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ABSTRACT

Coolant strategies in turning hardened stainless steel are important, due to the
fact that heat cannot be removed efficiently from the cutting area. This heat issue
shortens the tool life and reduces machined surface integrity, resulting in higher
machining cost and lower productivity. Conventional cutting fluids cause health
problems, workshop pollution and higher recycling cost.  Dry, minimum quantity
lubricant (MQL) and cryogenic machining are alternatives of green coolant to
eliminate conventional cutting fluids. Thus, the objective of this research is to study
the feasibility and performance of using new green coolant strategies that contribute to
the sustainable process. Experiments were carried out in two different stages when
turning 48 +1 HRC martensitic stainless steel (AISI420) uses a wiper PVD-TiAIN
coated carbide cutting tool. Cutting speeds (100, 135, and 170 m/min) and feed rates
(0.16, 0.2, and 0.24 mm/rev) were investigated. The depth of cut was kept constant at
0.2 mm. Nitrogen gas pressure was (0.5 MPa and the oil mist (castor oil) flow rate was
40 ml/h. In the first stage, comparison between three cutting conditions were
evaluated, namely cold nitrogen gas (cold N,), nitrogen gas with oil mist (N,+MQL)
and cold nitrogen gas with oil mist conditions (cold No+MQL). Dry cutting was used
as the benchmark. In the second stage, the best cutting condition from first stage was
used for further experiments to investigate the effect of cutting speed and feed on
machining responses such as tool life (Tz), volume of material removed (VMR),
surface roughness (Ra) and cutting forces (Fx, Fy and Fz), chip morphology and
microstructures of machined surface. Full factorial design was used to model the
relationship between cutting responses (tool life, surface roughness, and cutting
forces) and different cutting speeds and feed rates. These models were verified by
performing confirmation experiments. The results obtained showed that cold N,+
MOQL improved performance in terms of tool life, surface roughness and cutting forces
in comparison to dry, cold N,, and N,+MQL conditions. At cutting speed of 100
m/min and feed rate of 0.16 mm/rev, cold N,+MQL condition prolongs the tool life by
135%, decreases the cutting forces by 18%, and improves surface roughness by 19%
as compared to dry cutting. Flank and crater were observed at the tool nose. Abrasion
and adhesion were the dominant wear mechanisms when turning hardened martensitic
stainless steel. The machined surface had less alteration of grain microstructure and
higher hardness in cold N,+-MQL condition compared to the dry cutting condition.
The longest tool life was obtained at low cutting speed and low feed rate, whereas
lower cutting forces and better surface roughness were observed at high speed and low
feed rate. Analysis based on the mathematical models of machining responses (tool
life, surface roughness and cutting forces) would be helpful in selecting cutting
variables for optimization of turning hardened stainless steel, which is in line with
sustainable and green machining by using cold N, +MQL condition.
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ABSTRAK

Strategi bahan penyejuk dalam melarik keluli keras tahan karat adalah penting
disebabkan oleh haba yang terhasil sukar dialir keluar dari kawasan pemotongan.
Masalah i1 memendekkan hayat matalat dan mengurangkan integriti permukaan
dimesin mengakibatkan kos pemesinan vang lebih tinggi dan produktiviti yang lebih
rendah. Cecair pemotongan konvensional menimbulkan masalah kesihatan,
pencemaran bengkel dan kos kitar semula yang tinggi. Pemesinan kering, pelincir
kuantiti minimum (MQL) dan pemesinan se¢juk-lampau adalah alternatif penyejukan
hijau untuk menggantikan cecair pemotongan konvensional. Oleh itu, objektif kajian
ini adalah untuk mengkaji kesauran dan prestasi penggunaan strategi baru penyejukan
hijau vang menyumbang kepada kelestarian proses. Ujikaji dilakukan dalam dua
peringkat berbeza dengan melarik keluli tahan karat martensitit (AISI 420) 48 +1 HRC
menggunakan alat memotong pengelap PVD-TIAIN salutan karbida. Kelajuan
pemotongan (100, 135, and 170 m/min) dan kadar suapan (0.16, 0.2, dan 0.24
mm/putaran) dikaji. Kedalaman potongan dikekalkan malar pada 0.2 mm. Tekanan gas
nitrogen adalah 0.5 MPa dan kadar alir kabus minyak (kastor) adalah 40 ml/jam. Pada
peringkat pertama, perbandingan antara tiga keadaan pemotongan telah dinilai, iaitu
gas nitrogen sejuk (cold N,), gas nitrogen dengan kabus minyak (N,+MQL), dan
keadaan gas nitrogen dengan kabus minyak sejuk (cold N,-MQL). Pemotongan kering
digunakan sebagai tandaras. Pada peringkat kedua, keadaan pemotongan terbaik dari
peringkat pertama telah digunakan untuk mengkaji kesan kelajuan pemotongan dan
suapan keatas tindakbalas pemesinan seperti hayat alat (T;), isipadu pembuangan
bahan (VMR), kekasaran permukaan (Ra), daya pemotongan (Fx, Fyv dan Fz),
morfologi serpthan dan mikrostruktur permukaan yang dimesin. Rekabentuk
pemfaktoran penuh telah digunakan untuk memodel hubungan antara tindakbalas
pemotongan (hayat alat, kekasaran permukaan, dan daya pemotongan) dan kelajuan
pemotongan dan kadar suapan vang berbeza. Model-model ini telah disahkan dengan
melakukan wjikaji pengesahan. Hasil kajian menunjukkan bahawa keadaan No+MQL
sejuk meningkatkan prestasi dari segi hayat alat, kemasan permukaan dan daya
pemotongan berbanding pemotongan kering, N, sejuk, dan keadaan N,+MQL. Pada
kelajuan pemotongan 100 m/min dan kadar suapan 0.16 mm/putaran, keadaan
N2+MQL sejuk memanjangkan hayat alat sebanyak 135%, mengurangkan daya
pemotongan sebanyak 18%, dan memperbaiki kekasaran permukaan sebanyak 19%
berbanding dengan pemotongan kering. Hausan rusuk dan kawah telah diperhatikan
pada muncung matalat. Lelasan dan lekatan adalah mekanisma haus utama pada
matalat pemotong apabila melarik keluli keras tahan karat martensitit. Permukaan
yvang dimesin mengalami kurang perubahan mikrostruktur bijian dan peningkatan
kekerasan bagi keadaan N, +MQI. sejuk berbanding dengan pemotongan kering. Hayat
matalat terpanjang dicapai pada kelajuan pemotongan rendah dan kadar suapan rendah
manakala daya pemotongan rendah dan kekasaran permukaan terbaik diperhatikan
pada kelajuan tinggi dan kadar suapan rendah. Analisa model matematik bagi
tindakbalas permesinan (hayat matalat, kekasaran permukaan dan daya pemotongan)
boleh membantu mengoptimakan pemilihan pembolehubah melarik keluli keras tahan
karat selaras dengan pemesinan lestari dan hijau dengan menggunakan keadaan
Ny +MQL sejuk.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Automotive and the mould and die are significant industries in the
manufacturing sector. Stainless steel alloys such as martensitic stainless steel are
widely used in the mould and die industry due to their high strength, good corrosion
and wear resistance, more stable in hardening and good surface finish. These
properties are beneficial in producing consistent products over an expensive running
period with less maintenance and operable in harsh environment. One of its
applications is as plastic mould. Various plastic and thermoset plastic products can

be produced using hardened stainless steel moulds with hardness of 45 - 50 HRC.

Hard turning is machining process for materials with a hardness value of 45
HRC and above. This process has become an alternative to grinding because of its
flexibility, economic and ecological aspects. Machining time has reduced as high as
60% compare to conventional turning. Longer tool life, better surface quality and
high accuracy can be achieved with small value of depth of cut and feed rate when
using hard turning (Huddle, 2001, Tonshoff et al., 2000, Konig et al., 1990, Benga
and Abrao, 2003).



Generally, hard turning is conducted using advanced cutting tools such as
ceramic, cubic boron nitride (CBN), and PCBN tools. In order to improve the
hardness and surface conditions of carbide tools, hard coating materials such as
titanium carbide (TiC), titanium nitrate (TiN), alumina (Al,O;), titanium aluminium
nitride (TiAIN) and titanium carbonitride (TiCN) are applied. Carbide tools proven
to lower the manufacturing cost compared to ceramic, cubic boron nitride (CBN) and
PCBN tools (Kang et al., 2008). Noordin et al. (2007) had successfully used coated

carbide tool when turning hardened stainless steel under dry condition.

Optimization of the machining parameters can decrease the total costs by
increasing the productivity without affecting the loss of tool life. High cutting
temperature has undesirable effect on the cutting tool and product quality. This is
because decreasing in tool life can affect dimensional deviation of the machine parts,

and thus damage the surface integrity.

Effective cooling methods can significantly contribute to tool life
improvement by minimizing the friction and decreasing the cutting temperature.
Therefore, it is essential to use cutting fluids in metal cutting to decrease the high
temperature in the cutting area particularly on hard materials. Cutting fluids have
been used extensively in different machining processes for their capability to prolong
tool life and improve machined surface quality. Nevertheless, cutting fluids in metal
cutting processes possess many health issues for machine operators and
environmental contamination, predominantly in regard to their disintegration and

final discarding.

In order to eliminate or to reduce these issues, several studies have been
carried out using green machining techniques. Thus to serve that purpose, new dry
and near-dry machining approaches have been used such as; dry cutting, minimum
quantity lubricant (MQL), cryogenic cooling, gas-based cooling, and cryogenic with

minimum quantity lubricant (CMQL) .



Dry cutting is one approach in sustainable and green machining. However, in
dry machining high temperature is generated at the interface of tool-chip and tool-
workpiece surfaces incorporated with plastic deformation. This gives rise to
decreased tool life, affects surface finish and prompts deep white layer and
compressive residual stress in the subsurface of the component surface (Guo and

Sahni, 2004).

Another green machining approach is a gas-based cooling. Gasses as
cooling/lubrications were adopted to reduce cutting fluids application in machining
processes and enhance the machinability through the changes in cutting

tool/workpiece material properties.

Main gasses commonly used as coolant are air, N, Ar, He and CO,, and they
might be used in combination with vegetable oils in the forms of mist or droplets to
improve their lubrication aptitude. Compressed gas based coolant has more
advantages when conventional cooling techniques fail to penetrate the chip-tool

interface, as well as avoiding oxidation of the workpiece and the chips.

Developments for a new gas coolant with MQL system create growth towards
the objectives of sustainable manufacturing. This eliminates the most significant
health and water pollution hazards related to conventional metal cutting fluids. MQL
technique involves a very low amount of oil (less than 50 mL/h) incorporated with
pressurized air at the cutting area. The spray mode can be used by sprayed oil from
external supply device through one or more nozzles, or via internal holes fabricated

inside the cutting tools.

Many researchers have used the MQL technique in machining processes such
as turning and milling processes. Furthermore, cryogenic coolant with oil mist
lubricant is used in difficult-to-cut materials in order to compensate for the coolant

effects in MQL technique.



1.2 Problem Statement

Inefficient heat removal from the cutting zone when cutting stainless steel
material leads to the weakness of the cutting tip. In addition, the stainless steel
material has a tendency to adhere on the tool surface and causes work hardening.
These issues decrease tool life and affect the surface integrity such as increasing the
depth of the plastically deformed sub-layer and residual stress distribution, resulting
in increasing machining cost and affecting the service performance of the

manufactured components.

Conventional cutting fluid reduces the heat created during cutting, thus
increase the tool life and enhance the surface finish. However, the cutting fluids do
not easily penetrate the tool-workpiece and tool—chip interfaces which are under
seizure condition when it is evaporated by high temperature produced at the tool
edge (Shaw, 2005). Furthermore, the use of conventional cutting fluids in the
industry can result in health and environmental issues, especially in their degradation

and problematic final discarding (El Baradie, 1996b).

On the other hand, the health hazards and environmental pollution related
with the usage of these fluids together with the developing governmental rules have
resulted in increasing machining costs (Shokrani et al., 2012, El Baradie, 1996a).
For the manufacture of automobiles in the European countries, the cost of applying
conventional fluids is around 20% of the whole machining cost (Brockhoff and

Walter, 1998).

Dry cutting has proved as a sustainable machining approach. However,
generation of high temperature at the cutting area can lead to decreasing tool life and
surface quality (Guo and Sahni, 2004). Therefore, different cooling strategies have

been improved (developed) in order to reduce the cutting temperature.



The MQL technique consists of using a combination of a very little quantity
of cutting oil (6—100 mL/h) and compressed air jet, directed to the cutting area.
MQL in metal cutting eliminates the heat produced through machining. This is
accomplished mostly by the convection of compressed air and partly by evaporation
of cutting oil. However, MQL acts as a lubricant rather than coolant in metal cutting.
Thus, MQL will not perform well in the machining processes where many thermal
issues are involved such as machining of difficult-to-cut materials (Ezugwu, 2005,
Attanasio ef al., 2006, Obikawa et al., 2006). Therefore oil mist in combination with
gas coolant may be considered as an alternative solution to overcome dry cutting and

MQL issues.

In metal cutting, compressed gas coolant is appropriate when conventional
cutting fluids cannot penetrate the chip-tool interface. Vegetable oils in MQL
technique are readily biodegradable, even when combined with gasses (coolant) such

as nitrogen.

Nitrogen is an inert gas. It forms 78% of the atmosphere and is lighter than
air (Shokrani et al., 2012). The latest and most recent research in using nitrogen gas
combined with MQL was done by Shizuka et al., (2009). As far as these are
concerned, exploration in using component of gasses or cold gasses with MQL may

improve the machining cost for related industries.

Until now there are little researchs involving the use of cold gasses combined
with MQL. Therefore it remains a largely unexplored practice either to apply gasses
or cold gasses with MQL techniques among industrial users. In addition, knowledge
on the tool wear mechanisms, surface integrity, and cutting temperature when hard
turning stainless steel using cold nitrogen gas with oil mist coolant/lubricant

technique are still lacking.



1.3

ii.

1il.

1v.

1.4

Objectives

The objectives of this study are as follows:

To study the performances of cold nitrogen, nitrogen gas with oil mist and
cold nitrogen gas with oil mist conditions in terms of tool life, surface
roughness and machining forces, while using dry cutting as benchmark
when turning hardened martensitic stainless steel (AISI420) using
physical vapour deposition (PVD) titanium aluminum nitride (TiAIN)
coated carbide cutting tool (KC 5010) for different cutting parameters

To investigate the wear mechanisms, the quality of the machined surface
and chips generated when hard turning of martensitic stainless steel under

cold nitrogen gas with oil mist condition.

To develop mathematical models for machining responses (tool life, the
volume of material removed, surface roughness and cutting forces) for
optimum coolant/lubricant conditions and define their relationship with

the parameters studied (cutting speed and feed rate).

To optimize the cutting parameters in turning hardened martensitic

stainless steel in order to achieve better machining responses.

Scope of Study

This study is set within the following scopes:

1.

Experiments were conducted under dry, cold N,, N, + MQL and cold N, +

MQL coolant/lubricant conditions.



ii. The workpiece material was hardened martensitic stainless steel (48 HRC)
and the cutting tool was fine grained WC-6 wt % Co substrate and coated

with PVD-TiAIN.

1ii. Experiments were conducted at different cutting speeds (100, 135, and 170
m/min) and feed rates (0.16, 0.20, and 0.24 mm/rev) while the depth of cut

was kept constant (0.2 mm).

1iv. Investigation of cold nitrogen gas with oil mist as coolant and lubricant.

1.5 Organization of Thesis

This thesis contents six chapters. Chapter 1 presents on general overview of
the research. Chapter 2 covers on the literature of the relevant research study in
these areas. It covers: stainless steel, hard turning, cutting tool, conventional cooling
and environmentally friendly machining techniques as well as tool wear, wear
mechanism, surface integrity cutting forces and chip morphology. Chapter 3
describes the experimental setup for the cold nitrogen system, nitrogen gas and oil
mist system, cold nitrogen gas and oil mist system, stainless steel material, coated
carbide tools and measurement tools. Chapter 4 covers the comparison study
between dry, cold nitrogen gas, nitrogen gas and oil mist, cold nitrogen gas and oil
mist conditions. In this chapter, the effect of cutting speed and feed rate on tool life,
surface roughness and cutting forces were investigated. In addition, this study
included the examination on the sub-surface deformation and microhardness as well
as chip formation characteristics. In Chapter 5, the development of models for tool
life, volume of material removed, surface roughness and cutting forces data using
design expert software were developed for the optimization of cutting parameters.
Finally, Chapter 6 concludes of the present study and offers some suggestions for

possible future research.



1.6 Significant of This Study

This research contributes in studying the effect of nitrogen gas (ambient and
cold temperature) with oil mist conditions on machining responses such as tool life,
the volume of material removed, surface roughness, cutting forces, wear mechanism
and chip morphology during the turning hardened martensitic stainless steel using
coated carbide cutting tool. It was expected that results from this study will show
that cold nitrogen gas and oil mist condition will provide an improvement in

machining responses compared to dry machining.

It is also expected that cold nitrogen gas with oil mist condition performance
will improve surface integrity, enhance environmental friendliness, reduce cost,
provide good geometrical accuracy of the machined parts, and eliminates grinding
process in the manufacturing industries particularly those involved in the machining
of hardened materials such as in the mould and die industries. Last but not least, cold
nitrogen gas with oil mist condition is predicted to be useful towards achieving
sustainable and green machining and thus provides an alternative to conventional

cutting fluids in machining processes.
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