasi elektronik 4f9. Spektrum serapan dan pancaran telah digunakan untuk menilai parameter keamatan Judd-Ofelt (JO) dan kebarangkalian peralihan pancaran, nisbah pencabang dan keratan rentas pancaran teransang bagi tiga sistem kaca berdop ion RE (RE = Sm, Dy, dan Er) tersebut. Spektrum PL kaca berdop Samarium pada suhu bilik memperlihatkan empat puncak pancaran berpusat sekitar 562, 599, 644, dan 702 nm, yang terumpu kepada peralihan masing-masing dari ${}^4G_{5/2}$ ke ${}^6H_{5/2}$, ${}^6H_{7/2}$, ${}^6H_{9/2}$ dan ${}^6H_{11/2}$. Spektrum PL bagi kaca berdop dysprosium mempamerkan dua puncak yang ketara berpusat sekitar 480 nm dan 574 nm yang masing-masing berpadanan dengan peralihan ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$ dan ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ dan dua puncak yang rendah. Sebaliknya, sistem kaca berdop erbium telah mempamerkan dua puncak pancaran yang tinggi berpusat pada 541 nm dan 654 nm yang terumpu masing-masing kepada peralihan ${}^4S_{3/2} \rightarrow {}^4\bar{I}_{15/2}$ dan ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$. Kesemua siri kaca yang mengandungi zarah nano Ag menunjukkan peningkatan keamatan pancaran yang agak banyak, yang terumpu kepada peningkatan kesan medan setempat berperantaraan resonans plasmon permukaan zarah nano di kehampiran ion RE. Sifat keseluruhan setiap siri kaca menunjukkan perubahan yang disebabkan oleh pembenaman zarah nano Ag. Antara semua siri kaca yang terhasil, keratan rentas pancaran teransang untuk peralihan ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$ bagi sistem kaca berdop erbium adalah dianggap sebagai yang tertinggi.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE		
	DEC	CLARATION	ii		
	DED	DICATION	iii		
	ACKNOWLEDGEMENTS				
	v				
	ABS	TRAK	vi		
	TAB	LE OF CONTENTS	vii		
	LIST	Γ OF TABLES	xii		
	LIST	T OF FIGURES	xviii		
	LIST	Γ OF ABBREVIATIONS	XXV		
	LIST	T OF SYMBOLS	xxvi		
	LIST	Γ OF APPENDICES	xxviii		
1	INT	RODUCTION	1		
	1.1	Background of the Study	1		
	1.2	Problem Statement	6		
	1.3	Research Objectives	7		
	1.4	Significance of Research	7		
	1.5	Scope of the Study	8		
	1.6	Outline of Thesis	8		
2	LITI	ERATURE REVIEW	10		
	2.1	Introduction	10		
	2.2	Basic Glass Structure	12		
	2.3	The Structure of Phosphate Glass	14		
	2.4	Zinc Phosphate Glass	17		

	2.5	Magnesium Phosphate Glass	18
	2.6	Sulfophosphate Glass	19
	2.7	Rare Earth Ions	24
		2.7.1 Samarium Ion	25
		2.7.2 Dysprosium Ion	26
		2.7.3 Erbium Ion	27
	2.8	Different Transition Inside RE ³⁺ Doped Glass	27
	2.9	Judd-Ofelt (JO) Theory	29
		2.9.1 Radiative Properties	33
	2.10	Optic and Plasmonic	34
		2.10.1 Maxwell's Equation and Optics of	
		Metals	36
		2.10.2 Plasmonics	44
	2.11	Some Important Parameters	45
		2.11.1 Bonding Parameters	46
		2.11.2 Hypersensitive Transitions	47
		2.11.3 Direct and Indirect Band Gap Energy	47
		2.11.4 Determination of Urbach Energy	48
3	RESI	EARCH METHODOLOGY	50
	3.1	Introduction	50
	3.2	Sample Preparation	50
	3.3	X-ray Diffractometer (XRD)	52
	3.4	Density Measurement	53
	3.5	Infrared (IR) Spectrometer	54
	3.6	Raman Spectrometer	55
	3.7	UV-Vis-NIR Spectrometer	55
	3.8	Photoluminescence (PL) Spectrometer	56
	3.9	Transmission Electron Microscope (TEM)	57
4	SPEC	CTRAL FEATURES OF RE ³⁺ (RE = Sm, Dy	
	AND	Er) DOPED MAGNESIUM-ZINC-	
	SULI	FOPHOSPHATE GLASS: JUDD-OFELT	
	ANA	LYSIS	59

4.1	Introdu	ction		59
4.2	Glass C	Compositions		59
4.3	X-ray I	Diffraction (XRD) Ana	lysis	60
4.4	Infrared	d (IR) Spectra Analysis	S	61
4.5	Raman	Spectra Analysis		65
4.6	Density	and Molar Volume		70
4.7	Absorp	tion Spectra Analysis		73
	4.7.1	Sm ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		73
	4.7.2	Dy ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		76
	4.7.3	Er ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		79
4.8	Optical	Band Gap Energy		81
4.9	Refract	ive Index and Molar P	olarizability	88
4.10	Emissio	on Spectra Analysis		92
	4.10.1	Sm ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		92
	4.10.2	Dy ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		97
	4.10.3	Er ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		102
4.11	Judd-O	felt Analysis		104
	4.11.1	Sm ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		104
	4.11.2	Dy ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		108
	4.11.3	Er ³⁺ -Doped Magnesi	um-Zinc-Sulfophosphate	
		Glass		112
4.12	Radiati	ve Properties		115
	4.12.1	Sm ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		115
	4.12.2	Dy ³⁺ -Doped	Magnesium-Zinc-	
		Sulfophosphate Glass		122

		4.12.3	Er ³⁺ -Doped	Magnesium-Zinc	-
			Sulfophosphate	Glass	126
5	SPE	CTROC	OPIC PROPERT	TIES OF RE^{3+} ($RE =$	
	Sm, l	Dy AND	Er) DOPED MA	GNESIUM-ZINC-	
	SUL	FOPHO	SPHATE GLASS	S CONTAINING Ag	
	NAN	OPART	TICLES		133
	5.1	Introdu	action		133
	5.2	X-ray	Diffraction (XRD) Analysis	134
	5.3	Infrare	ed (IR) Spectra Ar	alysis	135
	5.4	Densit	y and Molar Volu	me	138
	5.5	Absorp	otion Spectra		141
		5.5.1	Sm ³⁺ -Doped	Magnesium-Zinc	-
			Sulfophosphate	Glass Containing Ag	5
			Nanoparticles		141
		5.5.2	Dy ³⁺ -Doped	Magnesium-Zinc-	-
			Sulfophosphate	Glass Containing Ag	5
			Nanoparticles		145
		5.5.3	Er ³⁺ -Doped	Magnesium-Zinc	-
			Sulfophosphate	Glass Containing Ag	5
			Nanoparticles		148
	5.6	Optica	l Band Gap Energ	gy	150
	5.7	Morph	ology Analysis		154
	5.8	Emissi	on Spectra Analy	sis	156
		5.8.1	Sm ³⁺ -Doped	Magnesium-Zinc	-
			Sulfophosphate	Glass Containing Ag	5
			Nanoparticles		156
		5.8.2	Dy ³⁺ -Doped	Magnesium-Zinc-	-
			Sulfophosphate	Glass Containing Ag	5
			Nanoparticles		159
		5.8.3	Er ³⁺ -Doped	Magnesium-Zinc	-
			Sulfophosphate	Glass Containing Ag	7
			Nanoparticles		161
	5.9	Judd-C	Ofelt Analysis		164

		5.9.1	Sm ³ -Doped	N	/lagnesium-Z	inc-	
			Sulfophosphate	Glass	Containing	Ag	
			Nanoparticles				164
		5.9.2	Dy ³⁺ -Doped	N	/Iagnesium-Z	inc-	
			Sulfophosphate	Glass	Containing	Ag	
			Nanoparticles				167
		5.9.3	Er ³⁺ -Doped	N	/Iagnesium-Z	inc-	
			Sulfophosphate	Glass	Containing	Ag	
			Nanoparticles				169
	5.10	Radiati	ve Properties				173
		5.10.1	Sm ³⁺ -Doped	N	/Iagnesium-Z	inc-	
			Sulfophosphate	Glass	Containing	Ag	
			Nanoparticles				173
		5.10.2	Dy ³⁺ -Doped	N	/Iagnesium-Z	inc-	
			Sulfophosphate	Glass	Containing	Ag	
			Nanoparticles				176
		5.10.3	Er ³⁺ -Doped	N	/Iagnesium-Z	inc-	
			Sulfophosphate	Glass	Containing	Ag	
			Nanoparticles				179
6	CONC	CLUSIO	ON AND RECON	MEN	DATIONS		184
	6.1	Introdu	ction				184
	6.2	Conclu	sion				184
	6.3	Recom	mendation for Fu	ture Wo	orks		186
REFERENC	ES						187
Appendix A							209
- ppendix 11							207

LIST OF TABLES

TABLE NO	. TITLE	PAGE
2.1	The absorption matrix elements of aqueous Sm ³⁺ ion	31
2.2	The absorption matrix elements of aqueous Dy ³⁺ ion	31
2.3	The absorption matrix elements of aqueous Er ³⁺ ion	32
3.1	Glass composition for (60.0-x)P ₂ O ₅ -20.0MgO-	
	$20.0 \text{ZnSO}_4\text{-xRE}_2\text{O}_3$, where $0.0 \le x \le 2.0$ mol% and RE	
	= Sm, Dy and Er	51
3.2	Glass composition for (59.5-y)P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $0.5RE_2O_3$ - $yAgCl$, $RE = Sm$ and Dy where	
	$0.0 \leq y \leq 0.5$ mol% and (59.5-z)P ₂ O ₅ -20.0MgO-	
	$20.0 ZnSO_4 \text{-} 0.5 Er_2O_3 \text{-} zAgCl,$ where $0.0 \leq z \leq 1.5$ mol%	
	glasses	52
4.1	IR absorption band position and assignment of the (60.0-	
	$x)P_2O_5-20.0MgO-20.0ZnSO_4-xRE_2O_3 (0.0 \le x \le 2.0$	
	mol% and RE = Sm, Dy and Er) glass samples	64
4.2	Assignment of experimentally observed Raman-active	
	vibrations in $59.0P_2O_5$ - $20.0MgO$ - $20.0ZnSO_4$ - $1.0RE_2O_3$	
	(RE = Sm, Dy and Er) glasses	68
4.3	Some physical properties of (60.0-x)P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4\text{-}xRE_2O_3~(0.0 \leq x \leq 2.0~mol\%$ and RE = Sm,	
	Dy and Er) glass samples	71
4.4	Comparison of the calculated band positions (cm ⁻¹) and	
	bonding parameters (β and δ) of (60.0-x)P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - xSm_2O_3 ($0.5 \le x \le 2.0$ mol%) glass system	
	with reported values	76

4.5	Observed band positions (cm ⁻¹) and bonding parameters	
	$(\beta \text{ and } \delta) \text{ of the } (60.0\text{-}x)P_2O_5\text{-}20.0MgO\text{-}20.0ZnSO_4\text{-}$	
	xDy_2O_3 (0.5 $\leq x \leq$ 2.0 mol%) glasses	79
4.6	Comparison of the calculated band positions (cm ⁻¹) and	
	bonding parameters (β and δ) of (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ -xEr ₂ O ₃ ($0.5 \le x \le 2.0$ mol%) glasses glass	
	system with reported values	80
4.7	Optical energy band gap and Urbach energy of the (60.0-	
	$x)P_2O_5-20.0MgO-20.0ZnSO_4-xRE_2O_3 (0.0 \le x \le 2.0$	
	mol% and RE = Sm, Dy and Er) and reported glass	
	system	85
4.8	Refractive index of the (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ -xRE ₂ O ₃ ($0.0 \le x \le 2.0$ mol% and RE = Sm,	
	Dy and Er) and reported glass system	91
4.9	Some physical properties of (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ -xRE ₂ O ₃ ($0.0 \le x \le 2.0$ mol% and RE = Sm,	
	Dy and Er) glass samples	92
4.10	PL peak positions (in nm) and their assignments for	
	$(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xSm_2O_3 (0.5 \le x \le $	
	2.0 mol%) glass system	94
4.11	Band position (nm) and their assignment of (60.0-	
	$x)P_2O_5-20.0MgO-20.0ZnSO_4-xDy_2O_3 (0.5 \le x \le 2.0$	
	mol%) glasses	99
4.12	The yellow-to-blue luminescence intensity ratios (Y/B)	
	ratios for $(60.0-x)P_2O_5$ -20.0MgO-20.0ZnSO ₄ -xDy ₂ O ₃	
	$(0.5 \le x \le 2.0 \text{ mol}\%)$ glass along with reported Dy ³⁺ :	
	glasses	100
4.13	Emission peak positions (nm) and their assignment of	
	$(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xEr_2O_3 (0.5 \le x \le $	
	2.0 mol%) glasses	103
4.14	Experimental and calculated oscillator strengths (×10 ⁻⁶)	
	of $(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xSm_2O_3$ $(0.5 \le$	
	$x \le 2.0 \text{ mol}\%$) glass system	105

4.15	Comparison of JO parameters (×10 ⁻²⁰ cm ²) and quality	
	factors (Ω_4/Ω_6) of (60.0-x)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	xSm_2O_3 (0.5 $\leq x \leq$ 2.0 mol%) glass system with others	106
4.16	Experimental and calculated oscillator strengths (×10 ⁻⁶)	
	of $(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xDy_2O_3$ $(0.5 \le$	
	$x \le 2.0 \text{ mol}\%$) glasses	109
4.17	The JO (× 10^{-20} cm ²) parameters, trends of Ω_i	
	parameters and spectroscopic quality factor (Ω_4/Ω_6) of	
	the $(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xDy_2O_3$ $(0.5 \le$	
	$x \le 2.0 \text{ mol}\%$) glasses	111
4.18	Experimental and calculated oscillator strengths (×10 ⁻⁶)	
	of $(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xEr_2O_3$ $(0.5 \le x \le $	
	2.0 mol%) glass system	113
4.19	Comparison of JO parameters ($\times 10^{-20} \text{ cm}^2$) of (60.0-	
	$x)P_2O_5-20.0MgO-20.0ZnSO_4-xEr_2O_3$ (0.5 $\leq x \leq 2.0$	
	mol%) glass system with others	114
4.20	The values of energy difference (cm ⁻¹), A_{ed} (s ⁻¹), A_{md}	
	(s ⁻¹), A (s ⁻¹), β_R (%), and τ_R (ms) for various transitions	
	originating from ⁴ G _{5/2} level of 59.5P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $0.5Sm_2O_3$ glass	117
4.21	The values of energy difference (cm ⁻¹), A_{ed} (s ⁻¹), A_{md}	
	(s ⁻¹), A (s ⁻¹), β_R (%), and τ_R (ms) for various transitions	
	originating from ⁴ G _{5/2} level of 59.0P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $1.0Sm_2O_3$ glass	118
4.22	The values of energy difference (cm ⁻¹), A_{ed} (s ⁻¹), A_{md}	
	(s^{-1}) , $A(s^{-1})$, $\beta_R(\%)$, and $\tau_R(ms)$ for various transitions	
	originating from ⁴ G _{5/2} level of 58.5P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $1.5Sm_2O_3$ glass	119
4.23	The values of energy difference (cm ⁻¹), A_{ed} (s ⁻¹), A_{md}	
	(s ⁻¹), A (s ⁻¹), β_R (%), and τ_R (ms) for various transitions	
	originating from ${}^4G_{5/2}$ level of $58.0P_2O_5$ - $20.0MgO$ -	
	$20.0ZnSO_4$ - $2.0Sm_2O_3$ glass	120

4.24	The values of λ_p (nm), $\Delta \lambda_{eff}$ (nm), A (s ⁻¹), σ_p^E (×10 ⁻²²	
	cm ²) as well as experimental and calculated β_R (%) for	
	$(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xSm_2O_3 (0.5 \le x \le x)$	
	2.0 mol%) glass system and the reported Sm ³⁺ -doped	
	glasses	121
4.25	Values of λ_p (nm), $\Delta \lambda_{eff}$ (nm), A (s ⁻¹), σ_p^E (×10 ⁻²² cm ²)	
	as well as experimental and calculated β_R (%) for	
	$59.5P_2O_5$ - $20.0MgO$ - $20.0ZnSO_4$ - $0.5Sm_2O_3$ glass system	
	and the reported Sm ³⁺ doped glasses	122
4.26	The values of A (s ⁻¹), and β_R (%) of (60.0-x)P ₂ O ₅ -	
	$20.0 MgO-20.0 ZnSO_4-xDy_2O_3 \ (0.5 \le x \le 2.0 \ mol\%)$	
	glass	123
4.27	The values of λ_p (nm), $\Delta \lambda_{eff}$ (nm), A (s ⁻¹), σ_p^E (×	
	$10^{-22}~{ m cm}^2)$ and experimental, calculated eta_R (%) and	
	τ_R (ms) for the $^4F_{9/2}$ transition level of (60.0-x)P ₂ O ₅ -	
	$20.0 MgO-20.0 ZnSO_4-xDy_2O_3 \ (0.5 \le x \le 2.0 \ mol\%)$	
	glasses and the reported Dy ³⁺ glasses	124
4.28	The values of λ_p (nm), $\Delta \lambda_{eff}$ (nm) and σ_p^E (×	
	$10^{-22}~\text{cm}^2)$ for the $^4F_{9/2} \rightarrow ^6H_{15/2}$ and $^4F_{9/2} \rightarrow ^6H_{13/2}$	
	transitions of Dy ³⁺ ions in different glasses	126
4.29	The values of energy difference (ΔE), A_{ed} (s ⁻¹) and A_{md}	
	(s ⁻¹), β and τ_R (ms) for (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ -xEr ₂ O ₃ (0.5 \leq x \leq 2.0 mol%) glass system	128
4.30	The values of λ_p (nm), $\Delta \lambda_{eff}$ (nm), A (s ⁻¹), σ_p^E	
	$(\times 10^{-22} \text{ cm}^2)$ as well as experimental and	
	calculated β_R (%) for (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ -xEr ₂ O ₃ ($0.5 \le x \le 2.0$ mol%) glass system	131
4.31	Values of λ_p (nm), $\Delta \lambda_{eff}$ (nm), A (s ⁻¹), σ_p^E (×10 ⁻²² cm ²),	
	calculated and experimental β_R (%) for the $^4S_{3/2}$ level	
	under 476 nm excitation of the prepared glass system	132
5.1	The values of M_{av} (g mol ⁻¹), ρ (g cm ⁻³) and V_M (cm ³	
	mol ⁻¹) for studied glasses	139

5.2	Observed band positions (cm ⁻¹) and bonding parameters	
	$(\beta \text{ and } \delta) \text{ of the } (59.5\text{-y})P_2O_520.0MgO20.0ZnSO_4$	
	$0.5 \text{Sm}_2 \text{O}_3$ -yAgCl ($0.0 \le y \le 0.5 \text{ mol}\%$) glasses	144
5.3	Observed band positions (cm ⁻¹) and bonding parameters	
	$(\beta~and~\delta)~of~the~(59.5\mbox{-}y)P_2O_5\mbox{-}20.0MgO\mbox{-}20.0ZnSO_4\mbox{-}$	
	0.5 Dy ₂ O ₃ -yAgCl ($0.0 \le y \le 0.5$ mol%) glasses	147
5.4	Comparison of the calculated band positions (cm ⁻¹) and	
	bonding parameters (β and δ) of (59.5-z)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ - 0.5 Er ₂ O ₃ - z AgCl ($0.0 \le z \le 1.5$ mol%) glass	
	system with reported values	150
5.5	The values of E_{opt}^{dir} (eV), E_{opt}^{indir} (eV), n and ΔE (eV) for	
	studied glasses	151
5.6	Experimental and calculated oscillator strengths (×10 ⁻⁶)	
	$of\ (59.5\text{-y})P_2O_5\text{-}20.0MgO\text{-}20.0ZnSO_4\text{-}0.5Sm_2O_3\text{-yAgCl}$	
	$(0.0 \le y \le 0.5 \text{ mol}\%)$ glass system	165
5.7	Comparison of JO parameters (×10 ⁻²⁰ cm ²) and quality	
	factors (Ω_4/Ω_6) of the $(59.5-y)P_2O_5-20.0MgO$ -	
	20.0 ZnSO ₄ - 0.5 Sm ₂ O ₃ -yAgCl ($0.0 \le y \le 0.5$ mol%)	
	glass system with other findings	166
5.8	Experimental and calculated oscillator strengths (×	
	$10^{-6})\ of\ (59.5\text{-y})P_2O_520.0MgO20.0ZnSO_40.5Dy_2O_3$	
	yAgCl $(0.0 \le y \le 0.5 \text{ mol}\%)$ glasses	167
5.9	The Judd-Ofelt (× 10^{-20} cm 2) parameters, trends of Ω_i	
	parameters and spectroscopic quality factor (Ω_4/Ω_6) of	
	$(59.5 - y) P_2 O_5 - 20.0 Mg O - 20.0 Zn SO_4 - 0.5 Dy_2 O_3 - y Ag Cl$	
	$(0.0 \le y \le 0.5 \text{ mol}\%)$ and the results of other works	168
5.10	Experimental and calculated oscillator strengths (×	
	$10^{-6}) \ of \ (59.5\text{-}z) P_2 O_5\text{-}20.0 Mg O\text{-}20.0 Zn SO_4\text{-}0.5 Er_2 O_3\text{-}$	
	$zAgCl (0.0 \le z \le 1.5 \text{ mol}\%)$ glass system	170
5.11	Comparison between JO parameters ($\times 10^{-20} \text{ cm}^2$) of	
	the $(59.5\text{-}z)P_2O_5\text{-}20.0MgO\text{-}20.0ZnSO_4\text{-}0.5Er_2O_3\text{-}zAgCl$	
	$(0.0 \le z \le 1.5 \text{ mol}\%)$ glass and other reports	171

5.12	Comparison between JO parameters ($\times 10^{-20} \text{ cm}^2$) of	
	the $(59.5-y)P_2O_5-20.0MgO-20.0ZnSO_4-0.5RE_2O_3-yAgCl$	
	$(0.0 \le y \le 0.5 \text{ mol}\% \text{ and RE} = \text{Sm and Dy})$ (59.5-	
	z) P_2O_5 -20.0MgO-20.0ZnSO ₄ -0.5Er ₂ O ₃ -zAgCl (0.0 \leq	
	$z \le 1.5 \text{ mol}\%$) glass	173
5.13	The values of A (s ⁻¹), and β_R (%) of (59.5-y)P ₂ O ₅ -	
	$20.0 \text{MgO} - 20.0 \text{ZnSO}_4 - 0.5 \text{Sm}_2 \text{O}_3 - y \text{AgCl } (0.0 \le y \le 0.5)$	
	mol%) glass	174
5.14	The values of λ_p (nm), $\Delta\lambda_{eff}$ (nm), A (s ⁻¹), σ_p^E (× 10 ⁻²²	
	cm ²), τ_R (ms) as well as experimental and calculated	
	β_R (%), for (59.5-y)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5 Sm_2 O_3$ -yAgCl ($0.0 \le y \le 0.5$ mol%) glass system and	
	the reported Sm ³⁺ glasses	175
5.15	The values of A (s ⁻¹) and β_R (%) of (59.5-y)P ₂ O ₅ -	
	$20.0 \text{MgO} - 20.0 \text{ZnSO}_4 - 0.5 \text{Dy}_2 \text{O}_3 - y \text{AgCl } (0.0 \le y \le 0.5)$	
	mol%) glass	177
5.16	The values of $\lambda_p(\text{nm})$, $\Delta \lambda_{eff}(\text{nm})$, $A(s^{-1})$, $\sigma_p^E(\times$	
	10^{-22} cm ²), experimental, calculated β_R (%) and	
	τ_R (ms) for the $^4F_{9/2}$ transition level of the (59.5-y)P ₂ O ₅ -	
	$20.0 \text{MgO} - 20.0 \text{ZnSO}_4 - 0.5 \text{Dy}_2 \text{O}_3 - y \text{AgCl } (0.0 \le y \le 0.5)$	
	mol%) glasses and the reported Dy3+ glasses	178
5.17	The values of A_{ed} (s ⁻¹), A_{md} (s ⁻¹), β_R (%) and τ_R (ms)	
	$of\ (59.5\text{-}z)P_2O_5\text{-}20.0MgO\text{-}20.0ZnSO_4\text{-}0.5Er_2O_3\text{-}zAgCl$	
	$(0.0 \le z \le 1.5 \text{ mol}\%)$ glass system	180
5.18	The values of λ_p (nm), $\Delta \lambda_{eff}$ (nm), A (s ⁻¹), σ_p^E	
	$(\times 10^{-22} \text{ cm}^2)$ as well as experimental and	
	calculated β_R (%) for (59.5-z)P ₂ O ₅ -20.0MgO-	
	20.0ZnSO_4 - $0.5 \text{Er}_2 \text{O}_3$ -zAgCl ($0.0 \le z \le 1.5 \text{ mol}\%$) glass	
	system	183

LIST OF FIGURES

FIGURE N	NO. TITLE	PAGE
2.1	Schematic illustration of the change in volume with	
	temperature as a liquid is cooled, showing the	
	difference in behaviour between glass and crystalline	
	solids	13
2.2	Phosphate tetrahedral sites that can exist in phosphate	
	glasses	15
2.3	Different structural positions in sulfate-polyphosphate	
	chains	21
2.4	FTIR spectra of glasses: (1) Crystalline sodium	
	sulphate Na ₂ SO ₄ ; (2) Vitreous NaPO ₃ ; and (3)	
	20Na ₂ SO ₄ ·80NaPO ₃ (mol %) (Sokolov <i>et al.</i> , 2011)	22
2.5	Deconvoluted Raman spectrum of a (Na, Zn)	
	pyrophosphate glass Labels indicated positions of	
	individual Gaussian peaks (Da et al., 2011)	23
2.6	Raman spectra of (Na, Zn) sulfophosphate glasses for	
	increasing SO ₄ ²⁻ content. Spectra of crystalline samples	
	are shown for comparison (Da et al., 2011)	23
3.1	The X-ray Diffractometer	٥٣
3.2	Perkin-Elmer Spectrum GX FTIR spectroscopy	٥٤
3.3	The confocal Jobin Yvon (Model HR800 UV)	
	spectrometer	55
3.4	UV-Vis-NIR scanning spectrometer	٥٦
3.0	Fluorescence spectrometer (FP-8500, JASCO)	٥٧
3.٦	The Transmission Electron Microscope (TEM 2100, JEOL)	58

4.1	XRD pattern of $59.5P_2O_5$ - $20.0MgO$ - $20.0ZnSO_4$ -	
	$0.5 Sm_2O_3$ glass	٦٠
4.2	XRD pattern of 59.5P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	0.5Dy ₂ O ₃ glass	٦0
4.3	XRD pattern of 59.5P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5\mathrm{Er}_2\mathrm{O}_3$ glass	٦1
4.4	IR spectra of (60.0-x)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	xSm_2O_3 (0.0 $\leq x \leq$ 2.0 mol%) glasses	٦2
4.5	IR spectra of (60.0-x)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	xDy_2O_3 (0.0 $\leq x \leq 2.0$ mol%) glasses	٦3
4.6	IR spectra of (60.0-x)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	xEr_2O_3 (0.0 $\leq x \leq$ 2.0 mol%) glasses	٦3
4.7	Raman spectra analysis of 59.0P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $1.0Sm_2O_3$ glass	٦٦
4.8	Raman spectra analysis of 59.0P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_41.0Dy_2O_3glass$	67
4.9	Raman spectra analysis of 59.0P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $1.0Er_2O_3$ glass	67
4.10	Variation of density and molar volume of (60.0-x)P ₂ O ₅ -	
	$20.0 MgO - 20.0 ZnSO_4 - xSm_2O_3 \ (0.0 \le x \le 2.0 \ mol\%)$ as	
	a function of Sm ³⁺ ion concentration	72
4.11	Variation of density and molar volume of (60.0-x)P ₂ O ₅ -	
	$20.0 MgO - 20.0 ZnSO_4 - xDy_2O_3 \ (0.0 \le x \le 2.0 \ mol\%)$ as	
	a function of Dy ³⁺ ion concentration	72
4.12	Variation of density and molar volume of (60.0-x)P ₂ O ₅ -	
	$20.0 MgO-20.0 ZnSO_4-xEr_2O_3 \ (0.0 \le x \le 2.0 \ mol\%)$ as	
	a function of Er ³⁺ ion concentration	73
4.13	Absorption spectra of 59.5P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	0.5Sm ₂ O ₃ glass sample in the region of (a) UV-Vis and	
	(b) NIR	75
4.14	Absorption spectrum of 59.5P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $0.5Dy_2O_3$ glass in (a) UV-Vis and (b) NIR	
	region	78

4.15	UV-Vis-NIR spectra of 59.0P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $1.0Er_2O_3$ glass	80
4.16	Typical Tauc's plot for (a) direct and (b) indirect band	
	gap energy of 59.5P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5 Sm_2O_3$ glass	82
4.17	Typical Tauc's plot for (a) direct and (b) indirect band	
	gap energy of 59.5P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5 Dy_2 O_3$ glass	83
4.18	Typical Tauc's plot for (a) direct and (b) indirect band	
	gap energy of $59.0P_2O_5$ - $20.0MgO$ - $20.0ZnSO_4$ - $1.0Er_2O_3$	
	glass	84
4.19	Optical band gap energy of (60.0-x)P ₂ O ₅ -20.0MgO-	
	$20.0 \text{ZnSO}_4\text{-xSm}_2\text{O}_3 \ (0.0 \le x \le 2.0 \text{ mol}\%) \text{ glass}$	
	samples	86
4.20	Optical band gap energy of (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ -xDy ₂ O ₃ ($0.0 \le x \le 2.0$ mol%) glass	
	samples	87
4.21	Optical band gap energy of (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ -xEr ₂ O ₃ ($0.0 \le x \le 2.0$ mol%) glass samples	87
4.22	Variation of refractive index and molar polarizability of	
	$(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xSm_2O_3 (0.0 \le x \le x)$	
	2.0 mol%) glass	89
4.23	Variation of refractive index and molar polarizability of	
	$(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xDy_2O_3 (0.0 \le x \le x)$	
	2.0 mol%) glass sample	89
4.24	Variation of refractive index and molar polarizability of	
	$(60.0-x)P_2O_5-20.0MgO-20.0ZnSO_4-xEr_2O_3 (0.0 \le x \le $	
	2.0 mol%) glass sample	90
4.25	Excitation spectrum of 59.5P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5Sm_2O_3$ glass ($\lambda_{emi} = 600 \text{ nm}$)	93
4.26	Luminescence spectra of (60.0-x)P ₂ O ₅ -20.0MgO-	
	$20.0 \text{ZnSO}_4\text{-xSm}_2\text{O}_3 \ (0.5 \le x \le 2.0 \text{ mol}\%) \text{ glass}$	
	samples	94

4.27	Sm ₂ O ₃ concentration dependent variation of PL peak	
	intensity for (60.0-x)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	xSm_2O_3 (0.0 $\leq x \leq$ 2.0 mol%) glasses	95
4.28	Partial energy level diagram of 58.5P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ -1.5Sm ₂ O ₃ glass (a) enhancement and (b)	
	quenching	97
4.29	Excitation spectrum of 58.5P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$1.5Dy_2O_3$ glasses (Emission wavelength = $574nm$)	98
4.30	Luminescence spectra of (60.0-x)P ₂ O ₅ -20.0MgO-	
	$20.0 \text{ZnSO}_4\text{-xDy}_2\text{O}_3 \ (0.5 \le x \le 2.0 \text{ mol}\%)$ glasses. The	
	inset shows the luminescence spectra in the region of	
	$620 \le \lambda \le 800 \text{ nm}$	99
4.31	Peak intensity of (60.0-x)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	xDy_2O_3 (0.0 $\leq x \leq$ 2.0 mol%) glasses as a function of	
	concentration of Dy ₂ O ₃	100
4.32	Partial energy level diagram of 58.5P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ - 1.5 Dy ₂ O ₃ glass	102
4.33	Luminescence spectra of (60.0-x)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ -xEr ₂ O ₃ ($0.5 \le x \le 2.0$ mol%) glasses	103
4.34	Partial energy level diagram of 58.5P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ -1.5Er ₂ O ₃ glass	104
4.35	Sm ₂ O ₃ ions concentration dependent variation of JO	
	intensity parameters and quality factor	107
4.36	Dy ₂ O ₃ ions concentration dependent variation of JO	
	intensity parameters and quality factor	112
4.37	Er ₂ O ₃ ions concentration dependent variation of JO	
	intensity parameters and quality factor	115
5.1	XRD pattern of 59.0P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5 Sm_2O_3$ - $0.5 AgCl$ glass	134
5.2	XRD pattern of 59.0P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5Dy_2O_3$ - $0.5AgCl$ glass	135
5.3	XRD pattern of 59.0P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	0.5Er ₂ O ₃ -0.5AgCl glass	135

5.4	IR spectra of $(59.5-y)P_2O_5-20.0MgO-20.0ZnSO_4-$		
	$0.5 \text{Sm}_2 \text{O}_3$ -yAgCl ($0.0 \le y \le 0.5 \text{ mol}\%$) glass system	137	
5.5	IR spectra of (59.5-y)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -		
	$0.5 \mathrm{Dy_2O_3}$ -yAgCl ($0.0 \le y \le 0.5 \mathrm{mol\%}$) glass system	137	
5.6	IR spectra of (59.5-z)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -		
	$0.5 \text{Er}_2 \text{O}_3$ -zAgCl ($0.0 \le z \le 1.5 \text{ mol}\%$) glass system	138	
5.7	Variation of density and molar volume of (59.5-y)P ₂ O ₅ -		
	$20.0 \text{MgO} - 20.0 \text{ZnSO}_4 - 0.5 \text{Sm}_2 \text{O}_3 - y \text{AgCl } (0.0 \le y \le 0.5)$		
	mol%) glass sample as a function of Ag nanoparticles		
	concentration	140	
5.8	Variation of density and molar volume of (59.5-y)P ₂ O ₅ -		
	$20.0 \text{MgO} - 20.0 \text{ZnSO}_4 - 0.5 \text{Dy}_2 \text{O}_3 - y \text{AgCl } (0.0 \le y \le 0.5)$		
	mol%) glass sample as a function of Ag nanoparticles		
	concentration	140	
5.9	Variation of density and molar volume of (59.5-z)P ₂ O ₅ -		
	$20.0 MgO - 20.0 ZnSO_4 - 0.5 Er_2O_3 - zAgCl (0.0 \le z \le 1.5)$		
	mol%) glass sample as a function of Ag nanoparticles		
	concentration	141	
5.10	Absorption spectra of (59.5-y)P ₂ O ₅ -20.0MgO-		
	20.0 ZnSO ₄ - 0.5 Sm ₂ O ₃ -yAgCl ($0.0 \le y \le 0.5$ mol%)		
	glass sample in the region of (a) UV-Vis and (b) NIR		
	region	143	
5.11	SPR band positions of Ag nanoparticles of (59.5-		
	y) P_2O_5 -20.0MgO-20.0ZnSO ₄ -0.5Sm ₂ O ₃ -yAgCl (0.0 \leq		
	$y \le 0.5 \text{ mol}\%$) glass sample	144	
5.12	Absorption spectra of (59.5-y)P ₂ O ₅ -20.0MgO-		
	20.0 ZnSO ₄ - 0.5 Dy ₂ O ₃ -yAgCl ($0.0 \le y \le 0.5$ mol%)		
	glass sample in the region of (a) UV-Vis (b) NIR	146	
5.13	SPR band position of Ag nanoparticles of (59.5-		
	y) P_2O_5 -20.0MgO-20.0ZnSO ₄ -0.5Dy ₂ O ₃ -yAgCl (0.0 \leq		
	$y \le 0.5 \text{ mol}\%$) glass sample	147	
5.14	Absorption spectra of (59.5-z)P ₂ O ₅ -20.0MgO-		
	20.0 ZnSO ₄ - 0.5 Er ₂ O ₃ -zAgCl ($0.0 \le z \le 1.5 \text{ mol}\%$)	149	

5.15	SPR band position of Ag nanoparticles of (59.5-z)P ₂ O ₅ -	
	$20.0 MgO - 20.0 ZnSO_4 - 0.5 Er_2O_3 - zAgCl (0.0 \le z \le 1.5)$	
	mol%)	149
5.16	Variation of (a) optical band gap energy and (b) Urbach	
	energy of $(59.5-y)P_2O_5-20.0MgO-20.0ZnSO_4-$	
	$0.5 \text{Sm}_2 \text{O}_3$ -yAgCl ($0.0 \le y \le 0.5 \text{ mol}\%$) glass as a	
	function of Ag nanoparticles concentration	152
5.17	Variation of (a) optical band gap energy and (b) Urbach	
	energy of $(59.5-y)P_2O_5-20.0MgO-20.0ZnSO_4-$	
	$0.5 Dy_2 O_3$ -yAgCl ($0.0 \le y \le 0.5 \text{ mol}\%$) glass as a	
	function of Ag nanoparticles concentration	153
5.18	Variation of (a) optical band gap energy and (b) Urbach	
	energy of $(59.5\text{-}z)P_2O_5\text{-}20.0MgO\text{-}20.0ZnSO_4\text{-}0.5Er_2O_3\text{-}$	
	$zAgCl (0.0 \le z \le 1.5 \text{ mol}\%)$ glass as a function of Ag	
	nanoparticles concentration	154
5.19	TEM images of sample (a) confirming the existence of	
	spherical nanoparticles and (b) Histogram of the	
	distribution of nanoparticles in 59.0P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ -0.5Sm ₂ O ₃ -0.5AgCl glass sample	155
5.20	TEM images of sample (a) confirming the existence of	
	spherical nanoparticles and (b) Histogram of the	
	distribution of nanoparticles in 59.0P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ -0.5Dy ₂ O ₃ -0.5AgCl glass sample	155
5.21	TEM images of sample (a) confirming the existence of	
	spherical nanoparticles and (b) Histogram of the	
	distribution of nanoparticles in 59.0P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ -0.5Er ₂ O ₃ -0.5AgCl glass sample	156
5.22	Luminescence spectra of (59.5-y)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ - 0.5 Sm ₂ O ₃ -yAgCl ($0.0 \le y \le 0.5$ mol%)	
	glasses. Inset shows the luminescence spectra in the	
	region of the $670 \le \lambda \le 750 \text{ nm}$	157
5.23	Relative intensity of emissions after (I) and before (I_0)	
	presenting NP of (59.5-y)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	

	$0.5 \text{Sm}_2 \text{O}_3$ -yAgCl ($0.0 \le y \le 0.5 \text{ mol}\%$) as a function	
	of Ag nanoparticles concentration	158
5.24	Schematic energy level diagram of 59.3P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $0.5Sm_2O_3$ - $0.2AgCl$ glass	158
5.25	Luminescence spectra of the (59.5-y)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ - 0.5 Dy ₂ O ₃ -yAgCl ($0.0 \le y \le 0.5$ mol%)	
	glasses. Inset shows the luminescence spectra in the	
	region of the $630 \le \lambda \le 790 \text{ nm}$	159
5.26	Relative intensity of emissions after (I) and before (I_0)	
	presenting NP of (59.5-y)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5 \mathrm{Dy_2O_3}$ -yAgCl ($0.0 \le y \le 0.5 \mathrm{mol\%}$) as a function of	
	Ag nanoparticles concentration	160
5.27	Schematic energy level diagram of 59.3P ₂ O ₅ -20.0MgO-	
	$20.0ZnSO_4$ - $0.5Dy_2O_3$ - $0.2AgCl$ glass	161
5.28	Luminescence spectra ($\lambda_{exc} = 476 \text{ nm}$) of Schematic	
	energy level diagram of (59.5-z)P ₂ O ₅ -20.0MgO-	
	20.0 ZnSO ₄ - 0.5 Er ₂ O ₃ -zAgCl ($0.0 \le z \le 1.5 \text{ mol}\%$)	
	glasses	162
5.29	Relative intensity of emissions after (I) and before (I_0)	
	presenting NP of (59.5-z)P ₂ O ₅ -20.0MgO-20.0ZnSO ₄ -	
	$0.5 \mathrm{Er_2O_3}$ -zAgCl ($0.0 \le z \le 1.5 \mathrm{mol\%}$) as a function of	
	Ag nanoparticles concentration	163
5.30	Schematic energy level diagram of 59.0P ₂ O ₅ -20.0MgO-	
	20.0ZnSO ₄ -0.5Er ₂ O ₃ -0.5AgCl glass	164
5.31	Ag nanoparticles concentration dependent variation of	
	JO parameters	166
5.32	Ag nanoparticles concentration dependent variation of	
	JO parameters	169
5.33	Ag nanoparticles concentration dependent variation of	
	JO parameters	172

LIST OF ABBREVIATIONS

BO Bridging Oxygen
CB Conduction Band
CR Cross Relaxation
CW Continuous Wave
DTP Dithiophosphate
ET Energy Transfer

EDFA Erbium Doped Fiber Amplifiers

ESR Electron-Spin Resonance
FTIR Fourier Transform Infrared
GSA Ground State Absorption

IR Infrared
JO Judd-Ofelt

LSPR Localized Surface Plasmon Resonance

LFE Local Field Effect

NBO Non-Bridging Oxygen

NIR Near Infrared

NMR Nuclear Magnetic Resonance

NR Non-Radiative

PL Photoluminescence

RD Radiative Decay

RE Rare Earth

SPR Surface Plasmon Resonance

TEM Transmission Electron Microscope

UV Ultraviolet

VB Valence Band

VIS Visible

XRD X-Ray Diffraction

LIST OF SYMBOLS

 ρ_{ext} External Charge

2θ Angle of DiffractionA Radiative Probability

 A_{ed} Electric-Dipole Transition Probability

A_{md} Magnetic-Dipole Transition Probability

B Magnetic Induction

C Speed of Light

d Dielectric Displacement

e Charge of Electron

E Electric Field

 E_{opt}^{dir} Direct Optical Band Gap E_{opt}^{indir} Indirect Optical Band Gap

F Field Strength

 ΔE Urbach Energy

 f_{cal} Experimental Oscillator Strength f_{exp} Experimental Oscillator Strength

H Magnetic Field

I Intensity

J_{ext} Current Densities

K Wave vector

m Mass of Electron

M_{av} Average Molecular Weight

n Refractive indexN Concentration

 N_A Avogadro's number

 r_p Polaron Radius

 r_i Inter Nuclear Distance

 R_m Molar Refraction

 S_{ed} , S_{md} Electric and Magnetic Dipole Line Strengths

T Temperature

 T_c Crystallization Temperature

 T_g Glass Transition Temperature

 T_m Melting Temperature

t Time

 $\|U^{(i)}\|^2$ Reduced Matrix Elements

 V_M Molar Volume

W Weight

α Absorption Co-efficient

 α_m Molar Polarizability

 β Branching Ratio

 ε Dielectric Function

 ε_0 Permittivity of Volume

h Plank's Constantρ Density of Glass

 σ_{emi} Emission Cross-Section

 $\eta(v)$ Molar Absorptivity

 Ω_i Judd-Ofelt Intensity Parameters

 δ_{rms} Root Mean Square Deviation between Experimental and

Calculated Oscillator Strengths

 λ Wavelength

au Lifetime

v Wavenumber

|(S, L)| Electronic State of an Element Defined by its Spin, Orbital and

Total Momentums

 σ_P^E Stimulated Emission Cross-Section

 $\Delta \lambda_{eff}$ Effective Band Width

LIST OF APPENDICES

APPEN	DIX	TITLE	PAGE
Δ	List of Publications		209

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The history of glass may extend back in time to the formation of the earth as mentioned by Porai-Koshits (1990) and Vogel (1994). About thousands of years ago, the first glass prepared by man in furnaces was applied in the ancient art of pottery (Shelby, 2005). The nature of the glass during those old days remained mysterious and unexplored until later. Although some systematic studies on glass composition and their properties along with growth of new glasses occurred, glass preparation with sufficient homogeneity was impossible until 1800 when a new fabrication method was developed by Guinad and Fraunhofer. The glass is capable to be modified both chemical and physical properties of the material by changing the compositions. Compositional modifications which are accompanied by distinct alterations in atomic-level glass structure lead to variations in glass properties. The ability to monitor these atomic-level structure changes as a function of composition may eventually lead to a better understanding of structure/property relationships in glasses.

Besides, due to primitive utility of oxide glasses as decorative pottery to the biocompatible and laser communication technology, they have been and will be used as potential materials in many aspects of ordinary life (Concas *et al.*, 1998; Farok *et al.*, 1994; Wang *et al.*, 1993; Weber, 1990). The most important oxide glasses are silicate glasses (SiO₂), borate glasses (B₂O₃), germinate glasses (GeO₂) and phosphate glasses (P₂O₅). Silicate glasses are of interest with regard to their commercial application structural properties and optical application. Borate glasses are of interest

due to their structures. Rare earth (RE) doped borate glasses have a very high refractive index. Germanium glasses have the important property of transmission of longer wavelength infrared than the silicate glasses but they are limited due to the high cost. Among the three known oxides of phosphates P₂O₃, P₂O₄ and P₂O₅; only P₂O₅ forms glasses. The structure of binary phosphate glasses is based on tetrahedral units. Phosphate glasses can be made with a range of structures from a cross-linked network of Q³ tetrahedra (vitreous P₂O₅) to polymer-like metaphosphate chains of Q³ tetrahedra to invert glasses based on small pyro-Q¹ and orthophosphate (Q⁰) anions, depending on the [O]/[P] ratio as set by glass composition (Brow, 2000).

The properties of phosphate glasses such as relatively high thermal expansion coefficients, low optical dispersions and low glass transition temperatures compared with their silicate or borate glasses, make them technologically important material in spite of their hygroscopic and poor chemical durability properties (Brow, 2000; Moustafa and El-Egili, 1998). However, most of the existing binary and ternary glass systems contain toxic elements, chemically unstable, highly reactive with water, display powerful devitrification tendency together with complex preparation conditions. During past two decades, continuous efforts have been made to overcome these limitations, where sulfophosphate glasses played a vital role (Da *et al.*, 2011; Da *et al.*, 2010).

Sulphate containing alkali/alkaline phosphate glasses are suitable for electrolytic applications due to their unique electrical properties (Scholz, 2011). The SO₄²⁻ ions largely dissolve in the phosphate glass matrix. There is a weak interaction between SO₄²⁻ ions and metaphosphate ions, resulting in a small dynamic concentration of dithiophosphate (DTP) units. Interaction between these two ions provides suitable environment for incorporation of RE ions to offer high luminescence efficiencies with minimal non-radiative (NR) losses in these glasses. Moreover, the interaction between sulphate and phosphate ions can be modified by the presence of different modifier oxides. Both disruption of the glass network and formation of non-bridging oxygens (NBO) groups are due to the incorporation of alkali-earth oxides in the glass structure (Vogel, 1994). Regard to these facts, structural modifications occur by incorporation of magnesium oxide (MgO) (as modifier) to the zinc sulfophosphate

glasses. REs doped magnesium-zinc-sulfophosphate glasses are technologically prospective due to their several unique attributes. The RE doped glasses have gained some attention due to high dielectric constants, a wide band infrared transmittance and large third order non-linear optical susceptibility (Auzel *et al.*, 2001; Chillcce *et al.*, 2006; Inoue *et al.*, 2002b; Jha *et al.*, 2000; Kumar *et al.*, 2003; Mori *et al.*, 1997; Prakash *et al.*, 2001; Souza *et al.*, 2002; Tanabe *et al.*, 2002).

Amongst various RE ions, samarium (Sm³⁺) reveals most remarkable luminescence properties (Brahmachary *et al.*, 2015; Carnall *et al.*, 1968; Lin *et al.*, 2007; Venkatramu *et al.*, 2007). Sm³⁺ ion is well-suited to explore the energy transfer processes because of its lowest emitting level ⁴G_{5/2} possesses relatively higher quantum efficiency and shows different quenching channels. Sm³⁺ ions are added to glass to create prominent orange-red color or unique optical properties to make lasers for special applications (Elisa *et al.*, 2013; Lim *et al.*, 2013; Thomas *et al.*, 2013). In its usual oxidized form, it is added to ceramics and glasses to increase the absorption of infrared light. Sm³⁺ ions are also combined with many other substances under relatively mild conditions. Looking at these wealthy prospects, sulfophosphate system with Sm³⁺ are prepared in order to achieve lasing glass material. In addition, Sm³⁺ ions are exploited for high-density optical storage, under sea communication and color displays.

Another lanthanide ion chosen for the present study is dysprosium (Dy³⁺) ion. Since the ${}^6F_{11/2}$ (${}^6H_{9/2}$) $\rightarrow {}^6H_{15/2}$ transition of Dy³⁺ around 1.3 µm is found to be useful for the optical amplification and its visible upconversion emission can be used as a solid state laser, this RE ion received much practical attention (Heo and Shin, 1996; Kityk *et al.*, 2002; Yang *et al.*, 2005). Dy³⁺ gives very strong emission in yellow region, which is expected to give lasing from ${}^4F_{9/2} \rightarrow {}^6H_{7/2}$, ${}^4F_{9/2} \rightarrow {}^6H_{9/2}$, ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ and ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$ consider as emission transitions for Dy³⁺ ions in the visible and near infrared (NIR) regions. Among these emission transitions, ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ (electric dipole) in yellow and ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$ (magnetic dipole) in blue regions are the main transitions (Babu and Jayasankar, 2000).

Erbium (Er³⁺) as a RE ion has played an important role in the development of broadband erbium-doped fiber amplifiers (EDFA) (Auzel *et al.*, 2001; Jha *et al.*, 2000; Kumar *et al.*, 2003; Prakash *et al.*, 2001; Tanabe *et al.*, 2002). Optical properties of Er³⁺ ion in various glasses make it as a promising materials for the optical application for instance, it can be used as a solid-state laser due to its 1.54 μ m emission and it can be used as a solid-state laser because of its visible upconversion emission.

RE doped glasses are applicable in various practical application such as optical amplifiers, optical recording, infrared sensors, laser active media and infrared-tovisible converters (Xiao and Yang, 2007). Earlier, the good characteristics of RE doped glasses such as nonlinear optical performance and optical bi-stability have been reported. Besides, high RE ions solubility, good thermal and mechanical stability, low cutoff phonon energy, higher refractive indices than the silicates and fluoride glasses, large amplification bandwidth and enhanced luminescence are the remarkable characteristics of RE doped glasses (Liu et al., 2007; Sahar et al., 2008). As the results of these notable advantages, they become promising candidates for photonic applications such as window materials and optical memory (Xiao and Yang, 2007). In order to make devices with optimized photonic properties, usually, the RE ion concentration needs to be kept low to minimize luminescence quenching (Jlassi et al., 2010; Shen et al., 2007). Since the absorption cross-section of majority of RE ions in such glasses are very small, some modifications are needed to improve it for applications (Lin et al., 2004). One way is to exploit energy transfer from a RE with a large absorption cross-section to the RE with small absorption cross-section (Lin et al., 2003b; Lin et al., 2004; Madden and Vu, 2009; Mirgorodsky et al., 2006; Rai and Rai, 2007). RE ion environment by embedding metallic nanoparticles can be modified to compensate the harmful effect of quenching (Amjad et al., 2013; Eroni et al., 2009; Kassab et al., 2008; Kassab et al., 2009; Li et al., 2004; Lin et al., 2008; Rai and Rai, 2007; Singh et al., 2010; Ueda et al., 2009).

Glasses embedded with metallic nanoparticles have received much attention because of their notable optical properties that could lead to the development of new solid-state short-wavelength lasers, biological labelling and efficient solar cells (Švrček *et al.*, 2004). The luminescence intensity RE doped glasses can be enhanced

by embedding the semiconducting and metallic nanoparticles. The excitation or luminescence wavelength is near to the surface plasmon resonance (SPR) wavelength for metallic nanoparticles and must be greater than optical band gap energy for semiconducting nanoparticles. The preparation and characterization of RE doped glasses embedded with metallic nanoparticles have been studied by many researchers in the past few years (Almeida et al., 2008; Carmo et al., 2009; Jime'nez et al., 2010). Several attempts have been made to indicate that luminescence efficiency of the glass matrix containing RE ions can be enhanced by the presence of nanoparticles inside it (Carmo et al., 2009; de Almeida et al., 2008; Manoj Kumar et al., 2003; Mattarelli et al., 2007). In all these studies, the large local field on the RE ions present within the vicinity of metallic nanoparticles and the energy transfer from metallic nanoparticles to the RE ions are responsible for luminescence enhancement. In the previous reported studies, various nanoparticles such as Au, Ag, AgCl, CuCl, CdSe, CdTe have been introduced into glasses to improve the optical nonlinearity to a big extent (Amjad et al., 2013; Kassab et al., 2009; Lin et al., 2003b; Lin et al., 2008; Mirgorodsky et al., 2006).

Size-controlled optical properties of silver (Ag) nanoparticles are promising material for technological applications such as diffraction elements, optical filters, nanoplasmonic devices, bi-sensors, and nonlinear media (Nikonorov *et al.*, 2010). Ag nanoparticles can be made in various media such as water solutions, polymers, glasses, and crystalline media. In addition, the inorganic glasses are the unique matrix for Ag nanoparticles formation. Ag nanoparticles size within the wide range can be controlled by means of altering the temperature and duration of thermal processing in the inorganic glasses due to the wide temperature range of glass viscosity growth in these glasses (Nikonorov *et al.*, 2010). In regard to this fact, controlling and exploring all the stages of Ag nanoparticles formation including the starting stage is possible in this kind of matrix (Nikonorov *et al.*, 2010).

Few studies have been made on metallic nanoparticles embedded RE doped phosphate glasses. Silicate or tellurite are the usual host matrix that phenomenon of enhanced luminescence have been investigated. Phosphate glasses are widely applicable in photonic applications as a consequence of their mechanical properties and ability to accept higher concentration of RE ions, however, they have not received much attention in the field of plasmonics or nanophotonics. Specifically, there is no report on metallic nanoparticles embedded inside the magnesium-zinc-sulfophosphate glass matrix with RE ions. Regards to this matter, deeper study of the effect of nanoparticles on luminescence enhancement and energy transfer processes in the magnesium-zinc-sulfophosphate glass matrix is necessary.

1.2 Problem Statement

Since phosphate glasses also have a very high solubility for RE ions, many researchers have been reported the properties of phosphate glasses doped with RE ions. For example, the photoluminescence properties of the Dy³⁺-doped and Dy³⁺-Tm³⁺ codoped phosphate glasses have been studied by absorption, excitation and emission spectra (Liang et al., 2008). The observation of white light is allowed when the glasses are excited by the ultraviolet light because a combination of blue and yellow emissions has emerged in the glasses. Spectral properties of Nd ³⁺ and Dy ³⁺ ions in different phosphate glasses have been studied by Seshadri et al. (2010) and several spectroscopic parameters such as Judd-Ofelt intensity parameters, radiative transition probabilities and radiative lifetimes of certain excited states of these RE ions in these glass matrices have been reported. Other researchers (Kesavulu and Jayasankar, 2012; Lim et al., 2013; Rao et al., 2011; Reddy et al., 2011; Sreedhar et al., 2013) investigated the effects of RE ions on luminescence properties of the glasses. Although a large number of studies has been done on luminescence and structural properties of RE doped phosphate glasses, the luminescence and structural features of RE^{3+} (RE = Sm, Dy and Er) doped magnesium-zinc-sulfophosphate glasses are rarely investigated.

Moreover, emission characteristics of RE ions are enhanced by the presence of the metal. The preparation and characterization of RE doped glasses embedded with metallic nanoparticles have been studied by many researchers in the past few years (Carmo *et al.*, 2009; de Almeida *et al.*, 2008). For instance, Naranjo *et al.* (2005) reported down conversion luminescence enhancement for Pr³⁺-doped lead-germanate

glass containing silver nanoparticles. But, the influence of embedded silver nanoparticles on optical and structural features of RE^{3+} (RE = Sm, Dy and Er) doped magnesium-zinc-sulfophosphate glasses has not been studied yet.

1.3 Research Objectives

In line with the aim of the research, the followings are the research objectives:

- i. To determine the structural and physical features of RE^{3+} (RE = Sm, Dy and Er) doped magnesium-zinc-sulfophosphate glass with and without incorporation of Ag nanoparticles
- ii. To determine the influence of RE³⁺ (RE = Sm, Dy and Er) concentration on the optical properties of magnesium-zinc-sulfophosphate glass with and without Ag inclusion
- iii. To analyse the Judd-Ofelt analysis for magnesium-zinc-sulfophosphate in the presence of various concentration of RE^{3+} (RE = Sm, Dy and Er) and Ag nanoparticles

1.4 Significance of Research

The importance of the study is to obtain high efficiency of luminescence in glasses. The significant of research are as follows:

i. To demonstrate the influence of the RE^{3+} (RE = Sm, Dy and Er) on the structural and optical properties of magnesium-zinc-sulfophosphate glasses. Therefore, the outcomes of the study contribute better understanding towards the behaviour of the RE^{3+} (RE = Sm, Dy and Er) on the luminescence enhancement since these glasses are applicable in many optical devices due to their potential applications.

ii. To study the effects of the Ag nanoparticles on the optical properties of RE³⁺ (RE = Sm, Dy and Er) doped magnesium-zinc-sulfophosphate glasses. Consequently, it provides promising materials with enhanced optical properties for photonic devices, such as, sensors, solid state lasers, and optical switches.

1.5 Scope of the Study

In this study, RE³⁺ (RE = Sm, Dy and Er) doped and undoped magnesium-zinc-sulfophosphate glass as well as RE doped magnesium-zinc-sulfophosphate glass containing Ag nanoparticles were prepared. Investigation of structural and optical properties were the main purposes of the study. The structural properties can be determined by X-Ray diffraction (XRD) spectroscopy, Fourier Transformed Infrared (FTIR), and Raman spectroscopy. Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) and photoluminescence (PL) spectroscopy were operated to describe the optical properties. In order to observe the small structure of nanoparticles embedded in samples, the Transmission Electron Microscope (TEM) was utilized.

1.6 Outline of Thesis

This thesis is composed of six chapters and three appendices. The summaries of the chapters are as follows:

Chapter 1 presents the background of the study, statement of the problems, research objectives, scope of the study and brief review on characterization tools.

Chapter 2 explains briefly about Judd-Ofelt theory. Furthermore, literature are invoked to describe the sulfophosphate glass.

Chapter 3 explains the experimental procedure to synthesize the studied sample glass. In addition, instruments and their fundamental concepts which have been operated to characterize the sample glass are also introduced.

Chapter 4 describes the effect of RE^{3+} (RE = Sm, Dy and Er) ions on structural and optical properties of magnesium-zinc-sulfophosphate glass.

Chapter 5 presents general descriptions of the influence of the nanoparticles on structural and optical properties of RE^{3+} (RE = Sm, Dy and Er) doped magnesium-zinc-sulfophosphate glass. In this chapter, new RE^{3+} (RE = Sm, Dy and Er) doped glasses containing metallic Ag nanoparticles were prepared using melt quenching technique. They were characterized to investigate the structural and optical properties.

Chapter 6 gives the conclusion of the research and some recommendations for future works.

REFERENCES

- Agnesi, A., Dallocchio, P., Pirzio, F., and Reali, G. (2009). Compact sub-100-fs Nd: silicate laser. *Optics Communications*, 282(10), 2070-2073.
- Al-Ani, S., and Higazy, A. A. (1991). Study of optical absorption edges in MgO-P₂O₅ glasses. *Journal of materials science*, 26(13), 3670-3674.
- Ali, A. (2009). Optical properties of Sm³⁺-doped CaF₂ bismuth borate glasses. *Journal of Luminescence*, 129(11), 1314-1319.
- Ardelean, I., Rusu, D., Andronache, C., and Ciobotă, V. (2007). Raman study of xMeO·(100−x)[P₂O₅· Li₂O](MeO⇒ FeO₃ or V₂O₅) glass systems. *Materials Letters*, 61(14), 3301-3304.
- Arkhipov, V., Ivanova, L., Mamoshin, V., Buler, P., Lushchai, O., and Galnykina, L. (1986). A spectroscopic study of structural features in alkali-bearing sulfate-phosphate glasses. *Journal of Applied Spectroscopy*, 45(3), 976-978.
- Amjad, R. J., Sahar, M., Ghoshal, S., Dousti, M., Riaz, S., Samavati, A. R, Jamaludin, M.A. and Naseem, S. (2013). Plasmon-Enhanced Upconversion Fluorescence in Er³⁺: Ag Phosphate Glass: the Effect of Heat Treatment. *Chinese Physics Letters*, 30(2), 027301.
- Annapoorani, K., Murthy, N. S., Ravindran, T., and Marimuthu, K. (2016). Influence of Er³⁺ ion concentration on spectroscopic properties and luminescence behavior in Er³⁺ doped strontium telluroborate glasses. *Journal of Luminescence*, 171, 19-26.
- Auzel, F., Bonfigli, F., Gagliari, S., and Baldacchini, G. (2001). The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity. *Journal of luminescence*, 94, 293-297.
- Babu, A. M., Jamalaiah, B., Kumar, J. S., Sasikala, T., and Moorthy, L. R. (2011). Spectroscopic and photoluminescence properties of Dy³⁺-doped lead tungsten

- tellurite glasses for laser materials. *Journal of Alloys and Compounds*, 509(2), 457-462.
- Babu, P., and Jayasankar, C. (2000). Spectroscopic properties of Dy³⁺ ions in lithium borate and lithium fluoroborate glasses. *Optical materials*, 15(1), 65-79.
- Babu, P., Seo, H. J., Kesavulu, C., Jang, K. H., and Jayasankar, C. (2009a). Thermal and optical properties of Er³⁺-doped oxyfluorotellurite glasses. *Journal of Luminescence*, 129(5), 444-448.
- Babu, S. S., Babu, P., Jayasankar, C., Tröster, T., Sievers, W., and Wortmann, G. (2009b). Optical properties of Dy³⁺-doped phosphate and fluorophosphate glasses. *Optical Materials*, 31(4), 624-631.
- Babu, Y. C. R., Naik, P. S. R., Kumar, K. V., Prasad, S., and Kumar, A. S. (2012). Spectral studies of Erbium doped heavy metal borophosphate glass systems. *Physica B: Condensed Matter*, 407(4), 705-711.
- Bach, H., and Krause, D. (2013). *Analysis of the composition and structure of glass and glass ceramics*: Springer Science & Business Media.
- Barnes, W. L., Dereux, A., and Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. *Nature*, 424(6950), 824-830.
- Basavapoornima, C., and Jayasankar, C. (2014). Spectroscopic and photoluminescence properties of Sm³⁺ ions in Pb-K-Al-Na phosphate glasses for efficient visible lasers. *Journal of Luminescence*, 153, 233-241.
- Basavapoornima, C., Jayasankar, C., and Chandrachoodan, P. (2009). Luminescence and laser transition studies of Dy³⁺: K-Mg-Al fluorophosphate glasses. *Physica B: Condensed Matter*, 404(2), 235-242.
- Bingham, P., Hand, R., Hannant, O., Forder, S., and Kilcoyne, S. H. (2009). Effects of modifier additions on the thermal properties, chemical durability, oxidation state and structure of iron phosphate glasses. *Journal of Non-Crystalline Solids*, 355(28), 1526-1538.
- Boehm, L., Reisfeld, R., and Spector, N. (1979). Optical transitions of Sm³⁺ in oxide glasses. *Journal of Solid State Chemistry*, 28(1), 75-78.
- Borrelli, N., and McSwain, B. (1963). col. «The infra-red spectra of vitreous boron oxide and sodium borate glasses». *Physics and Chemistry of Glasses*, 4(1), 11-21.

- Bouzidi, C., Elhouichet, H., and Moadhen, A. (2011). Yb³⁺ effect on the spectroscopic properties of Er-Yb codoped SnO₂ thin films. *Journal of Luminescence*, 131(12), 2630-2635.
- Brahmachary, K., Rajesh, D., and Ratnakaram, Y. (2015). Radiative properties and luminescence spectra of Sm³⁺ ion in zinc–aluminum–sodium-phosphate (ZANP) glasses. *Journal of Luminescence*, 161, 202-208.
- Brow, R. K. (2000). Review: the structure of simple phosphate glasses. *Journal of Non-Crystalline Solids*, 263, 1-28.
- Brow, R. K., Tallant, D. R., Hudgens, J. J., Martin, S. W., and Irwin, A. D. (1994). The short-range structure of sodium ultraphosphate glasses. *Journal of Non-Crystalline Solids*, 177, 221-228.
- Brow, R. K., Tallant, D. R., Myers, S. T., and Phifer, C. C. (1995). The short-range structure of zinc polyphosphate glass. *Journal of Non-Crystalline Solids*, 191(1), 45-55.
- Burling, L. D. (2006). *Novel phosphate glasses for bone regeneration applications*. University of Nottingham.
- Carmo, A., Bell, M., Anjos, V., De Almeida, R., Da Silva, D. M., and Kassab, L. (2009). Thermo-optical properties of tellurite glasses doped with Eu³⁺ and Au nanoparticles. *Journal of Physics D: Applied Physics*, 42(15), 155404.
- Carnall, W., Fields, P., and Rajnak, K. (1968). Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, and Tm³⁺. *The Journal of Chemical Physics*, 49(10), 4424-4442.
- Carnall, W. T., Fields, P., and Wybourne, B. (1965). Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr³⁺, Nd³⁺, Er³⁺, Tm³⁺, and Yb³⁺. *The Journal of Chemical Physics*, 42(11), 3797-3806.
- Chen, H., Leblanc, M., and Schinn, G. (2003). Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers. *Optics Communications*, 216(1), 119-125.
- Chicklis, E., Naiman, C., Folweiler, R., Gabbe, D., Jenssen, H., and Linz, A. (1971).

 High-Efficiency Room-Temperature 2.06-µm Laser Using Sensitized Ho³⁺:

 YLF. *Applied Physics Letters*, 19(4), 119-121.
- Chillcee, E., Rodriguez, E., Neves, A., Moreira, W., César, C., and Barbosa, L. (2006). Er³⁺-Tm³⁺ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band. *Optical Fiber Technology*, 12(2), 185-195.

- Concas, G., Congiu, F., Spano, G., Speghini, A., and Gatterer, K. (1998). Mössbauer investigation of rare earth sites in europium containing glasses. *Journal of Non-Crystalline Solids*, 232, 341-345.
- Da, N., Grassmé, O., Nielsen, K. H., Peters, G., and Wondraczek, L. (2011). Formation and structure of ionic (Na, Zn) sulfophosphate glasses. *Journal of Non-Crystalline Solids*, 357(10), 2202-2206.
- Da, N., Krolikowski, S., Nielsen, K. H., Kaschta, J., and Wondraczek, L. (2010). Viscosity and softening behavior of alkali zinc sulfophosphate glasses. *Journal of the American Ceramic Society*, 93(8), 2171-2174.
- Dai, S., Yu, C., Zhou, G., Zhang, J., Wang, G., and Hu, L. (2006). Concentration quenching in erbium-doped tellurite glasses. *Journal of Luminescence*, 117(1), 39-45.
- Damak, K., Rüssel, C., and Maâlej, R. (2014). White light generation from Dy³⁺ doped tellurite glass. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 134, 55-63.
- da Silva, D. M., Kassab, L. R. P., Lüthi, S. R., de Araújo, C. B., Gomes, A. S., and Bell, M. J. V. (2007). Frequency upconversion in Er³⁺ doped PbO-GeO₂ glasses containing metallic nanoparticles. *Applied Physics Letters*, 90(8), 081913.
- Davis, E., and Mott, N. (1970). Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. *Philosophical Magazine*, 22(179), 0903-0922.
- de Almeida, R., da Silva, D. M., Kassab, L. R., and de Araujo, C. B. (2008). Eu³⁺ luminescence in tellurite glasses with gold nanostructures. *Optics Communications*, 281(1), 108-112.
- Desirena, H., De la Rosa, E., Diaz-Torres, L., and Kumar, G. (2006). Concentration effect of Er³⁺ ion on the spectroscopic properties of Er³⁺ and Yb³⁺/Er³⁺ codoped phosphate glasses. *Optical Materials*, 28(5), 560-568.
- Desirena, H., De la Rosa, E., Shulzgen, A., Shabet, S., and Peyghambarian, N. (2008). Er³⁺ and Yb³⁺ concentration effect in the spectroscopic properties and energy transfer in Yb³⁺/Er³⁺ codoped tellurite glasses. *Journal of Physics D: Applied Physics*, 41(9), 095102.
- Dimitrov, V., and Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. *Journal of Applied Physics*, 79(3), 1736-1740.

- Dousti, M. R., Ghoshal, S., Amjad, R. J., Sahar, M., Nawaz, F., and Arifin, R. (2013). Structural and optical study of samarium doped lead zinc phosphate glasses. *Optics Communications*, 300, 204-209
- ElBatal, F. H., Ouis, M. A., Morsi, R. M., and Marzouk, S. Y. (2010). Interaction of gamma rays with some sodium phosphate glasses containing cobalt. *Journal of Non-Crystalline Solids*, 356(1), 46-55
- Elisa, M., Sava, B., Vasiliu, I., Monteiro, R., Veiga, J., Ghervase, L., et al. (2013). Optical and structural characterization of samarium and europium-doped phosphate glasses. *Journal of Non-Crystalline Solids*, 369, 55-60.
- El-Mallawany, R. (1999). Tellurite glasses: Part 2. Anelastic, phase separation, Debye temperature and thermal properties. *Materials Chemistry and Physics*, 60(2), 103-131.
- Eroni, F., dos Santos, P., Fávero, F., Gomes, A., Xing, J., Chen, Q., et al. (2009). Evaluation of the third-order nonlinear optical properties of tellurite glasses by thermally managed eclipse Z-scan. *Journal of Applied Physics*, 105(2).
- Farok, H., Senin, H., Saunders, G., Poon, W., and Vass, H. (1994). Optical and ultrasonic properties of europium phosphate glasses. *Journal of Materials Science*, 29(11), 2847-2859.
- Fayon, F., Massiot, D., Suzuya, K., and Price, D. L. (2001). ³¹P NMR study of magnesium phosphate glasses. *Journal of Non-Crystalline Solids*, 283(1), 88-94.
- Ganguli, M., Bhat, M. H., and Rao, K. J. (1999). Lithium ion transport in Li₂SO₄-Li₂O-P₂O₅ glasses. *Solid State Ionics*, 122(1–4), 23-33.
- Gervais, F., Blin, A., Massiot, D., Coutures, J., Chopinet, M., and Naudin, F. (1987). Infrared reflectivity spectroscopy of silicate glasses. *Journal of Non-Crystalline Solids*, 89(3), 384-401.
- Görller-Walrand, C., and Binnemans, K. (1998). Spectral intensities of ff transitions. Handbook on the Physics and Chemistry of Rare Earths, 25, 101-264.
- Halimah, M., Daud, W., Sidek, H., Zaidan, A., and Zainal, A. (2010). Optical properties of ternary tellurite glasses. *Materials Science Poland*, 28, 173-180.
- Hapanowicz, R., and Condrate Sr, R. (1996). Raman spectral investigation of sulfate inclusions in sodium calcium silicate glasses. *Journal of Solid State Chemistry*, 123(1), 183-185.

- Hauret, G., Vaills, Y., Luspin, Y., Gervais, F., and Coté, B. (1994). Similarities in the behaviour of magnesium and calcium in silicate glasses. *Journal of Non-Crystalline Solids*, 170(2), 175-181.
- Heo, J., and Shin, Y. B. (1996). Absorption and mid-infrared emission spectroscopy of Dy³⁺ in Ge-As (or Ga)-S glasses. *Journal of Non-Crystalline Solids*, 196, 162-167.
- Hoppe, U. (1996). A structural model for phosphate glasses. *Journal of Non-Crystalline Solids*, 195(1), 138-147
- Hoppe, U., Walter, G., Kranold, R., Stachel, D., and Barz, A. (1995). The dependence of structural peculiarities in binary phosphate glasses on their network modifier content. *Journal of Non-Crystalline Solids*, 192, 28-31.
- Im, S. H., Na, Y. H., Kim, N. J., Kim, D. H., Hwang, C. W., and Ryu, B. K. (2010). Structure and properties of zinc bismuth phosphate glass. *Thin Solid Films*, 518(24), e46-e49.
- Inoue, H., Soga, K., and Makishima, A. (2002). Simulation of the optical properties of Er: ZBLAN glass. *Journal of Non-Crystalline Solids*, 298(2), 270-286.
- Inoue, S., Nukui, A., Yamamoto, K., Yano, T., Shibata, S., and Yamane, M. (2002). Refractive index patterning of tellurite glass surfaces by ultra short pulse laser spot heating. *Journal of Materials Science*, 37(16), 3459-3465.
- Jackson John, D. (1999). Classical electrodynamics: John Wiley & Sons, Inc., New York, NY.
- Jacobs, R. R., and Weber, M. J. (1976). Dependence of the ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$ induced-emission cross section for Nd³⁺ on glass composition. *Quantum Electronics*, *IEEE Journal of*, 12(2), 102-111.
- Jamalaiah, B., Kumar, J. S., Babu, A. M., Suhasini, T., and Moorthy, L. R. (2009). Photoluminescence properties of Sm³⁺ in LBTAF glasses. *Journal of Luminescence*, 129(4), 363-369.
- Jamalaiah, B., Moorthy, L. R., and Seo, H. J. (2012). Effect of lead oxide on optical properties of Dy³⁺ ions in PbO-H₃BO₃-TiO₂-AlF₃ glasses. *Journal of Non-Crystalline Solids*, 358(2), 204-209.
- Jayasankar, C., and Rukmini, E. (1997). Spectroscopic investigations of Dy³⁺ ions in borosulphate glasses. *Physica B: Condensed Matter*, 240(3), 273-288.

- Jayasimhadri, M., Jang, K., Lee, H. S., Chen, B., Yi, S.-S., and Jeong, J.-H. (2009). White light generation from Dy³⁺-doped ZnO-B₂O₃-P₂O₅ glasses. *Journal of Applied Physics*, 106(1), 013105.
- Jayasimhadri, M., Moorthy, L., Kojima, K., Yamamoto, K., Wada, N., and Wada, N. (2005). Er³⁺-doped tellurofluorophosphate glasses for lasers and optical amplifiers. *Journal of Physics: Condensed Matter*, 17(48), 7705.
- Jayasimhadri, M., Moorthy, L., Kojima, K., Yamamoto, K., Wada, N., and Wada, N. (2006a). Optical properties of Dy³⁺ ions in alkali tellurofluorophosphate glasses for laser materials. *Journal of Physics D: Applied Physics*, 39(4), 635.
- Jayasimhadri, M., Moorthy, L., Saleem, S., and Ravikumar, R. (2006b). Spectroscopic characteristics of Sm³⁺-doped alkali fluorophosphate glasses. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 64(4), 939-944.
- Jha, A., Shen, S., and Naftaly, M. (2000). Structural origin of spectral broadening of 1.5-μm emission in Er³⁺-doped tellurite glasses. *Physical Review B*, 62(10), 6215.
- Jiang, S., Myers, M., and Peyghambarian, N. (1998). Er³⁺ doped phosphate glasses and lasers. *Journal of Non-Crystalline Solids*, 239(1), 143-148.
- Jime'nez, J.A. Lysenko, S. Liu, H. Fachini, E., and Cabrera, C.R. (2010). X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass. *Journal* of Luminesence, 130, 163.
- Jlassi, I., Elhouichet, H., Ferid, M., Chtourou, R., and Oueslati, M. (2010). Study of photoluminescence quenching in Er³⁺-doped tellurite glasses. *Optical Materials*, 32(7), 743-747.
- Jørgensen, C. K., and Judd, B. (1964). Hypersensitive pseudoquadrupole transitions in lanthanides. *Molecular Physics*, 8(3), 281-290.
- Jørgensen, C. K., and Reisfeld, R. (1983). Judd-Ofelt parameters and chemical bonding. *Journal of the Less Common Metals*, 93(1), 107-112.
- Judd, B. (1962). Optical absorption intensities of rare-earth ions. *Physical Review*, 127(3), 750
- Kalele, S. A., Tiwari, N. R., Gosavi, S. W., and Kulkarni, S. K. (2007). Plasmon-assisted photonics at the nanoscale. *Journal of Nanophotonics*, 1(1), 012501-012501-012520.

- Karakassides, M., Saranti, A., and Koutselas, I. (2004). Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. *Journal of Non-Crystalline Solids*, 347(1), 69-79
- Karmakar, B., Som, T., Singh, S. P., and Nath, M. (2010). Nanometal-glass hybrid nanocomposites: synthesis, properties and applications. *Transactions of the Indian Ceramic Society*, 69(3), 171-186.
- Karthikeyan, B., and Mohan, S. (2003). Structural, optical and glass transition studies on Nd³⁺-doped lead bismuth borate glasses. *Physica B: Condensed Matter*, 334(3), 298-302.
- Kassab, L. R., de Almeida, R., da Silva, D. M., and de Araojo, C. B. (2008). Luminescence of Tb(3+) doped TeO(2)-ZnO-Na(2) O-PbO glasses containing silver nanoparticles. *Journal of Applied Physics*, 3.
- Kassab, L. R., de Almeida, R., da Silva, D. M., de Assumpção, T. A., and de Araújo,
 C. B. (2009). Enhanced luminescence of Tb³⁺/Eu³⁺ doped tellurium oxide glass containing silver nanostructures. *Journal of Applied Physics*, 3.
- Kesavulu, C., and Jayasankar, C. (2011). White light emission in Dy³⁺-doped lead fluorophosphate glasses. *Materials Chemistry and Physics*, 130(3), 1078-1085.
- Kesavulu, C., and Jayasankar, C. (2012). Spectroscopic properties of Sm³⁺ ions in lead fluorophosphate glasses. *Journal of Luminescence*, 132(10), 2802-2809.
- Kesavulu, C., Sreedhar, V., Jayasankar, C., Jang, K., Shin, D.-S., and Yi, S. S. (2014). Structural, thermal and spectroscopic properties of highly Er³⁺-doped novel oxyfluoride glasses for photonic application. *Materials Research Bulletin*, 51, 336-344.
- Khafagy, A., El-Adawy, A., Higazy, A., El-Rabaie, S., and Eid, A. (2008). Studies of some mechanical and optical properties of:(70-x) TeO₂+15B₂O₃+15P₂O₅+xLi₂O glasses. *Journal of Non-Crystalline Solids*, 354(27), 3152-3158.
- Khor, S., Talib, Z., and Yunus, W. M. (2012). Optical properties of ternary zinc magnesium phosphate glasses. *Ceramics International*, 38(2), 935-940.
- Kim, C.-W., and Day, D. E. (2003). Immobilization of Hanford LAW in iron phosphate glasses. *Journal of Non-Crystalline Solids*, 331(1), 20-31.
- Kim, C.-W., Ray, C., Zhu, D., Day, D. E., Gombert, D., Aloy, A., et al. (2003). Chemically durable iron phosphate glasses for vitrifying sodium bearing waste

- (SBW) using conventional and cold crucible induction melting (CCIM) techniques. *Journal of Nuclear Materials*, 322(2), 152-164.
- Kindrat, I., Padlyak, B., and Drzewiecki, A. (2015). Luminescence properties of the Sm-doped borate glasses. *Journal of Luminescence*, 166, 264-275.
- Kiran, N., and Kumar, A. S. (2013). White light emission from Dy³⁺ doped sodium—lead borophosphate glasses under UV light excitation. *Journal of Molecular Structure*, 1054, 6-11.
- Kityk, I., Wasylak, J., Kucharski, J., and Dorosz, D. (2002). PbO–Bi₂O₃–Ga₂O₃–BaO–Dy³⁺ glasses for IR luminescence. *Journal of Non-Crystalline Solids*, 297(2), 285-289.
- Klimesz, B., Dominiak-Dzik, G., Solarz, P., Żelechower, M., and Ryba-Romanowski, W. (2005). Optical study of GeO₂–PbO–PbF₂ oxyfluoride glass singly doped with Pr³⁺, Nd³⁺, Sm³⁺ and Eu³⁺. *Journal of Alloys and Compounds*, 403(1), 76-85.
- Kreidl, N. J., and Uhlmann, D. R. (1983). *Glass: Science and Technology. Glass Forming Systems*: Academic Press.
- Krupke, W. F. (1966). Optical Absorption and Fluorescence Intensities in Several Rare-Earth-Doped Y₂O₃ and LaF₃ Single Crystals. *Physical Review*, 145(1), 325.
- Kumar, A. R., Rao, C. S., Krishna, G. M., Kumar, V. R., and Veeraiah, N. (2012). Structural features of MoO₃ doped sodium sulpho borophosphate glasses by means of spectroscopic and dielectric dispersion studies. *Journal of Molecular Structure*, 1016, 39-46.
- Kumar, C. S. (2009). Metallic nanomaterials (Vol. 1): John Wiley & Sons.
- Kumar, K. U., Rao, C. S., Jayasankar, C., Babu, S. S., Lucio, J., and Gamez, M. A. M. (2011). Optical properties of Dy³⁺-doped P₂O₅-K2O–MgO/MgF₂–Al₂O₃ glasses. *Physics Procedia*, 13, 70-73.
- Kumar, V., George, A., Knight, J., and Russell, P. (2003). Tellurite photonic crystal fiber. *Optics Express*, 11(20), 2641-2645.
- Lai, Y., Liang, X., Yang, S., Wang, J., Cao, L., and Dai, B. (2011). Raman and FTIR spectra of iron phosphate glasses containing cerium. *Journal of Molecular Structure*, 992(1), 84-88.

- Lakshmikantha, R., Rajaramakrishna, R., Anavekar, R.V., and Ayachit, N.H. (2012). Characterization and structural studies of lithium doped lead zinc phosphate glass system. *Materials Chemistry and Physics*, 133(1), 249-252.
- Lakshminarayana, G., and Qiu, J. (2009). Photoluminescence of Pr³⁺, Sm³⁺ and Dy³⁺: SiO₂–Al₂O₃–LiF–GdF₃ glass ceramics and Sm³⁺, Dy³⁺: GeO₂–B₂O₃–ZnO–LaF₃ glasses. *Physica B: Condensed Matter*, 404(8), 1169-1180.
- Lakshminarayana, G., Yang, R., Mao, M., and Qiu, J. (2009a). Spectral analysis of RE³⁺(RE= Sm, Dy, and Tm): P₂O₅–Al₂O₃–Na₂O glasses. *Optical Materials*, 31(10), 1506-1512.
- Langar, A., Bouzidi, C., Elhouichet, H., and Férid, M. (2014). Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 μm broadband optical amplifiers. *Journal of Luminescence*, 148, 249-255.
- Le, F., Brandl, D. W., Urzhumov, Y. A., Wang, H., Kundu, J., Halas, N. J., et al. (2008). Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. *American Chemical Society nano*, 2(4), 707-718.
- Li, J., Sun, Z., Zhu, X., Zeng, H., Xu, Z., Wang, Z., et al. (2004). Optical bistability for ZnO–Nb₂O₅–TeO₂ glasses. *Optical Materials*, 25(4), 401-405.
- Lim, K.-S., Vijaya, N., Kesavulu, C., and Jayasankar, C. (2013). Structural and luminescence properties of Sm³⁺ ions in zinc fluorophosphate glasses. *Optical Materials*, 35(8), 1557-1563.
- Lin, J., Huang, W., Li, B., Jin, C., Liu, C., Lei, S., et al. (2008). Preparation of AgCl Nano-Crystal Embedded Tellurite Nonlinear Optical Glasses under Electric Field Accompanied Heat Treatment. *Journal of Materials Science & Technology*, 24(6), 863.
- Lin, J., Huang, W., Sun, Z., Ray, C. S., and Day, D. E. (2004). Structure and non-linear optical performance of TeO₂–Nb₂O₅–ZnO glasses. *Journal of Non-Crystalline Solids*, 336(3), 189-194.
- Lin, H., Jiang, S., Wu, J., Song, F., Peyghambarian, N., and Pun, E. (2003). Er³⁺ doped Na₂O–Nb₂O₅–TeO₂ glasses for optical waveguide laser and amplifier. *Journal of Physics D: Applied Physics*, 36(7), 812.

- Lin, H., Meredith, G., Jiang, S., Peng, X., Luo, T., Peyghambarian, N., et al. (2003).

 Optical transitions and visible upconversion in Er³+ doped niobic tellurite glass. *Journal of Applied Physics*, 93(1), 186-191.
- Lin, H., Wang, X., Li, C., Li, X., Tanabe, S., and Yu, J. (2007). Spectral power distribution and quantum yields of Sm³⁺-doped heavy metal tellurite glass under the pumping of blue lighting emitting diode. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 67(5), 1417-1420.
- Lin, H., Yang, D., Liu, G., Ma, T., Zhai, B., An, Q., et al. (2005). Optical absorption and photoluminescence in Sm³⁺-and Eu³⁺-doped rare-earth borate glasses. *Journal of Luminescence*, 113(1), 121-128.
- Linganna, K., Rao, C. S., and Jayasankar, C. (2013). Optical properties and generation of white light in Dy³⁺-doped lead phosphate glasses. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 118, 40-48
- Liu, Y., Chen, Y., Lin, Y., Tan, Q., Luo, Z., and Huang, Y. (2007). Energy transfer in Yb³⁺-Er³⁺-codoped bismuth borate glasses. *Journal of the Optical Society of America B*, 24(5), 1046-1052.
- Losso, P., Schnabel, B., Jäger, C., Sternberg, U., Stachel, D., and Smith, D. (1992).

 31P NMR investigations of binary alkaline earth phosphate glasses of ultra phosphate composition. *Journal of Non-Crystalline Solids*, 143, 265-273.
- Machewirth, D., Wei, K., Krasteva, V., Datta, R., Snitzer, E., and Sigel, G. (1997).

 Optical characterization of Pr³⁺ and Dy³⁺ doped chalcogenide glasses. *Journal of Non-Crystalline Solids*, 213, 295-303.
- Madden, S., and Vu, K. (2009). Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics. *Optics Express*, 17(20), 17645-17651.
- Mahato, K., Rai, D., and Rai, S. (1998). Optical studies of Sm³⁺ doped oxyfluoroborate glass. *Solid State Communications*, 108(9), 671-676.
- Maheshvaran, K., and Marimuthu, K. (2012). Concentration dependent Eu³⁺ doped boro-tellurite glasses-Structural and optical investigations. *Journal of Luminescence*, 132(9), 2259-2267.
- Mahraz, Z. A. S., Sahar, M., Ghoshal, S., and Dousti, M. R. (2013a). Concentration dependent luminescence quenching of Er³⁺-doped zinc boro-tellurite glass. *Journal of Luminescence*, 144, 139-145.

- Maier, S. A. (2007). *Plasmonics: fundamentals and applications*: Springer Science & Business Media.
- Malta, O., and dos Santos, M. C. (1990). Theoretical analysis of the fluorescence yield of rare earth ions in glasses containing small metallic particles. *Chemical Physics Letters*, 174(1), 13-18.
- Malta, O., Santa-Cruz, P., De Sa, G., and Auzel, F. (1985). Fluorescence enhancement induced by the presence of small silver particles in Eu³⁺ doped materials. *Journal of Luminescence*, 33(3), 261-272.
- Mamoshin, V. (1996). Theoretical estimation of the possibility of glass formation in sulfate, phosphate, and sulfate-phosphate systems. *Glass and Ceramics*, 53(4), 104-106.
- Mamoshin, V., Arkhipov, V., Buler, P., and Ivanova, L. (1987). Investigation of glasses in the Na₂SO₄-ZnSO₄-NaPO₃ system. *Fizika i Khimiya Stekla*, 13(4), 510-517.
- Manoj Kumar, G., Narayana Rao, D., and Agarwal, G. (2003). Measurement of local field effects of the host on the lifetimes of embedded emitters. *Physical Review Letters*, 91(20), 203903.
- Marion, J., and Weber, M. (1991). Phosphate laser glasses. *European Journal of Solid State and Inorganic Chemistry*, 28(1), 271-287.
- Massera, J., Bourhis, K., Petit, L., Couzi, M., Hupa, L., Hupa, M., et al. (2013). Effect of the glass composition on the chemical durability of zinc-phosphate-based glasses in aqueous solutions. *Journal of Physics and Chemistry of Solids*, 74(1), 121-127.
- Mattarelli, M., Montagna, M., Vishnubhatla, K., Chiasera, A., Ferrari, M., and Righini,
 G. (2007). Mechanisms of Ag to Er energy transfer in silicate glasses: A photoluminescence study. *Physical Review B*, 75(12), 125102.
- May, P., Metcalf, D., Richardson, F., Carter, R., Miller, C., and Palmer, R. (1992). Measurement and analysis of excited-state decay kinetics and chiroptical activity in the ${}^6H_J \leftarrow {}^4G_{5/2}$ transitions of Sm³⁺ in trigonal Na₃[Sm(C₄H₄O₅)³]·2NaClO₄ 6H₂O. *Journal of Luminescence*, 51(5), 249-268.
- Mazurak, Z., Bodył, S., Lisiecki, R., Gabryś-Pisarska, J., and Czaja, M. (2010). Optical properties of Pr³⁺, Sm³⁺ and Er³⁺ doped P₂O₅–CaO–SrO–BaO phosphate glass. *Optical Materials*, 32(4), 547-553.

- Mertens, H., Koenderink, A., and Polman, A. (2007). Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. *Physical Review B*, 76(11), 115123.
- Merzbacher, C. I., and White, W. B. (1991). The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. *Journal of Non-Crystalline Solids*, 130(1), 18-34.
- Meyer, K. (1997). Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy. *Journal of Non-Crystalline Solids*, 209(3), 227-239.
- Meyer, K., Barz, A., and Stachel, D. (1999). A study of the structure of binary magnesium ultraphosphate glasses by vibrational spectroscopy. *Ceramics*, 43(4), 169-174.
- Mirgorodsky, A., Soulis, M., Thomas, P., Merle-Méjean, T., and Smirnov, M. (2006). Ab initio study of the nonlinear optical susceptibility of TeO₂-based glasses. *Physical Review B*, 73(13), 134206.
- Mmamoshin, V. (1996). Fabrication of low-melting glasses in the ZnSO₄-KPO₃-NaPO₃ and Li₂SO₄-Na₂SO₄-K₂SO₄-NaPO₃ Systems. *Glass and Ceramics*, 53(6), 166-168.
- Montagne, L., Palavit, G., and Delaval, R. (1998). Effect of ZnO on the properties of (100-x)(NaPO₃)-xZnO glasses. *Journal of Non-Crystalline Solids*, 223(1), 43-47.
- Mori, A., Ohishi, Y., and Sudo, S. (1997). Erbium-doped tellurite glass fibre laser and amplifier. *Electronics Letters*, 33(10), 863-864.
- Moustafa, Y., and El-Egili, K. (1998). Infrared spectra of sodium phosphate glasses. *Journal of Non-Crystalline Solids*, 240(1), 144-153.
- Murthy, D., Jamalaiah, B., Babu, A. M., Sasikala, T., and Moorthy, L. R. (2010). The luminescence properties of Dy³⁺-doped alkaline earth titanium phosphate glasses. *Optical Materials*, 32(9), 1112-1116
- Nachimuthu, P., Jagannathan, R., Kumar, V. N., and Rao, D. N. (1997). Absorption and emission spectral studies of Sm³⁺ and Dy³⁺ ions in PbO-PbF₂ glasses. *Journal of Non-Crystalline Solids*, 217(2), 215-223.
- Nandi, P., and Jose, G. (2006a). Erbium doped phospho-tellurite glasses for 1.5 μm optical amplifiers. *Optics Communications*, 265(2), 588-593.

- Nandi, P., and Jose, G. (2006b). Spectroscopic properties of Er³⁺ doped phosphotellurite glasses. *Physica B: Condensed Matter*, 381(1), 66-72.
- Naranjo, L. P., de Araújo, C. B., Malta, O. L., Cruz, P. A. S., & Kassab, L. R. (2005). Enhancement of Pr³⁺ luminescence in PbO–GeO₂ glasses containing silver nanoparticles. *Applied Physics Letters*, 87(24), 241914.
- Nelson, C., Furukawa, T., and White, W. B. (1983). Transition metal ions in glasses:

 Network modifiers or quasi-molecular complexes? *Materials Research Bulletin*, 18(8), 959-966
- Nepomiluev, A., Pletnev, R., Lapina, O., Kozlova, S., and Bamburov, V. (2002). Structure of Glasses in the Na₂SO₄–P₂O₅–H₂O System. *Glass Physics and Chemistry*, 28(1), 1-4.
- Nikonorov, N., Sidorov, A., and Tsekhomskii, V. (2010). Silver nanoparticles in oxide glasses: technologies and properties: INTECH Open Access Publisher.
- Ofelt, G. (1962). Intensities of crystal spectra of rare-earth ions. *The Journal of Chemical Physics*, 37(3), 511-520.
- Oh, K., Kilian, A., and Morse, T. (1999). Analysis of spectroscopic properties of erbium doped Ta₂O₅–Al₂O₃–SiO₂ optical fiber. *Journal of Non-Crystalline Solids*, 259(1), 10-15.
- Osorio, S. P., Rivera, V. A. G., Nunes, L. A. O., Marega Jr, E., Manzani, D., and Messaddeq, Y. (2012). Plasmonic coupling in Er³⁺: Au tellurite glass. *Plasmonics*, 7(1), 53-58.
- Ozbay, E. (2006). Plasmonics: merging photonics and electronics at nanoscale dimensions. *Science*, 311(5758), 189-193.
- Pal, I., Agarwal, A., Sanghi, S., and Aggarwal, M. (2012). Structure and optical absorption of Sm³⁺ and Nd³⁺ ions in cadmium bismuth borate glasses with large radiative transition probabilities. *Optical Materials*, 34(7), 1171-1180.
- Porai-Koshits, E. A (1990) In: Glass science and technology, Edited by Uhlmann and Kreidl, 1-25.
- Pascuta, P., Borodi, G., Popa, A., Dan, V., and Culea, E. (2010). Influence of iron ions on the structural and magnetic properties of some zinc-phosphate glasses. *Materials Chemistry and Physics*, 123(2), 767-771.
- Patil, S. D., Jali, V., and Anavekar, R. (2009). Elastic properties of Na₂O-ZnO-ZnF₂-B₂O₃ oxyfluoride glasses. *Bulletin of Materials Science*, 32(6), 597-601.

- Pisarski, W. A., Żur, L., and Pisarska, J. (2011). Optical transitions of Eu³⁺ and Dy³⁺ ions in lead phosphate glasses. *Optics Letters*, 36(6), 990-992.
- Pisarski, W., Pisarska, J., Mączka, M., and Ryba-Romanowski, W. (2006). Europium-doped lead fluoroborate glasses: Structural, thermal and optical investigations. *Journal of Molecular Structure*, 792, 207-211.
- Pradeesh, K., Oton, C., Agotiya, V., Raghavendra, M., and Prakash, G. V. (2008).

 Optical properties of Er³⁺ doped alkali chlorophosphate glasses for optical amplifiers. *Optical Materials*, 31(2), 155-160.
- Prakash, G. V., Rao, D. N., and Bhatnagar, A. (2001). Linear optical properties of niobium-based tellurite glasses. *Solid State Communications*, 119(1), 39-44.
- Praveena, R., Venkatramu, V., Babu, P., and Jayasankar, C. (2008). Fluorescence spectroscopy of Sm³⁺ ions in P₂O₅–PbO–Nb₂O₅ glasses. *Physica B: Condensed Matter*, 403(19), 3527-3534
- Praveena, R., Vijaya, R., and Jayasankar, C. (2008b). Photoluminescence and energy transfer studies of Dy³⁺-doped fluorophosphate glasses. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 70(3), 577-586.
- Qian, B., Liang, X., Yang, S., He, S., and Gao, L. (2012). Effects of lanthanum addition on the structure and properties of iron phosphate glasses. *Journal of Molecular Structure*, 1027, 31-35.
- Rai, V. K., and Rai, S. (2007). A comparative study of FIR and FL based temperature sensing schemes: an example of Pr³⁺. *Applied Physics B*, 87(2), 323-325.
- Rajendran, V., Palanivelu, N., Chaudhuri, B., and Goswami, K. (2003). Characterisation of semiconducting V₂O₅–Bi₂O₃–TeO₂ glasses through ultrasonic measurements. *Journal of Non-Crystalline Solids*, 320(1), 195-209.
- Rao, C. S., and Jayasankar, C. (2013). Spectroscopic and radiative properties of Sm³⁺-doped K–Mg–Al phosphate glasses. *Optics Communications*, 286, 204-210.
- Rao, K. V., Ratnakaram, Y., Seshadri, M., and Rao, J. (2010). Optical and luminescence studies of Pr³⁺ and Er³⁺ doped different phosphate glasses. *Physica B: Condensed Matter*, 405(9), 2297-2304.
- Rao, P. R., Pavić, L., Moguš-Milanković, A., Kumar, V. R., Kityk, I., and Veeraiah, N. (2012). Electrical and spectroscopic properties of Fe₂O₃ doped Na₂SO₄–BaO–P₂O₅ glass system. *Journal of Non-Crystalline Solids*, 358(23), 3255-3267.

- Rasool, S. N., Moorthy, L. R., and Jayasankar, C. (2013). Spectroscopic Investigation of Sm³⁺ doped phosphate based glasses for reddish-orange emission. *Optics Communications*, 311, 156-162.
- Ravi, O., Reddy, C. M., Manoj, L., and Raju, B. D. P. (2012). Structural and optical studies of Sm³⁺ ions doped niobium borotellurite glasses. *Journal of Molecular Structure*, 1029, 53-59.
- Ravi, O., Reddy, C. M., Reddy, B. S., and Raju, B. D. P. (2014). Judd–Ofelt analysis and spectral properties of Dy³⁺ ions doped niobium containing tellurium calcium zinc borate glasses. *Optics Communications*, 312, 263-268.
- Ravikumar, R., Yamauchi, J., Chandrasekhar, A., Reddy, Y., and Rao, P. S. (2005). Identification of chromium and nickel sites in zinc phosphate glasses. *Journal of Molecular Structure*, 740(1), 169-173.
- Rayappan, I. A., Selvaraju, K., and Marimuthu, K. (2011). Structural and luminescence investigations on Sm³⁺ doped sodium fluoroborate glasses containing alkali/alkaline earth metal oxides. *Physica B: Condensed Matter*, 406(3), 548-555.
- Reddy, A. A., Sekhar, M. C., Pradeesh, K., Babu, S. S., and Prakash, G. V. (2011).

 Optical properties of Dy³⁺-doped sodium–aluminum–phosphate glasses. *Journal of Materials Science*, 46(7), 2018-2023.
- Reis, S., Faria, D., Martinelli, J., Pontuschka, W., Day, D., and Partiti, C. (2002).
 Structural features of lead iron phosphate glasses. *Journal of Non-Crystalline Solids*, 304(1), 188-194
- Reisfeld, R. (1975). Radiative and non-radiative transitions of rare-earth ions in glasses. In *Rare Earths* (pp. 123-175): Springer.
- Reisfeld, R., Hormadaly, J., and Muranevich, A. (1976). Intensity parameters, radiative transitions and non-radiative relaxations of Ho³⁺ in various tellurite glasses. *Chemical Physics Letters*, 38(1), 188-191.
- Rodriguez, V., Martin, I., Alcala, R., and Cases, R. (1992). Optical properties and cross relaxation among Sm³⁺ ions in fluorzincate glasses. *Journal of Luminescence*, 54(4), 231-236.
- Rudramadevi, B., and Buddhudu, S. (2008). Spectral and thermal analysis of Sm³⁺ and Dy³⁺: B₂O₃-BaO-LiF/AlF₃ glasses. *Indian Pure Applied Physics*, 46, 825-832.

- Sahar, M., Mohammad Yusoff, N., Ghosal, S., Rohani, M., Hamzah, K., and Arifin,
 R. (2012). Luminescence Properties of Magnesium Phosphate Glass Doped
 Samarium. Paper presented at the Advanced Materials Research, 111-115.
- Sahar, M. R., Sulhadi, K., and Rohani, M. (2008). The preparation and structural studies in the (80–x) TeO₂–20ZnO–(x)Er₂O₃ glass system. *Journal of Non-Crystalline Solids*, 354(12), 1179-1181.
- Scholz, F. (2011). From the Leiden jar to the discovery of the glass electrode by Max Cremer. *Journal of Solid State Electrochemistry*, 15(1), 5-14.
- Saleem, S., Jamalaiah, B., Jayasimhadri, M., Rao, A. S., Jang, K., and Moorthy, L. R. (2011). Luminescent studies of Dy³⁺ ion in alkali lead tellurofluoroborate glasses. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 112(1), 78-84.
- Šantić, A., Moguš-Milanković, A., Furić, K., Bermanec, V., Kim, C., and Day, D. E. (2007). Structural properties of Cr₂O₃–Fe₂O₃–P₂O₅ glasses, Part I. *Journal of Non-Crystalline Solids*, 353(11), 1070-1077.
- Sastry, S. S., and Rao, B. R. V. (2014). Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses. *Physica B: Condensed Matter*, 434, 159-164.
- Sdiri, N., Elhouichet, H., Barthou, C., and Ferid, M. (2012). Spectroscopic properties of Er³⁺ and Yb³⁺ doped phosphate–borate glasses. *Journal of Molecular Structure*, 1010, 85-90.
- Selvaraju, K., and Marimuthu, K. (2013). Structural and spectroscopic studies on concentration dependent Sm³⁺ doped boro-tellurite glasses. *Journal of Alloys and Compounds*, 553, 273-281.
- Selvi, S., Marimuthu, K., and Muralidharan, G. (2015). Structural and luminescence behavior of Sm³⁺ ions doped lead boro-telluro-phosphate glasses. *Journal of Luminescence*, 159, 207-218.
- Seshadri, M., Radha, M., Rajesh, D., Barbosa, L., Cordeiro, C., and Ratnakaram, Y. (2015). Effect of ZnO on spectroscopic properties of Sm³⁺ doped zinc phosphate glasses. *Physica B: Condensed Matter*, 459, 79-87.
- Seshadri, M., Rao, K. V., Rao, J., and Ratnakaram, Y. (2009). Spectroscopic and laser properties of Sm³⁺ doped different phosphate glasses. *Journal of Alloys and Compounds*, 476(1), 263-270.

- Seshadri, M., Rao, K. V., Rao, J. L., Rao, K. K., and Ratnakaram, Y. (2010). Spectroscopic investigations and luminescence spectra of Nd³⁺ and Dy³⁺ doped different phosphate glasses. *Journal of Luminescence*, 130(4), 536-543.
- Sharma, Y., Surana, S., Singh, R., and Dubedi, R. (2007). Spectral studies of erbium doped soda lime silicate glasses in visible and near infrared regions. *Optical Materials*, 29(6), 598-604.
- Shelby, J. E. (2005). *Introduction to glass science and technology*: Royal Society of Chemistry.
- Shelby, J. E., and Ruller, J. (1987). Properties and structure of lithium germanate glasses. *Physics and Chemistry of Glasses*, 28(6), 262-268.
- Shen, X., Nie, Q., Xu, T., Dai, S., Li, G., and Wang, X. (2007). Effect of Ce³⁺ on the spectroscopic properties in Er³⁺ doped TeO₂–GeO₂–Nb₂O₅–Li₂O glasses. *Journal of Luminescence*, 126(2), 273-277.
- Sidek, H., Rosmawati, S., Talib, Z., Halimah, M., and Daud, W. (2009). Synthesis and optical properties of ZnO-TeO₂ glass system. *American Journal of Applied Sciences*, 6(8), 1489.
- Singh, S., Giri, N., Rai, D., and Rai, S. (2010). Enhanced upconversion emission in Er³⁺-doped tellurite glass containing silver nanoparticles. *Solid State Sciences*, 12(8), 1480-1483.
- Sinha, S. P. (2013). Complexes of the rare earths: Elsevier.
- Sirotkin, S., Meszaros, R., and Wondraczek, L. (2012). Chemical stability of ZnO–Na₂O–SO₃–P₂O₅ glasses. *International Journal of Applied Glass Science*, 3(1), 44-52.
- Snoeks, E., Van den Hoven, G., Polman, A., Hendriksen, B., Diemeer, M., and Priolo, F. (1995). Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides. *Journal of the Optical Society of America B*, 12(8), 1468-1474.
- Sokolov, I., Murin, I., Kriyt, V., and Pronkin, A. (2011). Structure and electrical conductivity of glasses in the Na₂O-Na₂SO₄-P₂O₅ system. *Glass Physics and Chemistry*, 37(4), 351-361.
- Sokolov, I., Valova, N., Tarlakov, Y. P., and Pronkin, A. (2003). Electrical Properties and the Structure of Glasses in the Li₂SO₄–LiPO₃ System. *Glass Physics and Chemistry*, 29(6), 548-554.

- Som, T., and Karmakar, B. (2009). Nanosilver enhanced upconversion fluorescence of erbium ions in Er³⁺: Ag-antimony glass nanocomposites. *Journal of Applied Physics*, 105(1), 013102.
- Som, T., and Karmakar, B. (2011). Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1766-1782.
- Souza Filho, A., Mendes Filho, J., Melo, F., Custodio, M., Lebullenger, R., and Hernandes, A. (2000). Optical properties of Sm³⁺ doped lead fluoroborate glasses. *Journal of Physics and Chemistry of Solids*, 61(9), 1535-1542.
- Souza, N., Ramos, A., and Barbosa, L. (2002). Er³⁺ environment in TeO₂–ZnO–Na₂O glasses. *Journal of Non-Crystalline Solids*, 304(1), 195-199.
- Sreedhar, V., Ramachari, D., and Jayasankar, C. (2013). Optical properties of zincfluorophosphate glasses doped with Dy³⁺ ions. *Physica B: Condensed Matter*, 408, 158-163.
- Subbalakshmi, P., and Veeraiah, N. (2003). Optical absorption and fluorescence properties of Er³⁺ ion in MO–WO₃–P₂O₅ glasses. *Journal of Physics and Chemistry of Solids*, 64(7), 1027-1035.
- Sudhakar, K., Reddy, M. S., Rao, L. S., and Veeraiah, N. (2008). Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm³⁺ ion in antimony borate glass system. *Journal of Luminescence*, 128(11), 1791-1798.
- Surendra Babu, S., Babu, P., Jayasankar, C., Tröster, T., Sievers, W., and Wortmann, G. (2009). Optical properties of Dy³⁺-doped phosphate and fluorophosphate glasses. *Optical Materials*, 31(4), 624-631.
- Švrček, V., Slaoui, A., and Muller, J.-C. (2004). Silicon nanocrystals as light converter for solar cells. *Thin Solid Films*, 451, 384-388.
- Talib, Z. A., Daud, W., Tarmizi, E., Sidek, H., and Yunus, W. (2008). Optical absorption spectrum of Cu₂O–CaO–P₂O₅ glasses. *Journal of Physics and Chemistry of Solids*, 69(8), 1969-1973.
- Tanabe, S. (2002). Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. *Comptes Rendus Chimie*, 5(12), 815-824.
- Tanabe, S., Hayashi, H., Hanada, T., and Onodera, N. (2002). Fluorescence properties of Er³⁺ ions in glass ceramics containing LaF₃ nanocrystals. *Optical Materials*, 19(3), 343-349.

- Tanabe, S., Ohyagi, T., Soga, N., and Hanada, T. (1992). Compositional dependence of Judd-Ofelt parameters of Er³⁺ ions in alkali-metal borate glasses. *Physical Review B*, 46(6), 3305.
- Tanabe, S., Sugimoto, N., Ito, S., and Hanada, T. (2000). Broad-band 1.5 μm emission of Er³⁺ ions in bismuth-based oxide glasses for potential WDM amplifier. *Journal of Luminescence*, 87, 670-672.
- Tao, A. R., Habas, S., and Yang, P. (2008). Shape control of colloidal metal nanocrystals. *Small*, 4(3), 310-325.
- Thomas, S., George, R., Nayab Rasool, S., Rathaiah, M., Venkatramu, V., Joseph, C., Unnikrishnan, N.V. (2013). Optical properties of Sm³⁺ ions in zinc potassium fluorophosphate glasses. *Optical Materials*, 36(2), 242-250.
- Thyagarajan, K., and Kaur, J. (2000). A novel design of an intrinsically gain flattened erbium doped fiber. *Optics Communications*, 183(5), 407-413.
- Tischendorf, B., Otaigbe, J., Wiench, J., Pruski, M., and Sales, B. (2001). A study of short and intermediate range order in zinc phosphate glasses. *Journal of Non-Crystalline Solids*, 282(2), 147-158.
- Tsai, P., and Greenblatt, M. (1988). Lithium ion conducting glasses in the system LiCl-Li₂O-P₂O₅-SiO₂. *Journal of Non-Crystalline Solids*, 103(1), 101-107
- Ueda, J., Tanabe, S., and Ishida, A. (2009). Surface plasmon excited infrared-to-visible upconversion in Er³⁺-doped transparent glass ceramics. *Journal of Non-Crystalline Solids*, 355(37), 1912-1915.
- Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. *Physical Review*, 92(5), 1324.
- Van Wazer, J.R. (1985). *Phosphorus and its Compounds*. New York: Wiley Interscience.
- Venkatramu, V., Babu, P., Jayasankar, C., Tröster, T., Sievers, W., and Wortmann, G. (2007). Optical spectroscopy of Sm³⁺ ions in phosphate and fluorophosphate glasses. *Optical Materials*, 29(11), 1429-1439.
- Vijayakumar, R., Venkataiah, G., and Marimuthu, K. (2015). White light simulation and luminescence studies on Dy³⁺ doped Zinc borophosphate glasses. *Physica B: Condensed Matter*, 457, 287-295.
- Vogel, W. (1994). Glass Chemistry, Springer-Verlag: Berlin.

- Walter, G., Hoppe, U., Vogel, J., Carl, G., and Hartmann, P. (2004). The structure of zinc polyphosphate glass studied by diffraction methods and ³¹P NMR. *Journal of Non-Crystalline Solids*, 333(3), 252-262.
- Walter, G., Vogel, J., Hoppe, U., and Hartmann, P. (2003). Structural study of magnesium polyphosphate glasses. *Journal of Non-Crystalline Solids*, 320(1), 210-222.
- Wang, J., Brocklesby, W., Lincoln, J., Townsend, J., and Payne, D. (1993). Local structures of rare-earth ions in glasses: the 'crystal-chemistry'approach. *Journal of Non-Crystalline Solids*, 163(3), 261-267.
- Weber, M. (1990). Science and technology of laser glass. *Journal of Non-Crystalline Solids*, 123(1), 208-222.
- Weber, M., Ziegler, D., and Angell, C. A. (1982). Tailoring stimulated emission cross sections of Nd³⁺ laser glass: Observation of large cross sections for BiCl3 glasses. *Journal of Applied Physics*, 53(6), 4344-4350.
- Wei, K., Machewirth, D., Wenzel, J., Snitzer, E., and Sigel, G. (1995). Pr³⁺-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers. *Journal of Non-Crystalline Solids*, 182(3), 257-261.
- Wiench, J. W., Tischendorf, B., Otaigbe, J. U., and Pruski, M. (2002). Structure of Zinc polyphosphate glasses studied by two-dimensional solid and liquid state NMR. *Journal of Molecular Structure*, 602, 145-157.
- Xiao, K., and Yang, Z. (2007). Thermal stability and optical transitions of Er³⁺/Yb³⁺-codoped barium gallogermanate glass. *Optical Materials*, 29(11), 1475-1480.
- Yang, G., Zhang, Q., Li, T., Shi, D., and Jiang, Z. (2008). Laser-diode-excited intense luminescence and green-upconversion in erbium-doped bismuth–germanate–lead glasses. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 69(1), 41-48.
- Yang, J., Dai, S., Dai, N., Wen, L., Hu, L., and Jiang, Z. (2004). Investigation on nonradiative decay of ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ transition of Er^{3+} -doped oxide glasses. *Journal of Luminescence*, 106(1), 9-14.
- Yang, Z., Chen, W., and Luo, L. (2005). Dy³⁺-doped Ge–Ga–Sb–Se glasses for 1.3 μm optical fiber amplifiers. *Journal of Non-Crystalline Solids*, 351(30), 2513-2518.

- Yao, Z., Ding, Y., Nanba, T., and Miura, Y. (1999). Compositional dependences of Judd–Ofelt parameters of Er³⁺ in borosilicate glasses. *Physics and Chemistry of Glasses*, 40(4), 179-183.
- Zayats, A. V. (1999). Electromagnetic field enhancement in the context of apertureless near-field microscopy. *Optics communications*, 161(1), 156-162.
- Zhang, L., Peng, M., Dong, G., and Qiu, J. (2012). Spectroscopic properties of Sm³⁺-doped phosphate glasses. *Journal of Materials Research*, 27(16), 2111-2115.
- Zheng, H., Gao, D., Fu, Z., Wang, E., Lei, Y., Tuan, Y., Cui, M. (2011). Fluorescence enhancement of Ln³⁺ doped nanoparticles. *Journal of Luminescence*, 131(3), 423-428.
- Zou, X., and Izumitani, T. (1993). Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er³⁺-doped glasses. *Journal of Non-Crystalline Solids*, 162(1), 68-80.