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ABSTRACT 

 

 

 

 

 In this research, the applicability of the Multiscale Localized Differential 

Quadrature (MLDQ) method in two-dimensional shape memory alloy (SMA) model 

was explored. The MLDQ method was governed in solving several partial 

differential equations. Besides, the finite difference (FD) method was used to solve 

some examples of partial differential equations and the solutions obtained were 

compared with those obtained by MLDQ method in order to show the accuracy of 

the numerical method. The MLDQ method was developed by increasing the number 

of grid points in critical region, and approximating the derivatives at the certain 

selected grid points. This present method together with the fourth-order Runge-Kutta 

(RK) method has been applied in differential equations such as wave equation and 

high gradient problems,. The MLDQ method can achieves accurate numerical 

solutions compared with FD method which is a low order numerical method by using 

a few number of grid points. The multiscale method was employed at the critical 

region which can break down the region of interest from coarser into finer grid points. 

Furthermore, FORTRAN programs were developed based on MLDQ method in 

solving some problems as above. The shared memory architecture of parallel 

computing was done by using OpenMP in order to reduce the time taken in 

simulating the numerical results. Consequently, the results show that the MLDQ 

method was a good numerical technique in  two-dimensional SMA.  
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ABSTRAK 

 

 

 

 

 Dalam kajian ini, kesesuaian kaedah Multiscale Berbeza Kuadratur Setempat 

(MLDQ) dalam model dua dimensi Aloi Memori Bentuk (SMA) telah diterokai. 

Kaedah MLDQ telah dibangunkan dalam menyelesaikan beberapa persamaan 

pembezaan separa. Selain itu, kaedah Perbezaan Terhingga (FD) telah digunakan 

untuk menyelesaikan beberapa contoh persamaan pembezaan separa dan keputusan 

yang diperolehi telah dibandingkan dengan keputusan yang diperolehi dari kaedah 

MLDQ, untuk menunjukkan kejituan kaedah berangka tersebut. Kaedah MLDQ telah 

dibangunkan dengan memperbanyakkan bilangan titik grid di kawasan kritikal, dan 

juga menganggarkan terbitan pada titik grid tertentu yang dipilih. Kaedah ini 

bersama-sama dengan kaedah Runge-Kutta peringkat keempat (RK-4) telah 

digunakan dalam persamaan pembezaan seperti persamaan gelombang dan masalah 

kecerunan tinggi. Kaedah MLDQ boleh mencapai penyelesaian yang lebih jitu 

berbanding dengan kaedah FD yang mempunyai peringkat kejituan yang rendah 

dengan menggunakan bilangan titik grid yang kecil. Kaedah multiscale digunakan di 

kawasan kritikal kerana mampu memecahkan rantau yang dikehendaki dari titik grid 

kasar kepada titik grid lebih perinci. Tambahan lagi, program FORTRAN dengan 

kaedah MLDQ telah dibangunkan untuk menyelesaikan masalah-masalah tersebut di 

atas. Bagi pengkomputeran selari, seni bina memori perkongsian telah dilaksanakan 

dengan menggunakan OpenMP bertujuan untuk mengurangkan masa yang diambil 

dalam simulasi keputusan berangka. Dengan itu, keputusan menunjukkan bahawa 

kaedah MLDQ adalah teknik berangka yang baik dalam SMA dua dimensi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Problem 

 

 

In most of the science and engineering fields, a set of partial differential 

equations (PDEs), either linear or nonlinear, the solutions to them must be sorted for. 

Therefore, the numerical computations have attracted considerable attention for 

solving PDEs problems. There are many available numerical methods used 

nowadays for solving PDEs, that is, Finite Difference (FD) method,  Finite Element 

(FE) method, Finite Volume (FV) method, Boundary Element (BE) method and 

others numerical methods. However, many numerical methods have been discussed 

and applied in the science and engineering areas, the Differential Quadrature (DQ) 

method is by far the most effective tool available to researchers with interests in 

numerical computations. The DQ method will be discussed in this study.  

 

 

 The DQ method is more efficient numerical which requires less 

computational effort and achieves an acceptable and reasonable accuracy for the 

PDEs. Besides, DQ method is an extension of FD method for the higher order of 

finite difference scheme. Although DQ method is a numerical technique of high 

accuracy, but it is sensitive to the number of grid points. Therefore, many researchers
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have developed new methods to overcome the limitation of the DQ method. A new 

class of numerical methods for solving the sciences and engineering problems will be 

discussed in Chapter Two. 

 

 

 Another numerical discretization technique that will be discussed in this 

study is Localized Differential Quadrature (LDQ) method. According to Zong and 

Lam (2002), LDQ method is characterized by approximating the derivatives at a grid 

point using weighted sum of the points in its neighbourhood. This method is used to 

solve the limitation of the DQ method. Besides, the Runge-Kutta method has been 

discussed in order to numerically integrate the LDQ numerical system in the time 

direction.  

 

 

 In this study, parallel programming of shared memory architecture (OpenMP) 

is introduced in order to reduce the execution time for sequential algorithm in solving 

the PDEs using LDQ method. Generally, when the number of grid points increase 

and the simulation time will become longer, this make the whole simulation will 

become expensive. Therefore, parallel computation technique will be applied in 

solving PDEs.   

 

 

 Furthermore, Multiscale method is also been discussed in this study. The 

Multiscale method is a powerful tool for the numerical solution of differential 

equation which is based on discrezation and subsequent approximation of derivatives 

by FD formulas. The main idea of Multiscale is to accelerate the convergence of base 

iterative method by solving a coarse problem. According to Zhu and Cangellaris 

(2006), the Multiscale method can be applied in combination with any common 

discretization techniques. Based on the multiscale concept with using various 

interpolation techniques, in our study, the certain grid point which is out of uniformly 

distributed grids can be calculated accurately with less computation time. By take 

into account of the powerful Multiscale approach with LDQ method, we calculate the 

numerical solution in any point with minimum calculation.   
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 Moreover, in this study, we present our method applied in Shape Memory 

Alloy (SMA) problems. SMA are novel and special materials which have the ability 

to return to predetermined shape when heated above a certain transition temperature. 

Constitutive modelling of SMA has been an interest research subject from 1980s 

until now. There are many researchers used the various numerical methods in the 

numerical simulation of SMA problems. Therefore, we present our method applied in 

simple SMA model to achieve a good numerical solution. 

 

 

 

 

1.2 Statement of the Problem  

 

 

There are many available numerical methods used to approximate the 

solution of diffusion equation and wave equation. A set of initial and boundary 

conditions are needed to solve these equations. Although the DQ method has been 

applied successfully to a variety of science and engineering problems, however, this 

method possesses several undesirable limitations and drawbacks. As an example, the 

total of grid points used in DQ method is limited due to the ill-conditioned matrix 

form. Besides, asymmetry of the final solution matrix produced by the DQ method 

makes the solution procedure to be inefficient. Due to overcome this drawback of the 

DQ method, many researchers have developed and improved new DQ methods. In 

this study, the Multiscale Localized Differential Quadrature (MLDQ) method is 

applied in solving the boundary value problems, and also to overcome the limitation 

of the DQ method. Finally, parallel programming with shared memory architecture 

using OpenMP is implemented in order to reduce the execution time of FORTRAN 

program developed in this study.  
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1.3 Objectives of the Study 

 

 

The objectives of this research are summarized as: 

i. To govern MLDQ method in solving wave equation, diffusion equation and 

high gradient problem. 

ii. To compare the MLDQ method with FD method in terms of their accuracy 

and convergence study of numerical solution in solving wave equation, 

diffusion equation and high gradient problem. 

iii. To govern MLDQ method in the numerical simulation of SMA model. 

iv. To develop FORTRAN program codes based on MLDQ method in solving 

wave equation, diffusion equation, high gradient problem and SMA problem. 

v. To parallelize FORTRAN program codes using OpenMP language for LDQ 

method and MLDQ method in solving boundary value problems. 

 

 

 

 

1.4 Scope of the Study 

 

 

In this research, the basic concept of DQ, LDQ and multiscale methods will 

be discussed, and also, understanding these numerical discretization techniques’ 

application in solving boundary value problems. Another scope of the study will be 

focused on solving the two dimensional wave equation and two dimensional high 

gradient problem. The Runge-Kutta (RK) method will be utilized in MLDQ method 

to numerically integrate it in time direction. Furthermore, FORTRAN program codes 

will be developed and parallelized by using share memory architecture, that is, 

OpenMP for LDQ method in solving boundary value problems. The limitation of 

parallel programming in this study is four cores will be used. In this research, the 

multi-core computer Intel® Core™ i5 CPU M460 @2.53GHz is used to do the 

programming. The data of the programming is reasonable for four processors to run. 

Besides, the MLDQ method will also be implemented in the numerical simulation of 

SMA problem. 
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1.5 Significance of the Study 

 

 

In this research, MLDQ method will be discussed and applied to boundary 

value problems. This research is important to overcome the limitations and 

drawbacks of the DQ method. Besides, this method also is applied in SMA problem. 

Next, the FORTRAN program codes for the LDQ method will be developed in 

convenience of checking the performances of the numerical methods. Furthermore, 

the OpenMP language is used to parallelize the FORTRAN program codes in order 

to reduce the execution time.     
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