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ABSTRACT 

Density currents occur in a variety of natural and man-made scenarios, and 

this emphasises the importance of studying them. The density-driven currents are 

the main agent for sediment transportation in many dam reservoirs. In most cases, 

these currents flow over surfaces which are not smooth; nevertheless, the effect of 

bottom roughness on the body of these currents has not been fully understood. 

Hence, this study mainly aims to examine the structure of density currents 

propagating over rough beds. To achieve this, alterations in the velocity and 

concentration profiles of the density currents in the presence of different bottom 

roughness configurations are investigated. The influence of various bottom 

roughness configurations on entrainment of ambient fluid into these currents is also 

quantified. Initially, laboratory experiments were carried out with density currents 

flowing over a smooth surface to analyse the dynamics of the currents with a range 

of experimental conditions; this provided a baseline for comparison. Then, seven 

bed roughness configurations (λ/Kr=1, 4, 8, 16, 32, 64 and 128 where λ denotes the 

downstream spacing between each two subsequent roughness elements and Kr 

denotes the roughness height) were chosen to encompass both dense and sparse 

bottom roughness. The rough beds consisted of square cross-section beams which 

cover the full channel width and are perpendicular to the flow direction in a repeated 

array. The primary results of this research reveal that the bottom roughness causes 

deceleration of the currents, reduction of their excess densities and enhancement of 

water entrainment into them. A critical spacing of the roughness elements (λ/Kr=8) 

is found for which the currents demonstrate the lowest velocities. For the spacings 

which are more than the critical value, the controlling influence of the roughness is 

reduced, and the velocities are increased by expanding the cavities between the 

elements. The rough bed with λ/Kr=128 roughness has very little influence on the 

currents and maintained velocities resembling those of the smooth bed. The 

magnitude of the entrainment rates also varies depending on the roughness 

configurations with the most substantial entrainment rate occurring for the λ/Kr=8, 

which is 5.26 times higher than that of the plane surface. Using dimensional 

analysis, equations are proposed for estimating the mean velocities of the currents 

and their entrainment rates for various configurations of the bottom roughness. The 

findings of this research contribute towards a better parameterisation and improved 

knowledge of density currents flowing over non-plane surfaces. This can lead to a 

better prediction of the evolution of these currents in many practical cases as well as 

improved planning and design measures related to the control of such currents.  
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ABSTRAK 

Arus ketumpatan berlaku dalam pelbagai senario semula jadi dan buatan 

manusia dan ini menegaskan kepentingan kajian ini dijalankan. Arus didorong 

ketumpatan adalah agen utama untuk aliran sedimen dalam kebanyakan takungan 

empangan. Dalam kebanyakan kes, aliran ketumpatan mengalir pada permukaan 

yang tidak rata; namun begitu, kesan kekasaran dasar pada badan arus ini belum 

difahami dengan mendalam lagi. Sehubungan itu, tujuan utama kajian ini adalah 

untuk mengkaji struktur arus ketumpatan yang mengalir pada permukaan dasar yang 

kasar. Bagi mencapai tujuan ini, perubahan yang berlaku pada halaju dan profil 

kepekatan arus dengan adanya konfigurasi kekasaran dasar yang berbeza telah 

disiasat. Pengaruh bentuk kekasaran dasar yang berbeza terhadap kemasukan 

bendalir ambien ke dalam arus ini juga telah dinilai. Pada mulanya, ujikaji makmal 

dijalankan dengan arus ketumpatan yang mengalir pada permukaan yang licin untuk 

menganalisis dinamika arus dengan pelbagai keadaan kajian; ini menjadi asas 

panduan untuk perbandingan. Seterusnya, tujuh konfigurasi kekasaran dasar (λ/Kr=1, 

4, 8, 16, 32, 64 dan 128 di mana λ menunjukan jarak antara setiap dua elemen 

kekasaran berturutan dan Kr menandakan ketinggian kekasaran) yang dipilih 

merangkumi kerapatan dan kerenggangan kekasaran dasar. Kekasaran dasar terdiri 

daripada rasuk segiempat sama yang merentangi kelebaran saluran dan bersudut 

tepat dengan arah aliran secara berturutan. Hasil utama kajian ini menjelaskan 

bahawa kekasaran dasar menyebabkan berlakunya nyahpecutan arus, pengurangan 

ketumpatan berlebihan dan peningkatan kemasukan air ke dalamnya. Jarak kritikal 

(λ/Kr=8) elemen kekasaran yang diperolehi menunjukkan arus dengan halaju paling 

rendah. Untuk jarak elemen lebih daripada nilai kritikal, pengaruh kekasaran dasar 

berkurang dan halaju meningkat dengan pertgmbahan lagi jarak elemen kekasaran 

tersebut. Kekasaran dasar dengan λ/Kr=128 mempunyai pengaruh yang sangat 

sedikit pada arus dan hampir menyerupai keadaan arus pada dasar licin. Magnitud 

kadar kemasukan juga berubah bergantung kepada konfigurasi kekasaran dengan 

kadar kemasukan yang paling tinggi berlaku pada λ/Kr=8, yang mana 5.26 kali ganda 

lebih tinggi daripada permukaan licin. Dengan menggunakan analisis dimensi, 

persamaan telah dicadangkan untuk menganggar halaju purata arus dan kadar 

kemasukan untuk pelbagai jenis konfigurasi kekasaran dasar. Hasil kajian ini 

menyumbang kepada parameterisasi yang lebih baik dan meningkatkan pengetahuan 

berkenaan arus ketumpatan yang mengalir pada permukaan dasar yang tidak licin. Ini 

membawa kepada ramalan yang lebih baik tentang evolusi arus ini dalam pelbagai 

kes dan juga memperbaiki perancangan dan reka bentuk yang berkaitan dengan 

kawalan arus tersebut. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Problem 

Density currents are generated when the fluid of one density is released into 

another fluid with a different density. These currents can be created even by a small 

density difference of only a few percents. The density difference can result from 

temperature gradients, dissolved contents, suspended particles or a combination of 

them. These currents are known as turbidity currents in the case where the main driving 

mechanism is obtained from suspended sediments.  

Density currents occur in many natural and man-made environments. These 

currents can form in different ways depending on the density of the current and that of 

the ambient fluid. The most usual type of these currents is an underflow produced 

when a flow is introduced into an ambient fluid of a lower density. An overflow can 

be generated if the flow is lighter than the ambient fluid. An interflow can be created 

between two density-stratified fluids if the current’s density is of an intermediate 

value. The following examples of density currents can make the relevance of this study 

clear. 

In the atmosphere, density currents usually develop in the form of large-scale 

atmospheric movements (Figure 1.1) and thunderstorm outflows. Sea breeze fronts are 

another type of atmospheric density currents driven by differences in temperature 

between two air masses. In this case, a density current formed by cooler sea air passes 

into air heated by land, which is typically associated with the presence of suspended 
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dust and insects (Neufeld, 2002). Avalanches are a devastating form of density current 

affecting mountainous areas, resulting from suspension of ice, snow, rock or soil 

suspension in water (mudflows). Volcanic activities can also create atmospheric 

density currents in the form of volcanic ash flows and pyroclastic density currents 

(Capra et al., 2016; Johnson et al., 2015). 

 

Figure 1.1 A huge cold, dusty air mass (Karamzadeh, 2004) 

Density currents are also found in a variety of industrial environments. For 

example, accidental release of dense gases which are heavier than air. In case of the 

leakage, the gases can travel quickly in the form of density currents through mine 

shafts, which might be poisonous, suffocating or explosive (Peters, 1999). Knowing 

dynamics of these currents is vital for proper ventilation and safety purposes. Oil slicks 

are another form of industrial density current, which might result in severe and wide-

spread environmental impacts. Regulating the transport and cleaning up of these 

dangerous materials requires studying of density currents. Other examples include 

propagation of smoke or heat in buildings and discharge of sewage or power plant 

cooling water from an outlet pipe into the rivers and sea.  

In oceanic and river systems, such currents occur because some of the water in 

an estuary, ocean or lake is colder, saltier or contains more suspended sediment and 

hence is denser than the surrounding water (Nogueira et al., 2014). The turbid water 

from the incoming rivers can make turbidity currents at the mouth of estuaries, as seen 

in Figure 1.2. The density difference between saline oceanic water and fresh river 
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water can create salt wedges (Ismail et al., 2016) and river plumes (Stashchuk and 

Hutter, 2003). Also, earthquakes can trigger massive suspensions of organic material 

and sediments leading to underwater turbidity currents. The creation of many deep 

valleys has been attributed to these currents (Li et al., 2012). These flows are the 

primary sediment transport mechanism in deep submarine canyons (Lai et al., 2016), 

travelling long distances and transforming the topography of ocean floor (Stagnaro and 

Pittaluga, 2014).  

 

Figure 1.2 Turbid inflows from a river plunging under seawater in an estuary 

(Ghomeshi, 2012) 

Reservoir sedimentation is a worldwide issue hindering the sustainable use of 

reservoirs and the sediment balance of impacted rivers (Chamoun et al., 2017). In dam 

reservoirs, turbidity currents are believed to be responsible for sediment transport and 

subsequently effecting the dam’s operation (Asghari Pari et al., 2016; Cesare et al., 

2001).  

Many countries are stricken by several major flood events during intense 

rainfall season. In Malaysia, during the monsoon season, large parts of the country 

experience intense rainfalls causing prolonged flooding. Sediment discharge of rivers 

flowing into dam reservoirs is typically very high during flood events (Diman and 

Tahir, 2012). This can induce turbidity currents in the reservoirs which are a major 

mechanism for sediment transport. 
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When the turbid flood flows to freshwater of the reservoir, the turbid inflow 

displaces the ambient water until it reaches a balance of forces plunging under the 

water surface, as shown in Figure 1.3. This region is named plunge point and is 

typically located downstream area of delta deposition in reservoirs (Lai et al., 2015). 

The plunging flow causes a weak counter current making the clear water move toward 

it (Schleiss et al., 2016). After that, a turbidity current is formed advancing over the 

reservoir bed through its leading edge known as the head that is deeper than the 

following flow. The shallower source layer forms the body of these currents. The 

surface water is muddy up to the plunge area and clear after that.  

 

Figure 1.3  Turbid inflow entering a reservoir, plunging and creating a turbidity 

current which transports the incoming suspended sediments and erodible sediments to 

the area near the dam (Oehy, 2003) 

The general approach for density current studies have been simplifying the 

situation by regarding the bed as smooth. However, the sea floor and avalanche path 

are not smooth. A cold front can occur over a variety of terrains. In case of heavier 

than air gas release, the density current interacts with the environment where the 

surface might not be smooth. Turbidity currents travelling over reservoir beds interact 

with a variety of topographic features. Besides, to control turbidity currents in 

reservoirs, it is vital to understand the impact of barriers to stop, divert or dilute these 

currents. This work intends to extend previous studies by considering the effect of 

bottom roughness on these currents. 
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1.2 Statement of the Problem  

Density currents occur commonly in numerous natural and man-made 

scenarios. These currents have been actively studied to improve understanding of their 

processes and dynamics. Most of the works regard the case of density currents flowing 

over smooth beds, for example, Altinakar et al. (1996), Firoozabadi et al. (2009), 

Hosseini et al. (2006), Islam and Imran (2010), Khavasi et al. (2012), Kneller et al. 

(1999), Nourmohammadi et al. (2011), Cossu and Wells (2012) and Cortés et al. 

(2014). 

In practical cases, these currents usually flow over the beds which are not 

smooth. This involves mobile beds, obstacles, grain roughness (e.g. sand or gravel) 

and form roughness (e.g. ripples or dunes). The behaviour of density currents flowing 

over non-plane beds is complex and not yet fully understood.  

In nature, density currents usually travel over loose beds that are not plane. 

Bedforms can be found in the river beds and seafloors as ripples, dunes or anti-dunes. 

The bed forms provide additional energy dissipation mechanism largely affecting 

water entrainment and sediment transport capacity of these currents compared to the 

case of the plane surface (Tokyay, 2010). However, not much is known about the 

interaction of density currents with the bed over which they travel, in particular 

regarding the body of these currents. 

There have been limited investigations in respect with the effect of form 

roughness on density currents, including Negretti et al. (2008), Peters (1999), Tanino 

et al. (2005), Tokyay (2010), Chowdhury (2013) and Bhaganagar (2014). However, 

these works have been focused on the frontal region of the currents, and understanding 

of bottom roughness impacts on the body of these currents is still lacking.  

There is still a gap in knowledge on the interaction between arrays of roughness 

elements and density currents. This type of roughness can be a representative of 

various natural scenarios where density currents flow over non-plane beds. Therefore, 

there is a need to investigate adjustments in the structure of these currents encountering 
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roughness arrays. This can contribute toward explaining the evolution of these currents 

over rough beds, which is of significant concern in many engineering areas due to its 

impact on the environment. 

Turbidity currents carry the incoming suspended sediments and existing 

sediment deposits over the reservoir bed to the area near the dam. The turbidity 

currents decelerate as approaching the dam and thus the sedimentation occurs. The 

loss of storage capacity in dam reservoirs due to sedimentation caused by turbidity 

currents has been an issue of great concern and a topic of research (Fan and Morris, 

1992a; Guo et al., 2011; Kostic and Parker, 2003; Xiao et al., 2015). Different 

measures have been studied for controlling sedimentation in reservoirs by Fan and 

Morris (1992b). Several mitigation measures have been investigated such as placement 

of obstacle (Asghari Pari et al., 2016; Oehy and Schleiss, 2007; Oshaghi et al., 2013; 

Yaghoubi et al., 2017) and jets (Bühler et al., 2012; Oehy et al., 2010). However, most 

of the literature concerns the case of density currents encountering an isolated (single) 

roughness element or obstacle.  

The impact of bottom roughness on the reservoir sedimentation due to density 

currents is an important research area. Employing roughness arrays can have many 

engineering applications regarding control of density currents. In dam reservoirs, 

turbidity currents are often responsible transport mechanism for suspended sediments 

(Cao et al., 2015). They mainly cause redistribution of the sediments within reservoirs 

through entraining sediment particles and carrying them to the deepest area of the 

reservoirs. This study can also contribute to planning and design measures related to 

the reservoir sedimentation management. 

1.3 Objectives of the Study 

The main aim of this research is to provide a better understanding of the 

structure of density currents propagating over different rough beds. This study is 

carried out to achieve the following objectives:  
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i. To examine the influence of different experimental conditions on the dynamics 

of density currents flowing over a smooth surface. 

ii. To acquire the vertical structure of streamwise velocities within the body of 

density currents, and to investigate alterations in the velocity profiles of the 

currents in the presence of various bed roughness configurations  

iii. To obtain the vertical structure of concentration within the body of density 

currents, and to analyse adjustments in the concentration profiles of the 

currents flowing over different bottom roughness configurations. 

iv. To quantify the effect of different configurations of bottom roughness on 

entrainment of ambient fluid into the density currents. 

1.4 Scope of the Study 

Different types of density currents occur in natural and industrial 

environments, which have been studied by scientists of various disciplines. The scope 

of the present study is summarised herein. 

This laboratory study uses experiments to investigate two-dimensional density 

currents. The essential features of density currents can be well described through a 

two-dimensional approach. This research focuses on saline density currents in which 

dissolved salt is used to create dense fluids. Dye is added to the dense fluids for 

visibility purposes. 

A lock-exchange configuration is employed herein, in which there is a gate 

separating two fluids with different densities. Initially, the denser lock fluid occupies 

the volume between the rear wall and the lock gate. The sudden removal of the vertical 

lock gate generates currents containing heavier fluid propagating within the lighter 

ambient water as an underflow.  
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The case of roughness elements at the channel bed is investigated herein. 

Particularly, this work considers the interaction of density currents with bottom 

roughness. The rough beds include different configurations of the beam-roughened 

surfaces. The bed roughness consists of repeated arrays of square cross-section beams, 

spanning the full channel width and extending along a laboratory channel.  

A complete interpretation regarding the influence of bottom roughness on these 

currents requires analysing the sustained flow (i.e. body) of these currents which is the 

focus of this experimental research. The continuous-flux density currents are used 

herein, where there is a continuous supply of intruding dense fluid into the receiving 

ambient fluid. 

1.5 Significance of Research 

A wide range of flows are classified as density currents, and it emphasises the 

importance of studying them. The interaction of density currents with submarine 

installations (for example porous screens, dykes, oil and gas pipelines, cables) can lead 

to disastrous damages (Blanchette et al., 2005; Perez-Gruszkiewicz, 2011). A natural 

turbidity current was captured in Fraser River delta slope (Canada) that was powerful 

enough to carry a one-tonne observatory platform and sever a heavily armoured cable 

(Lintern et al., 2016). Theses can justify investigating the interaction of these currents 

with roughness elements. 

One important class of applications is the interaction of the currents with arrays 

of roughness elements. Natural occurrences of this case include propagation of these 

currents over a layer of vegetation (e.g. grass, marine plants and trees), and dense gases 

advancing through wooded or build up zones and turbidity currents travelling over the 

bottom of reservoirs interacting with a variety of topographic features. In this context, 

the present research can contribute toward an explanation of the dynamics of density 

currents in many man-made and natural scenarios. This leads to a better entrainment 

parametrisation and improved knowledge of mixing in these currents flowing over 

non-plane surfaces. 
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Density currents in the form of powder-snow avalanches have been responsible 

for severe damage to towns situated at the foot of steep slopes (Jóhannesson, 1996). 

Arrays of barriers can also be used as protective measures on hilly grounds and skirt 

of the mountains to decelerate powder-snow avalanches (Hopfinger, 1983). Likewise, 

defence structures (e.g. baffle blocks) can be employed to slow down density currents 

in rivers.  

Density-driven currents are of significant concern as a governing mechanism 

for reservoir sedimentation. Turbidity currents are the main transport mechanism for 

the incoming sediments and that they play a vital role in the redistribution of sediments 

within dam reservoirs through entrainment and deposition of sediments (Hsu et al., 

2017). Reservoir sedimentation can block bottom outlets, reduce the capacity of the 

reservoir and harms the dam power plants (Schleiss et al., 2016). In addition, some 

environmental problems can be posed by the reservoir sedimentation, for example, its 

influences on water quality and aquatic life and nutrient supply at the downstream 

(Ghomeshi, 1995).  

The mean yearly loss of reservoirs’ storage volume due to sediment deposition 

is more than increasing volume due to building new dam reservoirs (Oehy, 2003), and 

the long-term sustainable use of reservoirs is seriously challenged (Batuca and Jordaan 

Jr, 2000; Chamoun et al., 2017). Annually, 0.5 to 1% of the global storage capacity of 

dam reservoirs is estimated to be lost due to sedimentation (Basson, 2009). For 

instance, in Asia, 80% of the useful storage volumes for hydropower production will 

be lost in 2035, and 70% of the storage capacity used for irrigation will be lost due to 

sedimentation in 2025 (Basson, 2009). Also, reservoirs in China and Switzerland were 

reported to have a mean annual loss in their storage capacity of 2.3% (Wang and 

Chunhong, 2009) and 0.2% (Beyer Portner, 1998), respectively. This means that the 

reservoirs are non-sustainable and mitigation measures are urgently needed. 

Nowadays, the loss of storage capacity of dams is an issue of concern in 

Malaysia (Luis et al., 2013a). For example, the dead storage for Ringlet Reservoir in 

Cameron Highland, Malaysia was designed for a useful lifespan of nearly 80 years 

translating to 20,000 m3/year of sediment inflow. The sedimentation rate in 1965 was 
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estimated 25,000 m3/year (Choy and Mohamad, 1990). However, this increased to an 

average of approximately six folds reaching to 139,712 m3/year in 2008 (Teh, 2011). 

An analysis of this reservoir’s sedimentation by Luis et al. (2013b) revealed that 34% 

of the reservoir capacity was taken up in just 35 years of the dam operation. This has 

left the reservoir with a balance lifespan of 10 years. 

To date, most of the focus has been on measures for getting rid of the existing 

sediment deposits, including allowing dead storage, sediment flushing, hydrosuction 

removal systems, dredging and heightening of the dam (Wild et al., 2016). Such 

measures usually provide only short-term solutions and are costly and complicated in 

terms of implementation. Tackling sedimentation problem and improving reservoir 

operation requires controlling turbidity currents in dam reservoirs (Fan and Morris, 

1992b). 

This research studies the interaction of density currents with arrays of 

roughness elements. Stopping turbidity currents in reservoirs or influencing them in a 

way that the sediments are not deposited in important zones (e.g. in front of water 

intake structures and bottom outlets) increases the sustainability of reservoir operation 

significantly (Asghari Pari et al., 2016; Bühler et al., 2012). Findings of this work can 

contribute to an enhanced prediction and dealing with control of these currents using 

arrays of barriers. This can lead to decreasing maintenance costs and increasing useful 

lifetime of dams and therefore improved reservoir management practices. 

All in all, the study of density currents over non-plane surfaces and subsequent 

increased understanding of this phenomena, have obvious considerable benefits for 

human and environmental safety purposes and accurate management of various 

industrial and natural scenarios.  

1.6  Thesis Organisation 

This thesis structures as follows. In Chapter 1, an introduction is provided on 

this study involving problem statement, research objectives and scopes and the 
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significance of this experimental laboratory research. The main physical 

characteristics of density currents are presented in Chapter 2, and the literature 

regarding dynamics of these currents flowing over different terrains. This covers plane 

and non-plane surfaces with the emphasis on the effects of roughness arrays on the 

currents. In Chapter 3, the experimental set-up and measuring facilities are explained. 

The experiments are described that provide quantitative knowledge in regard to density 

currents propagating over arrays of roughness. In Chapter 4, the results of the 

performed experiments concerning the velocity structure of the currents are provided 

and discussed. In Chapter 5, the experimental findings on concentration structure 

within the body of density currents and water entrainment into these currents are 

discussed. In Chapter 6, conclusions of the present study are drawn, and 

recommendations for future works are presented.  
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