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ABSTRACT 

 Fibrous Concrete Composite (FCC) is a high performance concrete that 

possesses an improved tensile strength and ductility with restraint to shrinkage and 

creep under sustained load compared to Plain Concrete (PC). As a result of global 

quest for sustainable, renewable and green materials to achieve a bio based economy 

and low carbon foot print environment, the use of fibre to produce fibrous concrete 

composite has continuously received significant research attention. While several 

researches have been conducted on metallic and synthetic fibrous concretes, they 

exhibit several unavoidable drawbacks and bio fibrous concrete has been proved to be 

a better alternative. This research investigates the creep and shrinkage performance of 

concrete reinforced with Kenaf bio fibre. After material characterization, concrete 

reinforced with fibre optimum volume fraction of 0.5% and length of 50 mm was used 

for the study. The fresh and hardened properties of the concrete were studied under 

short term quasi static loading. Thereafter, the compressive creep test, uniaxial tensile 

creep test and flexural creep test at 25% and 35% stress levels at creep loading ages of 

7 and 28-day hydration period were conducted. The long term deformation behaviour 

of the Kenaf Bio Fibrous Concrete Composite (KBFCC) was observed and monitored. 

Results show that the compressive creep strains of KBFCC is 60.88% greater than the 

PC, but the deformation behaviour of the specimens shows 33.78% improvement in 

ductility. Also, uniaxial tensile creep response of fibrous concrete deforms at the rate 

of 0.00283 mm/day and 0.00702 mm/day at 25% and 35% stress level respectively, 

but the deformation rate becomes insignificant after 90 days due to the presence of 

fibre. In addition, the flexural creep test reveals that 0.064 mm/day and 0.073 mm/day 

deformation rate at 25% stress level of the KBFCC becomes less significant after 40 

days of loading. The outcome of the morphology image analysis on the concrete 

composite shows that Kenaf fibres act as bridges across the cracks, which enhances 

the load-transfer capacity of the matrix, thus influencing the long term performance of 

KBFCC. Accordingly, statistical analysis shows that the CEB-FIP creep model is   the 

best fit model for predicting compressive and tensile creep of KBFCC, while EC2 

creep and shrinkage models are for predicting flexural creep and shrinkage strain of 

KBFCC, respectively. A creep and shrinkage prediction model is proposed based on 

the experimental data for better prediction of KBFCC. Conclusively, KBFCC exhibits 

appreciable shrinkage, tensile and flexural strength under static short term and long 

term sustained loads compared to PC. 
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ABSTRAK 

Komposit konkrit bergentian (FCC) merupakan konkrit yang berkualiti tinggi 

yang mempunyai kekuatan tegangan dan kekangan kemuluran yang diperbaharui 

kepada pengecutan dan rayapan di bawah beban sekata berbanding dengan konkrit 

biasa (PC). Hasil daripada usaha global untuk bahan lestari, diperbaharui dan hijau 

bagi mencapai ekonomi berasaskan bio dan alam sekitar berkarbon rendah, maka 

penggunaan gentian bagi menghasilkan komposit konkrit bergentian terus mendapat 

perhatian yang ketara dalam bidang penyelidikan. Walaupun beberapa kajian telah 

dijalankan terhadap konkrit berserat metalik dan sintetik, kajian itu menunjukkan 

beberapa kekurangan yang tidak dapat dielakkan dan konkrit bergentian bio telah 

terbukti sebagai pilihan alternatif yang lebih baik. Kajian ini mengkaji prestasi rayapan 

dan pengecutan konkrit bertetulang dengan gentian bio Kenaf. Setelah pencirian 

bahan, konkrit bertetulang dengan gentian pecahan isipadu optimum sebanyak 0.5% 

dan panjang 50 mm digunakan untuk kajian ini. Ciri-ciri konkrit yang baharu dan keras 

telah dikaji di bawah beban statik kuasi jangka pendek. Seterusnya, ujian rayapan 

mampatan, ujian rayapan tegangan tidak berpaksi dan ujian rayapan lenturan pada 

25% dan 35% tahap tekanan pada umur pengambilan rayapan 7 dan 28 hari tempoh 

penghidratan telah dijalankan. Tingkah laku Komposit Konkrit Bergentian Kenaf Bio 

(KBFCC) kepada perubahan bentuk dalam tempoh jangka panjang telah dikenal pasti 

dan dipantau. Keputusan ujian telah menunjukkan bahawa perubahan rayapan 

mampatan KBFCC adalah 60.88% lebih besar daripada konkrit biasa, tetapi perubahan 

bentuk tingkah laku terhadap spesimen menunjukkan 33.78% peningkatan dalam 

kemuluran. Selain itu, tindak balas serapan tegangan tidak berpaksi terhadap konkrit 

bergentian masing-masing berubah bentuk pada kadar 0.00283 mm/hari dan 0.00702 

mm/hari pada tahap tekanan 25% dan 35%, tetapi kadar perubahan bentuk menjadi 

tidak berubah selepas 90 hari dengan kehadiran gentian. Di samping itu, ujian 

rintangan lenturan menunjukkan kadar perubahan bentuk pada 0.064 mm/hari dan 

0.073 mm/hari dengan tahap tekanan 25% daripada KBFCC menjadi tidak ketara 

selepas 40 hari pembebanan. Hasil analisis imej morfologi pada komposit konkrit 

menunjukkan bahawa gentian Kenaf bertindak sebagai agen pengikat yang merentasi 

retak, yang meningkatkan kapasiti pemindahan beban matriks, justeru mempengaruhi 

prestasi KBFCC dalam jangka masa yang panjang. Dengan demikian, analisis statistik 

menunjukkan bahawa model rayapan CEB-FIP merupakan model terbaik untuk 

menganggarkan mampatan dan rayapan tegangan KBFCC, manakala masing-masing 

model rayapan dan pengecutan EC2 pula menganggarkan lenturan rayapan dan 

tegangan pengecutan KBFCC. Model anggaran rayapan dan pengecutan dicadangkan 

berdasarkan data eksperimen untuk ramalan KBFCC yang lebih baik. Secara 

kesimpulannya, KBFCC mempamerkan pengecutan, kekuatan tegangan dan lenturan 

yang ketara di bawah beban jangka pendek dan jangka panjang yang dapat menahan 

beban statik berbanding PC. 
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CHAPTER 1  

INTRODUCTION 

 General Appraisal 

The usefulness of concrete in various building and civil engineering 

applications is incontestable. Over the years, it has so far been positively used in 

hydraulic structures, shotcrete, offshore structures, slabs on grade, structures in 

seismic regions, thin and thick repairs, architectural panels, crash barriers, precast 

products, footings, global transportation infrastructure systems such as network of 

roads, bridges, railways, airports, canals  and many other applications . The reason for 

its widespread acceptability for use in various infrastructure productions is not far-

fetched from the benefit of providing the lowest quotient among cost and strength as 

equated to other available materials [1–3]. Despite these applaudable qualities of 

concrete, two unattractive properties: low ductility and breakability possessed by 

concrete still makes it prone to collapse which occurs just after the creation of 

deformation and initial crack [1]. This adversely limits the performance of concrete 

over long-term when exposed to sustained loads like creep and shrinkage [4].  Hence, 

concrete has a poor resistance to cracking. Steel reinforcement came up as a response 

to cracking in concrete due to stronger tensile strength it possesses over concrete. In 

their study, Clarke et al., [5] explained that reinforcement steel bar is saddled to carry 

the tensile stresses imposed on the concrete and curtail possible cracking of the 

concrete or cause the concrete to remain largely in compression under load by pre-

stressing it. 

Steel reinforcement has been successfully used in concrete over the years and 

it is still in use. Conversely, cracking still occurs under load and this creates a pathway 

for various deleterious species such as chlorides, sulphates, moisture and carbon 
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dioxide [6]. This leads to the corrosion of the reinforcement thus affecting the 

durability of the concrete structures. Other substitutes apart from steel reinforcement 

are as well obtainable for the reinforcing of concrete to control cracking. One of such 

substitutes presently used is fibres [6]. The inclusion of short discontinuous randomly 

oriented fibres (natural, glass, steel, and synthetic) has remained a practice among 

others towards contributing to the improvement of the two negative properties of 

concrete mentioned earlier [7–12]. It has been reported by ACI [13], Mehta and 

Monteiro [14] that fibre inclusion offers a bridging capability once the initial crack 

take place afore the full parting of a beam. Also the studies of [7,15] supported this 

assertion of ability of fibre to provide concrete with post crack strength. The 

improvement of the mechanical and durability properties of concrete such as; crack 

opening, stiffness, crack promulgation, tensile strength and deformation characteristics 

such as creep and shrinkage of concrete amid others. These have given fibrous concrete 

favourable acceptance in becoming a widely used composite material in construction 

projects. Structural elements deform all the way through their lifespan (creep and 

shrinkage), which may possibly lead to serviceability concerns such a deflection, 

cracking, etc. Whereas fibrous concrete has presented substantial ductility and energy 

absorption aptitude in the short term, the sustainability of such properties in the long 

term is still undefined. These sustained loads could be as a result of mechanical stress 

known as creep or environmental stress from temperature and relative humidity 

causing the shrinkage of concrete elements. Creep is defined as the plastic deformation 

under sustain load. Creep strain depends primarily on the duration of sustained loading. 

It has been widely acknowledged that creep of concrete is greatly influenced by the 

surrounding ambient, admixtures and load intensity. Also creep has been seen to 

induce the deflection of structural member with time. Hence the study on creep of 

concrete is necessary to prevent failure of structure [16]. While shrinkage of concrete 

is described as time-dependent volume change that occurs due to a number of 

mechanisms. Shrinkage has been reported to occur due to the movement of water in 

both fresh and hardened states [17]. The creep and shrinkage of concrete element are 

categorised as time-dependent deformation properties of concrete. 

There exist several types of fibres that is incorporated in concrete, but the most 

commonly used are the natural (vegetable), steel, glass, asbestos, carbon and 

polypropylene type of fibres [1,8,12,18,19]. These resource fibres have gains in the 

matrix proportioning of cement composites. Bio fibres are believed to be more 
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environmentally pleasant to the users; this is why they are currently getting appreciable 

consideration for substituting the glass, synthetic and steel fibres [12,20]. Researchers 

[21–23] in the past years have investigated and compared the benefit and properties of 

natural, steel and synthetic fibre. They succinctly described natural fibres to possess 

many benefits than the synthetic and other type of fibres. Such advantages are low 

density, carbon dioxide requisitioning, low cost, recyclability, issue of sustainability, 

biodegradability, and competitive specific mechanical properties [24–26]. However, 

if the compressive and tensile strength of bio fibre concrete is to some degree lesser 

than the control concrete mix, its deformation behaviour displays more enhancement 

in ductility [11,18,22,23]. Some studies have been carried out on the properties of 

concrete with the bio fibres which is usually referred to as fibrous concrete from sugar 

cane, coconut coir, malva, hemp, ramie bast, jute, pineapple leaf, elephant grass, 

bamboo, akwata and sisal with encouraging results recorded [12,27–30]. 

 Background of the Problem 

In view of the current global challenges, the construction industry has been 

focusing on the concept of sustainability, particularly the inclusion of biodegradable 

fibre in concrete [31,32].  Bio fibres as being adjudged as a means of mitigating the 

effect of carbon footprint to the environment. This has evoked a lot of response from 

industries who are seeking more eco-efficient production and sustainable commerce. 

Bio fibres are a major renewable (CO2 neutral) resource for bio-based economical 

developments. Serviceability and durability performance has been given more 

emphasis in the design and analysis of concrete structures. The ultimate limit state 

requirement is no longer the only main focus in structural design as durability and 

service performance are as well important for the safety, aesthetics and economic 

values of the structure or concrete composite. Creep and shrinkage are a usually a 

critical property used for evaluating buckling, stresses, cracking, deflection and failure 

of brittle materials such as concrete for structures under constant loads. Nevertheless, 

owing to the fact that the effects for under-prediction of creep and shrinkage are time-

dependent, attention and provisions on these factors are often been ignored [33]. Creep 

and shrinkage prediction models meant for concrete structure design references are 
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obtainable in AS 3600, CEB-FIP Model Code 1990, B3 Model, ACI-209, Eurocode 2, 

and BS 8110 Model concrete standard codes. These models are however mostly 

developed for plain concrete (PC). Therefore, there is need to examine their suitability 

in the prediction of bio fibrous concrete, and also to development an analytical creep 

and shrinkage model for the design of bio fibrous concrete such as KBFCC. 

The deformation experienced in concrete structure due to tensile low strength 

and energy absorption low capacity problems can be controlled by replacing it with 

fibrous concrete. This is a sustainable substitute concrete type where long-term 

performance and durability are the key considerations. Remarkably, the commonly 

used fibre types in the production of fibrous concrete such as steel, asbestos, synthetic 

and glass are usually associated with high cost, corrosion, non-renewable, high specific 

weight and being harmful to the environment. These factors are not good for our world 

and the construction industry which is striving towards achieving sustainable 

environment. Therefore, bio fibre such as Kenaf fibre which is cheaper, 

environmentally friendly, could be a sustainable choice for the construction industry. 

To use this fibre in concrete, a detail research on its long-term performance under 

mechanical load (creep) or environmental load (shrinkage) is required. Recent studies 

revealed the immense potential and interest generated due to the application of Kenaf 

fibre in the construction industry, automobile industry, wood-based sector and textile 

industry. Consequently, the Malaysian government and some other developing nations 

have pursued vigorously the cultivation and various measures to promote downstream 

value processing of Kenaf among smallholders and estate owners [34]. Appreciable 

experimental and theoretical researches have been carried out to understand the 

mechanical properties of KBFCC [11,23,35]. Most of these studies are limited to the 

short-term performance of KBFCC under static mechanical loads and environmental 

loads [11,23,35,36]. Conclusively, it has been observed that the study on concrete 

composite system made from bio fibrous concrete has been of interest due to its need 

for the evaluation of stresses, deflection, cracking, bulking and failure of structures 

made from KBFCC. This will avail material engineers and structural designer’s 

knowledge and data on the material properties and structural behaviour pertaining to 

serviceability performance. 
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 Statement of the Problem 

The world’s population and wealth increase in this century have heightened the 

rising needs for sustainable materials. These needs have become imperative due to the 

fact that landfills are filling up, earth climate is changing, and natural resources are 

diminishing. This has promulgated the recent researchers to finding alternative 

materials for the replacement of the use of synthetic fibre, steel fibre, and steel bar in 

concrete because of their unfriendliness to the environment, their ignition of 

environmental issues, poor recyclability, non-biodegradability, expensive costs and 

high maintenances and repair cost of damaged structure via corrosion of steel.  

These general environmental issues are climate change, ozone depletion, eco-

toxicity, fossil fuel depletion, water extraction, waste disposal, eutrophication (over-

enrichment of water sources), acid deposition, summer smog (low-level ozone 

creation) and minerals extraction. These problems initiated the increase in carbon 

dioxide, CO2 gas which generates unsafe environment and human health problems. 

Additionally, the emission produced during the petroleum product production 

(synthetic fibre) could bring about global warming and cause an increase in greenhouse 

effect. Bio fibres tend to be more sustainable compared to synthetic fibres. Carbon, 

Polypropylene and aramid based synthetic fibres have been introduced and applied in 

areas of construction such as buildings, bridges and pipelines. Glass fibres are 

produced from silica which is derived from sea sand. Continuous exploitation of sea 

sand for the production of glass fibres has led to other whole new complications. Sea 

sand will run out if its use continuously and the production of glass fibre also requires 

high budgets. Several fibrous concrete that is popularly used is from synthetic (Carbon, 

Polypropylene), steel and glass sources. Further research has to be done to advance the 

suitability of bio fibres as reinforcement to replace usage of synthetic (Carbon, 

Polypropylene), steel and glass fibre to produce more economical, light weight, 

degradable, environmentally friendly, bio-based economy and structural concrete 

composites. 

Fibrous concrete composites are produced to restrain the propagation of a crack 

in the concrete and to improve its tensile strength and ductility/deformation properties. 

Bio fibrous concrete composites (BFCC) is an environmentally sustainable material. 

Its potential advantages which varied from using bio fibres to decreasing synthetic and 



6 

 

steel fibres which are from petroleum and steel source, respectively. Due to the 

hydrophilic properties of bio fibre, this makes them unsuitable for use in concrete 

reinforcement and strengthening. An elaborate study to reduce the hydrophilic effect 

is necessary in order to utilize the positive properties accrued to Kenaf fibres in fibrous 

concrete production. The alkaline treatment of Kenaf fibre has been reported in the 

literature to inhibit the possibility of its decay over time. Despite the elaborate research 

on the short-term deformation behaviour of BFCC, publications directly related to 

long-term deformation behaviour of BFCC compressive, uniaxial tensile, flexural 

creep and shrinkage are uncommon. Though the usage of Kenaf fibre in concrete is 

however of current interest with gradual growing reports on its short-term mechanical 

demeanour in scholarly articles; there still exists a dearth of knowledge on the physical 

and mechanical performance of KBFCC. Also, for acceptability and immense 

application of KBFCC in engineering practice, the concrete science and industry must 

be provided with proof of systematic scientific study that shows and that analyse the 

features of BFCC on short and long-term structural performance. High on the list of 

main structural performance properties is creep and shrinkage of the concrete 

composites. 

Long-term performance of KBFCC under sustained static loads (creep) and 

shrinkage, as well as analytical models for estimation of creep and shrinkage 

properties, is yet to be studied. Furthermore, studies on the cement matrix bonding 

interface of KBFCC is rare to find in the literature. To have a better understanding of 

the relationship and behaviour of KBFCC under sustained loads, a proper investigation 

has to be conducted. This calls for an extensive study into the long-term performance 

of KBFCC under sustained loads as a result of mechanical stress and environmental 

load commonly referred to as creep and shrinkage, respectively. Similarly, there is 

need to understand the cement matrix bonding interface of the KBFCC by carrying out 

the morphological examination of the concrete exposed to the short and long-term 

loading. 
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 Aim and Objectives 

The aim of this research is to investigate the creep and shrinkage performance 

of KBFCC. In order to achieve the above aim, the following specific objectives were 

formulated. 

i. To examine the physical and mechanical properties of concrete containing 

kenaf fibre at varying fibre lengths and volume fractions. 

ii. To examine the effect of Kenaf fibre on the shrinkage and creep properties of 

KBFCC in compression, tension and flexure. 

iii. To assess the effect of mechanical loading on the microstructure 

characteristics of KBFCC. 

iv. To evaluate the prediction model of compressive, tensile, flexural creep and 

shrinkage of KBFCC and propose a model for estimation of creep and 

shrinkage behaviour of KBFCC. 

 Scope of the Study  

This research work is experimental and focused on assessing the long-term 

performance of KBFCC under shrinkage and compressive, tensile, flexural sustained 

loads which is within the limit of the set objectives. The scope of the study was divided 

into four stages: 

i. Kenaf fibre characterisations, material properties testing, short-term 

mechanical and time-dependent properties testing of KBFCC were carried out. 

The optimum fibre length and volume fraction was determined from the 

physical and mechanical properties of KBFC tested. The optimum KBFCC 

mix of 0.5% fibre volume fraction and 50 mm fibre length was used in the 

production of specimen used for the shrinkage and creep testing. Also, the 

design and construction of uniaxial tensile and flexural creep specimen mould, 

rig, test set-up and procedures were defined. 

ii. ASTM C512 [37] standard was used as a reference in carrying out the 

compressive creep test. The works of Babafemi [6] and Fladr [38] served as a 

reference to the experiment conducted on uni-axial tensile creep and flexural 
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creep, respectively. The shrinkage test was conducted in conformity with 

ASTM C157 [39]. 

iii. KBFCC specimen testing under long-term shrinkage, compressive creep, 

uniaxial tensile creep and flexural creep loading was conducted on standard 

size specimens. 100 mm diameter x 200 mm cylinder was used as a 

modification to the 150 mm diameter x 300 mm diameter given in ASTM 

C512  [37] for the compressive creep test.  75 mm x 75 mm x 600 mm prism 

and 100 mm x 100 mm x 500 mm prism were used for uni-axial tensile creep 

and flexural creep, respectively, as given in the work of Babafemi [6] and 

Fladr [38]. For the shrinkage test, the prism specimen dimension of 100 mm x 

100 mm x 285 mm prism was used in accordance with ASTM C157 [39]. The 

tensile creep specimens were pre-cracked and the crack mouth opening 

displacement was determined as the creep deformation characteristic of the 

bio fibrous concrete. The focal variables considered are the effect of fibre 

inclusion in concrete (0% and 0.5% KF at 50 mm length), sustained stress 

loads (25% and 35%) and age at loading (7 and 28 days) on creep. For the 

shrinkage testing, the tested specimen where made of three different group of 

25 mm, 50 mm and 75 mm Kenaf fibre length at 0%, 0.25%, 0.50%, 0.75%, 

1.0%, 1.5% and 2.0% fibre volume fraction. The specimens were tested at 

drying age of (7 and 28 days). The creep and shrinkage tests were all carried 

out in the controlled room of 23±2oC and RH of 50±4. The optimum fibre 

volume fraction and length was used in the prediction model analysis.  

iv. The morphology of Kenaf fibre, KBFCC and their cement matrix interface of 

the tensile fractured surface under short term and long term mechanical load 

were investigated. 

v. The experimental data was analysed and the relationships among different 

properties of KBFCC was determined. The creep and shrinkage (time-

dependent deformation properties) prediction model codes evaluated in this 

study are from ACI-209, CEB-FIP 1990 Model Code, Eurocode 2 (EC 2), and 

Australian Standard 3600 (AS 3600). The best prediction model code for 

KBFCC was identified after evaluation. 
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 Thesis Organization 

The thesis was presented in seven chapters. Chapter 1 presents a general 

appraisal and a brief description of the background problem. In addition, the chapter 

also spelt out the aim and objectives, scope and limitation, research hypothesis, the 

significance of research and the research approach. 

Chapter 2 is concerned with the critical review of the relevant and related 

literature. 

Chapter 3 provides the materials and the chronological sequence of the 

methodology that is employed for successful completion of the research using 

appropriate standard and modification where necessary in conducting the tests. 

Chapter 4 reveals the characterisation of the constituent materials, comprising 

the physical properties and chemical composition. The treatment of Kenaf fibre and 

its water sorptivity characteristics and mechanical test are discussed. This chapter also 

descried the effect of Kenaf fibre geometry (length) and volume fraction on fresh and 

hardened concrete properties. Parameters studied in this chapter include workability 

regarding the slump, compacting factor, Vebe of concrete, and fresh density. Also, the 

relationship between some data is developed to establish a correlation. It also presents 

the results obtained and discussion made on the evaluation of mechanical and 

durability properties. Tests falling in this class include; flexural, modulus of elasticity, 

compressive, water absorption (porosity), tensile strength, and shrinkage. The 

optimum content and length of the fibre meant to be used in the production of the creep 

and further shrinkage study was determined and presented.  

Chapter 5 deals with the evaluation of the morphologies of the KBFCC. Also, 

the microstructure characteristics of the fibre matrix interface of KBFCC exposed to 

sustained loading was examined and discussed in this chapter. The scanning electron 

micrograph (SEM) results are presented and discussed in this chapter.  

Chapter 6 focuses on the creep and shrinkage performance of KBFCC. The 

evaluation, statistical analysis, determination of best prediction model code for 

prediction of creep and shrinkage of KBFCC. 

Chapter 7 presents the conclusion of this thesis by stating the outcomes and, 

successes of the study and the contribution of the research to the existing information. 

Recommendations are made for further research in related areas to improve the 
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properties of concrete using Kenaf bio fibre for the production of a green and 

sustainable concrete. 
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