VOLUME LOSS ASSESSMENT FOR TWIN TUNNELING OF KLANG VALLEY MASS RAPID TRANSIT LINE 1

NOR AZIAH ISHAK

UNIVERSITI TEKNOLOGI MALAYSIA

VOLUME LOSS ASSESSMENT FOR TWIN TUNNELING OF KLANG VALLEY MASS RAPID TRANSIT LINE 1

NOR AZIAH ISHAK

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

> School of Civil Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > JULY 2018

ACKNOWLEDGEMENTS

Bismillahirahmanirrahim...

Alhamdulillah, I am grateful to Allah s.w.t for the blessings and grace, I managed to complete the thesis entitled "*Volume Loss Assessment for Twin Tunneling of Klang Valley Mass Rapid Transit Line 1*" properly and successfully.

The utmost and heartiest gratitude to my supervisor, Dr. Rini Abdullah, who always willing to share her invaluable and priceless knowledge and also giving constructive advice, and enthusiastic support to my research. I am also grateful to her for spending her precious time to view and evaluate the thesis.

Special thanks and sincere appreciation to my mentor Ir.Tan Ek Khai for valuable advice and guidance, throughout my career journey.

DEDICATION

To All People

By Al-'Asr (the time). Verily, man is [deep] in loss, except for those who believe and do good deeds, urge one another to the truth and urge one another to patience." (Quran 103)

> Sincerely, NOR AZIAH ISHAK UNIVERSITI TEKNOLOGI MALAYSIA

ABSTRACT

Ground settlement during tunneling works often affect the above ground structure. This problem may lead to safety risk impact and most worried its possible impact to the surrounding. In this case, the magnitude of ground settlement can be reduced by knowing the sufficient amount of volume loss (V_L) to be adopted during the design stage. However, the prediction of optimum V_L to be used in the design process relies on the data from previous actual case study area that shares similar ground condition. Although generally it is unusual to obtain homogeneous conditions for every tunneling work, it is preferable to study V_L references based on geometrical properties of the same geological area. Realizing unavailability of V_L data based on Klang Valley geological conditions, this study aims to provide actual V_L magnitude in relation with geometrical properties, within the Klang Valley vicinity. In this research, the actual ground settlements during the twin tunneling works of Klang Valley Mass Rapid Transit Sungai Buloh Kajang Line (KVMRT SBK) are monitored. This study focuses on 1.38 km Earth Pressure Balance (EPB) tunnel machine tunneling works from Semantan North Portal to Museum Station. From the actual maximum settlement occurred during tunneling, V_L was then evaluated by using back analysis formula proposed by Mair to get the V_L percentage. It was found that the average maximum percentage of V_L induced both tunneling is less than 1.0%. Comparison on both ground settlement results shows that the second tunnel induced large magnitude of ground movement than that of the first tunnel. This difference can be related to the effect of superposition theory. When twin tunneling works occur in equivalent condition (workmanship, geology, tunnel speed and tunnel type), the superposition effect will take place, and this has resulted in higher V_L readings in the second tunnel. Overall, results of V_L found in this research are in line with previous research findings where the range of V_L for tunneling works falls in the range of 0.2% to 2.0%.

ABSTRAK

Mendapan tanah semasa kerja pengorekan terowong sering memberi kesan ke atas struktur binaan di permukaan tanah. Hal ini boleh menimbulkan risiko keselamatan dan paling dibimbangkan kesan yang mungkin berlaku terhadap kawasan sekitarnya. Di dalam kes ini, magnitud mendapan permukaan boleh dikurangkan dengan mengetahui jumlah bagi isipadu hilang (V_L) yang menukupi untuk digunapakai semasa proses rekabentuk. Walaubagaimanapun, jangkaan V_L optimum untuk digunapakai dalam proses rekabentuk bergantung kepada data kes sebenar dari hasil kajian terdahulu di suatu kawasan yang berkongsi kondisi tanah yang sama. Walaupun secara umumnya jarang untuk mendapatkan dua keadaan homogen bagi setiap kerja terowong, adalah wajar untuk mengkaji rujukan V_L berdasarkan sifat-sifat geometri bagi kawasan geologi yang sama. Menyedari tiada data V_L yang tersedia berdasarkan keadaan geologi Lembah Klang, kajian ini bertujuan untuk memberi magnitud V_L sebenar berhubung dengan ciri geometri di sekitar Lembah Klang. Dalam kajian ini, kuantiti sebenar mendapan tanah semasa kerja pengorekan terowong kembar bagi projek Jajaran Keretapi 'Mass Rapid Transit' Lembah Klang laluan Sungai Buloh Kajang (KVMRT SBK) dipantau. Kajian ini mengfokuskan kepada penggunaan Mesin Pengorek Terowong Keseimbangan Tekanan Bumi (EPB) sepanjang 1.38 km melalui jajaran bawah tanah dari Portal Utara Semantan ke Stesen Muzium. Dari mendapan maksimum sebenar yang berlaku ketika proses pengorekan, V_L telah dinilai menggunakan formula analisa berbalik yang dicadangkan oleh Mair bagi mendapatkan peratusan V_L. Didapati bahawa purata peratusan V_L maksimum bagi kedua-dua terowong adalah kurang dari 1.0%. Perbandingan bagi kedua-dua mendapan tanah menunjukkan bahawa terowong yang kedua menghasilkan magnitud pergerakan tanah yang lebih besar berbanding dengan magnitud pergerakan tanah bagi terowong pertama. Ini boleh dikaitkan dengan teori kesan pertindihan. Bagi kerja-kerja terowong kembar yang berlaku di dalam kondisi yang sama (mutu kerja, geologi, tempoh kerja dan jenis mesin terowong), kesan pertindihan akan berlaku, dan ini telah menyebabkan bacaan nilai V_L yang tinggi pada terowong kedua. Secara keseluruhannya, dapatan nilai V_L dari kajian ini selari dengan hasil kajian sebelumnya yang mendapati bahawa peratusan V_L bagi kerja pengorekan terowong berada pada kadar 0.2% ke 2.0%.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	ACK	NOWLEDGEMENTS	iii
	DED	ICATION	iv
	ABS	ТКАСТ	v
	ABS	ГКАК	vi
	TAB	LE OF CONTENTS	vii
	LIST	COF TABLES	X
	LIST	COF FIGURES	xi
	LIST	COF ABBREVIATIONS	xiv
	LIST	COF SYMBOLS	XV
	LIST	COF APPENDICES	xvi
1	INTF	RODUCTION	1
	1.1	Background of Study	1
	1.2	Problem Statement	3
	1.3	Significance of the Study	3
	1.4	Research Aim and Objectives	4
	1.5	Scope and Limitation of the Study	4
	1.6	Thesis Organizations	5
2	LITE	ERATURE REVIEW	7
	2.1.	Introduction	7
	2.2.	Infra Tunnel History in Malaysia	8
	2.3.	Klang Valley Geological Condition	13
	2.4.	Definition Volume Loss	15

2.5.	Factor Contributing in Volume Loss	17
	2.5.1 Tunneling Techniques	18
	2.5.2 Ground Condition	27
	2.5.3 Geometrical Properties	29
2.6.	Method of Ground Movement Assessment	35
	2.6.1 Empirical Method	35
	2.6.2 Analytical Method	36
	2.6.3 Numerical Method	38
2.7.	Assessment of Ground Movement Induced by Twin Tunnel	39
	2.7.1 Method 1: Superposition	39
	2.7.2 Method 2: Modified volume Loss of first tunnel	
	associated with second tunnel.	40
2.8.	Heave Formation During Tunneling	44
2.9.	Summary	44
RESE	EARCH METHODOLOGY	46
3.1.	Introduction	46
3.2.	Research Procedures	46
3.3.	Case Study Description	47
3.4.	Ground Settlement Marker	51
3.5.	Monitoring Procedure	54
3.6.	Ground Movement Analysis	55
	3.6.1. Volume Loss Calculation	55
	3.6.2. Theoretical Ground Settlement Calculation	58
3.7.	Summary	58
RESU	ULTS AND DISCUSSION	60
4.1	Introduction	60
4.2	Ground Movement Induced During Tunneling Works	60
4.3	Volume Loss in Relation with Actual Ground Movement	65
4.4	Actual Volume Loss	67
4.5	Upward Ground Movement	69
4.6	Effect of Overburden Depth Over Volume Loss	74

	4.7	Validat	tion of Volume Loss in Relation With C/D Ratio i	n
		Shallo	ow Tunneling	77
	4.8	Analys	is Comparison of Actual Ground Movement With	l
		Theor	retical.	78
	4.9	Summa	ary	81
5	CON	CLUSIC	ONS AND RECOMMENDATIONS	82
	5.1	Conclu	sions	82
		5.1.1	Range of Ground Settlement and Volume Loss	for
			EPB Closed Face Tunneling.	82
		5.1.2	Effect of C/D Ratio in Relation with the Amoun	t of
			Volume Loss.	83
		5.1.3	Ground Uplift Movement During Tunneling.	84
	5.2	Recom	mendations	84
6	REFI	ERENCI	ES	85
7	APPF	ENDICE	S A-C	92-107

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Distinction of space usage (after Zhang, Chen, and Yang, Z	2011)8
2.2	Major Tunnel History in Malaysia	10
2.3	Kenny Hill Formation parameters adopted in the KVMRT	
	SBK Line, (after Boon and Ooi, 2016)	14
2.4	Volume Loss in open face tunneling based on actual case	
	history data	22
2.5	Tunneling Shield Face Support Pressure, (after Möller, 20	06)25
2.6	Volume Loss in closed face tunneling based on actual case	
	history data	27
3.1	Volume loss Constant parameter	56
3.2	Calculation of V_L at CH 1+520	57
4.1	Actual Ground settlement occured throughout tunneling a	t
	each array	61
4.2	GSM reading at chainage NB 1+520	63
4.3	GSM reading at array chainage NB 2+420	64
4.4	Volume Loss occured during TBM works	66
4.5	Heave occurrence at TBM 1	71
4.6	Data Comparison of Actual Ground Settlement and metho	d
	proposed by O'reilly and New (1982)	78

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Distribution of Kenny Hill Formation in Geological	
	map of Selangor, (after Lee, 2001)	13
2.2	Sample of Kenny Hill Rock formation	14
2.3	Inward displacement of the ground around the tunnel	
	due to stress relief (after Golpasand et al. 2016)	15
2.4	Maximum ground settlement during tunneling,	
	definition of Gaussian Distribution Curve	17
2.5	Example cross section through a tunnel constructed using	
	NATM (after Chapman, Metje and Stärk, 2010)	19
2.6	Principle component of ground deformation for open face tunneling(after Möller, 2006)	20
2.7	Open shield tunneling : Circular tunnel shield with	
	segmental lining	21
2.8	Volume Loss Component, (Ngan, Broere and Bosch, 2016)	26
2.9	Relation between settlement trough width and tunnel	
	depth for different grounds (after Ralph B Peck, 1969)	29
2.10	Validation for volume loss in shallow tunneling in (a)	
	sand and (b) clay (after Ngan, Broere and Bosch, 2016)	31

2.11	Surface settlement with variance of tunnel shape	
	(after Moldovan and Popa, 2013)	32
2.12	Relation between stability number at collapse, Ntc	
	and C/D, (after Macklin, 1999)	33
2.13	Volume loss and load factor from field monitoring data of	
	overcosolidated clays (after Macklin, 1999)	34
2.14	Ground Movement profile due to tunneling	
	(after R.B. Peck, 1969)	36
2.15	Modes of ground deformations and it notation (after Pinto	
	and Whittle 2014) (adopted from Peck 1969)	38
2.16	Superposition method parameter	40
2.17	Volume loss into second tunnel varying with pillar width	
	- side-by-side (after Addenbrooke and Potts, 2001)	42
2.18	Volume loss into second tunnel varying with pillar width	
	piggy back tunnels (after Addenbrooke and Potts, 2001).	42
2.19	Smax eccentricity (after Addenbrooke and Potts ,2001)	43
2.20	Side by side and piggy back geometries,	
	(after Addenbrooke and Potts, 2001)	43
3.1	Flow of the research activities	47
3.2	KVMRT SBK Line 1 Tunnel section	48
3.3	Actual Tunnel drive launch shaft	50
3.4	Superimposed KVMRT alignment with geological map	
	of Kuala Lumpur . (KVMRT, 2012).	51
3.5	Ground settlement marker	52
3.6	GSM position installed along Jalan Damansara	
	marked in red circle R1, R2 and R3	53

3.7	Tunnel Schematic Diagram	56
3.8	Theoretical surface settlement trough	58
4.1	GSM Location at array Chainage NB 1+520	62
4.2	GSM Location at array chainage NB 2+420	64
4.3	Variation of maximum ground settlement and volume loss	68
4.4	Comparison of actual volume loss	69
4.5	Comparison of actual ground settlement	70
4.6	Vertical displacement at surface, chainage 1+840	72
4.7	Vertical displacement at surface, chainage 2+300	72
4.8	Vertical displacement at surface , chainage 2+440	73
4.9	Vertical displacement at surface , chainage 2+400	73
4.10	Tunnel Overburden depth illustration	74
4.11	Volume loss versus Overburden depth, for TBM 1 (NB)	75
4.12	Volume loss versus Overburden depth, for TBM 2 (SB)	76
4.13	Variation of volume loss and Cover-to-Depth Ratio	76
4.14	Validation of volume loss in shallow tunneling	77
4.15	Comparison of actual ground settlement and theoretical	
	green field settlement analysis	79
4.16	Level of percentage (LOP) with actual ground	
	settlement data	80

LIST OF ABBREVIATIONS

D&B	Drill and blast
EPB	Earth Pressure Balance
GSM	Ground settlement marker
LF	Load factor
LOP	Level of percentage
NATM	New Austrian tunneling Method
SCL	Spray concrete Lining
TBM	Tunnel Boring Machine
TOD	Transit Oriented Development
VD	Variable density
V_L	Volume loss
\mathbf{Sv}_1	Ground Settlement induced by TBM 1
Sv_2	Ground Settlement induced by TBM 2
Vs	volume of settlement
KVMRT	Klang Valley Mass Rapid Transit
SBK	Sungai Buloh Kajang
SEM	Sequential excavation
OGL	Original ground level
Tc	Tunnel Crown
NB	Northbound
SB	Southbound
exp.	exponential

LIST OF SYMBOLS

ΔV	difference in ratio between amount of subsurface excavated
	material
π	Phi
i	horizontal distance from tunnel centerline to the point of
	inflection in Gaussian Distribution Curve
γ	soil bulk unit weight
Си	undrained shear strength of soil.
с'	Effective Cohesion
φ	Efective friction angle
E50	Young's Modulus
&	And

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A1	Instrumentation layout from Ch. 1+100 to Ch. 1+450	92
A2	Instrumentation layout from Ch. 1+450 to Ch. 1+890	93
A3	Instrumentation layout from Ch. 1+890 to Ch. 2+400	94
A4	Instrumentation layout at Ch. 2+400	95
В	Volume Loss Calculation Template	96
C1	Theoretical settlement at CH 1+420	97
C2	Theoretical settlement at CH 1+450	97
C3	Theoretical settlement at Chainage 1+520	98
C4	Theoretical settlement at Chainage 1+590	98
C5	Theoretical settlement at Chainage 1+610	99
C6	Theoretical settlement at Chainage 1+650	99
C7	Theoretical settlement at Chainage 1+740	100
C8	Theoretical settlement at Chainage 1+840	100
C9	Theoretical settlement at Chainage 1+890	101
C10	Theoretical settlement at Chainage 1+960	101
C11	Theoretical settlement at Chainage 2+020	102
C12	Theoretical settlement at Chainage 2+070	102
C13	Theoretical settlement at Chainage 2+300	103

xvii

C14	Theoretical settlement at Chainage 2+350	103
C15	Theoretical settlement at Chainage 2+360	104
C16	Theoretical settlement at Chainage 2+420	104
C17	Theoretical settlement at Chainage 2+430	105
C18	Theoretical settlement at Chainage 2+440	105
C19	Theoretical settlement at Chainage 2+450	106
C20	Theoretical settlement at Chainage 2+460	106
C21	Theoretical settlement at Chainage 2+480	107

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The expansion of urban population and economic growth in city centre presents new challenges to the development plan. Thus, demand of efficiency public transport together with sustainable growth seeks high attention in developing better tomorrow. Recognizing this issue, one of the comprehensive strategy to foster public transport is by providing convenient infra system to the public. By implementing railway tunnel as part of transport and infrastructure work, land use in urban area can be optimized to support Transit Oriented Development (TODs) approach. Use of urban underground space needs to be considered in long term city development Masterplan (Bobylev, 2009). Although the development of underground transport system has it perks, the construction of tunnel has raised public concern to the tunnel induced ground movement, at adjacent subsurface structure. As such, assessing of ground settlement and the building deformation caused by tunneling activity needs to be prioritize in the preliminary process, as part of safety measure and requirements.

One of the design preliminary assessment prior to tunnel work is prediction of ground deformation in greenfield condition (i.e. neglecting any surface load). In this stage, the value of ground loss during tunneling is assumed to fall in certain range which to be set as one of the key parameters. Ground loss or often called volume loss (V_L) is defined as the volume of material that has been excavated in excess of theoretical design volume of excavation' (Loganathan, 2011). In other words, V_L is

the amount of excessive material compared with what required in theoretical design. Ground deformation caused by tunnel excavation is inevitably associated with ground movement.

There are few factor affects the magnitude of V_L . This divides by two main group which describe as constructional factor and ground properties (Attewell and Farmer, 1974). Yet, another key point to be considered and often effect the V_L amount is geometrical properties. This factor weighting the contribution of tunnel cover-todiameter ratio and it pillar width. The construction of tunnel often occurred in geological area that may not share same soil properties, therefore, the perk of studying geometrical properties as variable in finding V_L will further become good reference for preliminary ground assessment in tunnel design, especially those relates with Malaysia local geological area. Among the finding by previous research is that for shallow overburden area, the V_L found to be increase by decreasing tunnel depth (Ngan, Broere and Bosch, 2016).

There are three common methods broadly used in assessing the ground deformations induced by tunneling. Every methods has their own advantages, depending on data available to be applied on each methods. These are the numerical method, analytical method and empirical methods. For the study of V_L based on historical data, empirical method is widely used due to its capability to directly apply actual ground movement induced in its analysis to find the actual V_L . Nowadays, the construction of more than one tunnel within close space in urban area becomes common. The anticipate V_L induced especially from second tunnel recorded higher than the first tunnel. This due to superposition effect that take place during tunneling (Mair and Taylor, 1997). This statement supported by numerical findings by Addenbrooke (Addenbrooke T.I., 1996) where the area of second tunnel have already been affected by shear strains produced by first tunnel resulting in reduced stiffness which leads to higher V_L in second tunnel. Although much research have been initiated to find correlation between ground deformation and its V_L contribution, it is worth nothing to find those factors that relates to Malaysia local tunneling project.

1.2 Problem Statement

Early study conducted explained that prediction of ground surface movement associated with tunneling can be distinguished by two phases; Prediction of volume of 'ground' loss during tunneling activity and the long term volume change occurred , in the ground (Glossop, 1978). In most cases, the V_L much depending on geological conditions of the tunneling associated with excavation technique. Preceding research conducts to identify the range of V_L. This was done by taking actual settlement occurred during tunnel activity and back calculated, in order to find the actual volume loss. As results from previous case historic data, V_L varying in the range of 0.2 % to 2.0 % were determined and used in practices. Nevertheless, there are three parameters which makes the V_L ranges unique and distinguished, which are geological condition, excavation method or in other word is tunneling techniques, and geometrical condition. As the range of proposed V_L is not self-dependent, therefore, it is deemed important to understand and investigate the V_L with close proximate to the local geological condition and tunneling techniques. As such, in this project where tunneling and geological condition occurred in same environment which are Kenny Hill and EPB, the variables of research is more focus on geometrical effect towards amount of V_L. With this, the outcome and recommendation of the study will provide future direction for further comprehensive and better justification for ground settlement analysis occurred, during tunnel excavation.

1.3 Significance of the Study

During tunnel excavation, changes of stress and ground mass around the excavation area likely cause the vertical and horizontal ground settlement. As result, the ground deformation occurs may cause the adjacent building to face the risk of collapse and damage. Thus, VL is one of the main parameter being used in ground settlement analysis. It significantly controlled the predicted amount of maximum settlement, in preliminary green field analysis (i.e. no building , structures on the ground.). To date, proposed of VL ranges over tunnel relies on case study experiences

in UK and beyond , as suggested by Mair (1996). Practically, the V_L values are estimated from back analysis of similar location. Although, not much research done during early tunneling in Malaysia ,especially those relates to the ground settlement associated with V_L occur, during tunneling. As the range of V_L governs by localized geotechnical properties and excavation techniques, it's deemed important to establish the V_L range which reflects to Klang valley local geological condition. In this research, the actual settlement value during tunnel section of Klang Valley Mass Rapid Transit Sungai Buloh Kajang Line (KVMRT SBK) were monitored. The actual settlement is then back- analyzed to get their actual V_L . Apart from that, the theoretical V_L amount is evaluated from semi-empirical method.

1.4 Research Aim and Objectives

The aims of this research are to determine the V_L occurrence and its behavior during KVMRT SBK tunneling activity, in relation with Kenny Hill geological and EPB tunneling technique. This can be achieved by the following objectives:

1. To determine the volume loss and ground settlement magnitude of twin tunnel.

2. To monitor the ground uplift movement (heave) occurred during tunneling.

3. To identify the effect of cover-to-diameter (C/D) ratio towards the amount of V_L .

1.5 Scope and Limitation of the Study

This research based on actual instrumentation data collected during KVMRT SBK underground twin tunnel section from Semantan North Portal to Museum Station.

Throughout monitoring work, over hundred data, were collected from the first tunneling until completion of second tunnel through. The tunnel section divided into two; Underground 1 (UG1) and Underground 2 (UG2). This research is focuses on tunneling of UG1 from Semantan North Portal to Museum Station, where the geological profile underlain by Kenny Hill Formation.

Moreover, for tunneling in Kenny Hill Formation, a closed face tunneling method was adopted. Twin Tunnel with stretch 4.4km long, over 9.5km in total were bored through by using Earth Pressure Balance (EPB) machine. For this project, research focuses on the tunneling about 1.38km from Semantan North Portal to Museum Station by EPB machine.

For the purpose of measuring localized settlement or heave caused by tunneling activity, ground settlement marker (GSM) were placed on ground. GSM were installed within range of 20m to 100m intervals. The monitoring of settlement marker was carried out by leveling survey and readings taken in between December 2013 to July 2014, , to monitor any settlement or heave. As the ground condition and tunneling technique remain constant, this research drills down the effect of geometrical properties as main key parameter varying the V_L .

1.6 Thesis Organizations

The thesis is presented according to the following chapter headings, the content of which is also briefly described below:

Chapter 1 discusses the background of study and problem statement as well significance of research paper. Scope and limitation of research is elaborating in detail, in this chapter.

Chapter 2 describes the current engineering practices for ground movement assessment of green field conditions. Discussion of assessment of ground movement induced by twin tunnel is described afterwards. Next, V_L effect and factor governs it amount are discusses in detail followed by discussion in heave formation.

Chapter 3 provides the flowchart of research procedure and elaborates detail of case study and it geological profiles. Next, field work and site monitoring is described comprehensively.

Chapter 4 elaborates analysis and result of V_L occurred. These include result and discussion on ground movement induced during tunneling, and its V_L results. Then, discussion on analysis comparison of actual ground movement with the theoretical is discussed further.

Chapter 5 emphasizes the result and finding in relation with research objective. Then, conclusions and recommendation are explained further.

REFERENCES

- Addenbrooke, T. and Potts, D. (2001). Twin Tunnel Interaction: Surface and Subsurface Effects. *International Journal of Geomechanics*. 1(2), 249–271.
 Available at: http://dx.doi.org/10.1061/(ASCE)1532-3641(2001)1:2(249).
- Addenbrooke, T.I. and Potts, D.M. (1996). Twin tunnel construction Ground movements and lining behaviour. *Geotechnical Aspects of Underground Construction in Soft Ground.*, 441–446.

Addenbrooke T.I. (1996). Numerical analysis of tunnelling in stiff clay.

- Attewell, P.B. and Farmer, I.W. (1974). Ground disturbance caused by shield tunnelling in a stiff, overconsolidated clay. *Engineering Geology*. 8(4), 361– 381.
- Bobylev, N. (2009). Mainstreaming sustainable development into a city's Master plan: A case of Urban Underground Space use. *Land Use Policy*. 26(4), 1128–1137. Available at: http://www.sciencedirect.com/science/article/pii/S026483770900026X [Accessed January 16, 2016].
- Bowers, K.H., Hiller, D.M. and New, B.M. (1996). Ground movement over three years at the Heathrow Express Trial Tunnel. *Geotechnical Aspects of Underground Construction in Soft Ground*. (1992), 647–652.

Broms, B.B. and Bennermark, H. (1967). Stability of clay at vertical openings. Journal

of Soil Mechanics & Foundations Div.

- Chapman, D., Metje, N. and Stärk, A. (2010). *Introduction to tunnel construction*, CRC Press. Available at: www.tmr.qld.gov.au/~/media/.../tunnelconstructionbentoniteplant.pdf.
- Cording, E.J. and Hansmire, W.H. (1975). Displacements around soft ground tunnels, General Report, Session 4, 5th Panamerican Cong. on Soil Mech. and Foun. *Engr. Buenos Aires, November.*
- Court, D.J. (2011). Soft Ground Tunnel Boring Machines. In *Course on Tunnel Design* and Construction Module 2. Thomas Telford Publishing, pp.1–11.
- Dimmock, P. (2005). Volume loss caused by open-face shield tunnelling on the Jubilee Line extension. *Australian Geomechanics*. 40(3), 110–116.
- Do, N.-A.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2014). Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. *Tunnelling* and Underground Space Technology. 42, 40–51. Available at: http://www.sciencedirect.com/science/article/pii/S088677981400011X [Accessed April 15, 2015].
- Fargnoli, V., Boldini, D. and Amorosi, A. (2013). TBM tunnelling-induced settlements in coarse-grained soils: The case of the new Milan underground line 5. *Tunnelling and Underground Space Technology*. 38, 336–347. Available at: http://dx.doi.org/10.1016/j.tust.2013.07.015.
- Fattah, M.Y., Shlash, K.T. and Salim, N.M. (2013). Prediction of settlement trough induced by tunneling in cohesive ground. *Acta Geotechnica*. 8(2), 167–179.
- Glossop, N. (1978). Soil deformations caused by soft-ground tunnelling. *Durham Thesis, Durham University*. Available at: http://etheses.dur.ac.uk/8432/.

- Golpasand, M.R.B., Nikudel, M.R. and Uromeihy, A. (2016). Specifying the real value of volume loss (V L) and its effect on ground settlement due to excavation of Abuzar tunnel, Tehran. *Bulletin of Engineering Geology and the Environment*. 75(2), 485–501. Available at: http://link.springer.com/10.1007/s10064-015-0788-8.
- Guglielmetti, V., Grasso, P., Mahtab, A. and Xu, S. (2008). *Mechanized tunnelling in urban areas: design methodology and construction control*, CRC Press.
- Iman, A. H. M. & Tian, T.U. (2013). International Journal of Real Estate Studies, Volume 8, Number 2 2013. *Journal, International Studies, Real Estate*. 8(2), 1–15.
- Kimura, T. and Mair, R.J. (1981). CENTRIFUGAL TESTING OF MODEL TUNNELS IN SOFT CLAY. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering. 1, 319–322. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0019657269&partnerID=tZOtx3y1.
- KVMRT (2012). Sungai Buloh Kajang Line Alignment On Selangor & KL Geological Map | KVMRT Research. KVMRT research. Available at: http://kvmrt.info/sungai-buloh-kajang-line-alignment-on-selangor-klgeological-map/ [Accessed December 25, 2017].
- Lee, C.P. (2001). Scarcity of Fossils in the Kenny Hill Formation and its Implications. *Gondwana Research*. 4(4), 675–677. Available at: http://www.sciencedirect.com/science/article/pii/S1342937X0570472X.
- Liu, H., Li, P. and Liu, J. (2011). Numerical investigation of underlying tunnel heave during a new tunnel construction. *Tunnelling and Underground Space Technology incorporating Trenchless Technology Research*. 26(2), 276–283. Available at: http://dx.doi.org/10.1016/j.tust.2010.10.002.

- Loganathan, N. (2011). An innovative method for assessing tunnelling-induced risks to adjacent structures. *Parsons Brinckerhoff Inc.* (January), 118.
- Macklin, S.R. (1999). The prediction of volume loss due to tunnelling in overconsolidated clay based on heading geometry and stability number. *Ground engineering*. 32(4), 30–33.
- Mair, R.J. (1996). Settlement effects of bored tunnels. *Geotechnical Aspects of Underground Construction in Soft Ground.*, 43–53.
- Mair, R.J. (1993). Unwin memorial lecture 1992: developments in geotechnical engineering research: application to tunnels and deep excavations. *Proceedings ICE: Civil Engineering*. 97(1), 27–41. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0027788510&partnerID=tZOtx3y1.
- Mair, R.J. and Taylor, R.N. (1997). Theme lecture: Bored tunneling in the urban environment. In Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering (Hamburg, 1997), Balkema. pp.2353–2385.
- Mair, R.J., Taylor, R.N., Burland, J.B.B. and Taylort, R.N. (1996). Prediction of ground movements and assessment of risk of building damage due to bored tunnelling. *Proceedings of the Conference on Geotechnical Aspects of Underground Construction in Soft Ground*. (May), 713–718.
- Marshall, A.M., Farrell, R., Klar, A., and Mair, R. (2012). Tunnels in sands : the effect of size , depth and volume loss on greenfield displacements. *Géotechnique*. 62(5), 385–399.
- McCabe, B. a., Orr, T.L.L., Reilly, C.C. and Curran, B.G. (2012). Settlement trough parameters for tunnels in Irish glacial tills. *Tunnelling and Underground Space*

Technology. 27(1), 1–12. Available at: http://dx.doi.org/10.1016/j.tust.2011.06.002.

- Mohamed, Z., Rafek, A.G. and Komoo, I. (2007). Characterisation and Classification of the Physical Deterioration of Tropically Weathered Kenny Hill Rock for Civil Works. *Electronic Journal of Geotechnical Engineering*. 12(A), 1–15.
- Moldovan, A.R.A. and Popa, A. (2013). The influence of different tunnel cross sections on surface settlement. 56(2), 7–14.
- Möller, S. (2006). Tunnel induced settlements and structural forces in linings, Available at:http://www.unis.de/igs/content/publications/Docotral_Thesis_Sven_Moelle r.pdf.
- Ngan, M., Broere, W. and Bosch, J. (2016). Volume loss in shallow tunnelling. *Tunnelling and Underground Space Technology incorporating Trenchless Technology Research*. 59, 77–90. Available at: http://dx.doi.org/10.1016/j.tust.2016.06.011.
- O'reilly, M.P. (1988). Evaluating And Predicting Ground Settlements Caused By Tunnelling In London Clay--Tunnelling 88. Papers Presented At The 5th International Symposium, Tunnelling 88, Orgainzed By The Institution Of Mining And Metallurgy, With The Cooperation Of The British. *Publication Of: Institution Of Mining And Metallurgy*.
- O'reilly, M.P. and New, B.M. (1982). Settlements above tunnels in the United Kingdom-their magnitude and prediction,
- Peck, R.B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. *Géotechnique*. 19(2), 171–187. Available at: http://www.icevirtuallibrary.com/content/article/10.1680/geot.1969.19.2.171.

- Peck, R.B. (1969). Deep Excavation and Tunnelling in Soft Soils. 7th International Conference on Soil Mechanics and Foundation Engineering., 225–290.
- Peck, R.B. (1969). Deep excavations and tunnelling in soft ground. In *Proc. 7th int. conf. on SMFE*. pp.225–290.
- Pinto, F. and Whittle, A.J. (2014). Ground Movements due to Shallow Tunnels in Soft Ground. II: Analytical Interpretation and Prediction. *Journal of Geotechnical* and Geoenvironmental Engineering. 140(4), 4013040.
- Porter, S.J., McRae, M.T. and Wright, R. (1997). Design and Construction of the New Tunnel at Genting Sempah, Malaysia. PROCEEDINGS OF THE RAPID EXCAVATION AND TUNNELING CONFERENCE., 669–678.
- Shirlaw, J.N., Doran, S. and Benjamin, B. (1988). A case study of two tunnels driven in the Singapore "Boulder Bed" and in grouted coral sands. *Geological Society, London, Engineering Geology Special Publications*. 5(1), 93–103.
- Sirivachiraporn, A. and Phienwej, N. (2012). Ground movements in EPB shield tunneling of Bangkok subway project and impacts on adjacent buildings. *Tunnelling and Underground Space Technology*. 30, 10–24. Available at: http://www.sciencedirect.com/science/article/pii/S0886779812000223 [Accessed January 20, 2016].
- Standing, J.R., Nyren, R.J., Burland, J.B. and Longworth, T.I. (1996). The measurement of ground movements due to tunnelling at two control sites along the Jubilee Line Extension. *Geotechnical Aspects of Underground Construction in Soft Ground*. (January), 751–756.
- Telford, T. and The British Tunnelling Society and The Institution of Civil Engineers (2004). *Tunnel lining design guide* 2004th ed., Heron Quay, London E14 4JD.: Thomas Telford Publishing, Thomas Telford Ltd, 1.

- Tunneling, S., Clough, G.W., Sweeney, B.P. and Finno, R.J. (1983). Measured soil response to EPB shield tunneling. *Journal of Geotechnical Engineering*. 109(2), 131–149.
- Umney, A.R. and Heath, G.R. (1996). Recorded settlements from the DLR tunnels to Bank. *Geotechnical Aspects of Underground Construction in Soft Ground.*, 757–761.
- Zhang, C., Chen, Z. and Yang, X. (2011). The study about the integrated planning theory of surface and underground urban space. *Procedia Engineering*. 21, 16–23. Available at: http://dx.doi.org/10.1016/j.proeng.2011.11.1982.