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ABSTRACT 

 

 

 

 

Detection of poor air quality is important to provide an early warning system 

for air quality control and management. Thus, air pollutant index (API) is designed as 

a referential parameter in describing air pollution levels to provide information to 

enhance public awareness. This study aims to study API trend, time series forecasting 

methods, their performance evaluations and missing values effect for accurate early 

warning system using several approaches. First, a calendar grid visualization is 

introduced to effectively display API daily profiling for the whole of Malaysia in 

identifying the exact point of poor air quality. Second, comparisons between classical 

and modern forecasting methods, artificial neural network (ANN), fuzzy time series 

(FTS) and hybrid are carried out to identify the best model in Johor sampling stations; 

industrial, urban and suburban. Third, due to the issue of different perfect score in 

existing index measurement to evaluate forecast performance, a combination index 

measures is proposed alongside error magnitude measurement. Fourth, decomposition 

and spatial techniques are compared to find the effect of high accuracy imputations in 

API missing values. The finding presented that the air quality trend across the day, 

week, month and year are more significant due to the daily arrangement in the calendar 

grid visualization. The ANN model gives the best forecasting model of API for 

industrial and urban area while the hybrid model provide the best forecasting for 

suburban area. The forecasting performance for industrial and urban areas improve 

between 14% to 20% and 20% to 55% in error magnitude and index measurements, 

respectively when high accuracy missing values imputation is conducted. In 

conclusion, the profiling using calendar grid visualization is useful to guide the control 

actions of early warning system. Forecasting using modern methods give promising 

result in API and the improvements in measurements will assist in choosing the best 

forecasting method. Missing values imputation in data series can enhance the 

forecasting performance.  

 



 vi 

ABSTRAK 

 

 

 

 

Pengesanan kualiti udara tidak bermutu penting bagi menyediakan sistem 

amaran awal untuk kawalan dan pengurusan kualiti udara. Maka, indeks pencemaran 

udara (IPU) direka sebagai parameter rujukan dalam menggambarkan tahap 

pencemaran udara bagi memberikan maklumat untuk meningkatkan kesedaran umum. 

Kajian ini bertujuan untuk mengkaji trend IPU, kaedah siri masa ramalan, penilaian 

prestasi dan kesan data hilang bagi sistem amaran awal yang tepat dengan 

menggunakan beberapa pendekatan. Pertama, pengvisualan grid kalendar 

diperkenalkan untuk memaparkan secara efektif profil IPU harian di seluruh Malaysia 

dalam mengenalpasti titik tepat kualiti udara tidak bermutu. Kedua, perbandingan 

antara kaedah ramalan klasik dan moden, rangkaian neural buatan (ANN), siri masa 

kabur (FTS) dan hibrid dijalankan untuk mengenalpasti model yang terbaik di stesen 

pensampelan Johor; industri, bandar dan pinggir bandar. Ketiga, disebabkan isu 

perbezaan skor sempurna bagi ukuran indeks sedia ada untuk menilai prestasi ramalan, 

gabungan ukuran indeks dicadangkan bersama dengan ukuran ralat magnitud. 

Keempat, teknik penguraian dan ruang dibandingkan untuk mencari kesan ketepatan 

imputasi yang tinggi dalam data hilang IPU. Dapatan menunjukkan trend kualiti udara 

bagi harian, mingguan, bulanan dan tahunan lebih signifikan disebabkan aturan harian 

dalam pengvisualan grid kalendar. Model ANN memberikan model ramalan IPU yang 

terbaik di kawasan industri dan bandar manakala model hibrid menyediakan ramalan 

terbaik di kawasan pinggir bandar. Prestasi ramalan di kawasan industri dan bandar 

bertambah baik antara 14% hingga 20%, dan 20% hingga 55% bagi ralat magnitud dan 

ukuran indeks apabila ketepatan imputasi data hilang yang tinggi dijalankan. 

Kesimpulannya, pemprofilan dengan menggunakan pengvisualan grid kalendar adalah 

berguna sebagai panduan untuk tindakan kawalan bagi sistem amaran awal. Ramalan 

menggunakan kaedah moden memberikan hasil yang menggalakkan bagi IPU dan 

penambahbaikan dalam pengukuran akan membantu untuk memilih kaedah ramalan 

yang terbaik. Imputasi data hilang bagi siri data boleh meningkatkan prestasi ramalan. 
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    - Parameter in Box-Cox transformation 

ib    - Bias 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

  

1.1 Introduction 

 

 

Pollution can take many forms, such as air pollution, water pollution, ground 

pollution and noise pollution. But, the fundamental pollution problem in many parts 

of the world is air pollution (Kurt and Oktay, 2010). Air pollution is a problem that is 

designated to have multiple spatial and temporal scales, which includes complex 

chemical and physical mechanism. It escalates as a consequence of human activity, 

and it is highly nonlinear as a problem (Karatzas et al., 2008). Frequently recurring 

situation of air pollution have substantial effect towards both social and economic 

managements (Caselli et al., 2009). Energy production from power plants, industrial 

processes, residential heating, fuel burning vehicles, and natural disasters are some 

factors that contribute to air pollution (Kurt and Oktay, 2010). 

 

 

In Europe, reducing the exposure of air pollution still remains an important 

issue (World Resources Institute, 2002). Air conditions in some European countries 

have worsen substantially since the 1970s, which call for the improvement of air 

quality all over the region (Marco and Bo, 2013). However, since 1997, the measured 

concentrations of particulate matter and ozone in the air have not shown any significant 

improvements despite the decrease in emissions. The issue of air quality is now a major 

concern of most European citizens. Many European countries face this problem such 

as the United Kingdom, Greece and Italy with London being the most polluted city in 

Europe (Vidal, 2010).  
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Urban cities that are overwhelmed with industrial activities are mostly located 

in Asia, and particularly in China and India (CAI-Asia, 2010). China is well known as 

the world’s fastest growing economy, and as a consequence of this economic growth, 

the quality of its air has deteriorated. The main factor that contributes to China’s 

increasing air pollution is its extraordinary daily traffic. On the other hand, India 

suffers from an appalling air pollution because of its varying industrial wastes. Due to 

these activities, both China and India were recorded to have the worst conditions of air 

pollution in the world (Alles, 2009). In addition, four out of 10 cities with the worst 

air pollution in the world are located in India which are Gwalior, Allahabad, Patna and 

Raipur (Bhattacharya, 2016). 

 

 

There are worldwide concerns over the consequences of air pollutant towards 

environment as its effects are diverse and numerous. The negative effects of air 

pollution are not only directed to human health, but also towards the forest, waters, 

and the ecosystem as a whole (Cisneros et al., 2010). The air we breathe everyday 

could be contaminated by polluting substances. For instance, PM10 a particulate matter 

with an aerodynamic diameter smaller than 10 µm, could cause nose and throat 

irritations that could lead to death (Caselli et al., 2009, Pope et al., 2002). Moreover, a 

study done in Italy, shows that ozone concentrations at ground levels modulate 

oxidative DNA damage in the circulating lymphocytes of residents in polluted areas 

(Palli et al., 2009). In addition, pollution caused by ozone, O3 can decrease the lung 

function, and it has been reported to increase cardiopulmonary mortality and the risk 

of lung cancer (Ghazali et al., 2010, Pope et al., 2002). Furthermore, the negative 

effects of air pollution have increased the numbers of premature deaths, with the 

highest annual incidence to be noted in China (Platt, 2007). 

 

 

The manifestation of haze in the atmosphere indicates the poor condition of the 

air. In Malaysia, a series of haze episodes were reported since the 1980s, beginning in 

the year 1983 and then in 1990, 1991, 1994 and in 1997 (Awang et al., 2000). The 

worst haze episode ever reported in Malaysia was in 1997 (Afroz et al., 2003, Lim et 

al., 2008) which was due to a large scale burning of forests in parts of Kalimantan and 

Sumatra as was apparent from satellite image (Awang et al., 2000). The winds has 
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made it easier for the heavy haze to be transported, and as the result it reaches all over 

Southeast Asia namely Indonesia, Singapore, Brunei, and Malaysia.  

 

 

Malaysia is divided into two main regions, namely Peninsular Malaysia and 

Malaysian Borneo. Peninsular Malaysia was divided into two areas, west coast states 

and east coast states. The west coast states are the most developed, and as a result they 

are the most polluted area in Malaysia. The Malaysian government has approved the 

building of industrial zones, particularly in forestland and uninhabited areas. This was 

due to the changes made by the government to shift Malaysia’s industrial activities 

from agricultural to manufacturing and heavy industries (Afroz et al., 2003, Awang et 

al., 2000). The major development for manufacturing and heavy industries are mostly 

located in the industrial zone of Shah Alam, Selangor. As a consequence, it is now a 

heavily populated area and is considered as one of the most polluted areas in Malaysia. 

 

 

The major contributor to Malaysia’s worsened air quality are not only in heavy 

industries, but also vehicle emissions, as well as illegal open burning (Afroz et al., 

2003). In the west coast, besides Selangor, cities with an unhealthy air quality were 

found in Kuala Lumpur, Penang, Perak, Negeri Sembilan, Johor and Melaka. The main 

cause of the unhealthy air quality in these states was due to the ground level ozone and 

PM10 as stated by Department of Environment in Malaysia Environment Quality 

Report (2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012). Between the Northern and 

the Southern regions, the Southern region which includes Melaka, Negeri Sembilan 

and Johor, was recorded as the most polluted due to the frequent episodes of unhealthy 

air quality. However, among these three states, Johor is the most severe as the 

monitoring stations have recorded more poor air quality days than good air quality 

days (Department of Environment, 2005). 

 

 

The Department of Environment (DOE) is responsible for monitoring and 

managing Malaysia’s air quality. Stations were built near industrial and residential 

areas to detect the significant changes in air quality that may harm human health and 

the environment. Since 2004 and until now, the DOE reports the environmental 

conditions in Malaysia in their report named Malaysia Environmental Quality Report, 
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which covers all aspects of environmental quality in Malaysia and air quality is put in 

the primary pages of that report.  

 

 

 

 

1.2 Background of Study  

 

 

Clean air is considered a crucial necessity for human health and well-being. 

Thus, continuous air pollution pose a major threat to human health globally. The 

presence of globalized growth in developed and developing countries has contributed 

to the escalation of air pollution problems (Hassanzadeh et al., 2009). Besides being 

harmful to human health and the environment, in the long-term, these air pollution 

problems tend to damage the earth by contributing to the global warming and the 

greenhouse effect (Heo and Kim, 2004, Kumar and Jain, 2010, Kurt and Oktay, 2010). 

Therefore, it is important to monitor the air pollution in the atmosphere by providing 

guidance on effective control actions, especially in severe air quality conditions where 

greater forces are needed.  

 

 

 Southeast Asia, a sub-region of Asia, faces frequent air pollution problems. 

Human-based activities are the main contributor to air pollution, activities such as open 

burning activities, industrial processes and vehicle emission (Afroz et al., 2003, Kurt 

and Oktay, 2010, Wang and Lu, 2006b). Typically, air pollution in Southeast Asia 

becomes worsens in the dry season due to the heavy smokes of peatlands fires in 

Sumatra and the Kalimantan region of Borneo Islands (Heil and Goldammer, 2001). 

Thus, several countries in Southeast Asia, such as Brunei, Indonesia, Malaysia, 

Singapore and Southern Thailand, are still affected by the continuous haze crisis for 

several decades.  

 

 

 As mention earlier, among the earliest worst haze phenomenon in Southeast 

Asia was the one reported in 1997. Yet, that did not stop it from recurring continuously 

until today. The widespread haze causes a limited atmospheric visibility, and it inflicts 

serious health problems. In addition, high levels of air pollution will affect the 

economy by disrupting air travel, interrupting business activities, and increasing the 
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expenditure on health care. As mention earlier, Malaysia is one of the most affected 

countries, and that is due to strong winds and dry weather that would carry the smog 

from Sumatra and affects the Peninsular Malaysia, while the smog from Kalimantan 

affects East Malaysia (Sastry, 2002). Thus, to identify the severity of air pollution, the 

ambient air quality measurement in Malaysia is described in terms of Air Pollutant 

Index (API). 

 

 

 The API in Malaysia was developed based on the API introduced by the United 

State Environmental Protection Agency  (USEPA). It is determined by the calculation 

of the sub-indices of five main pollutants, namely particulate matter (PM10), ozone 

(O3), carbon monoxide (CO), sulphur dioxide (SO2) and nitrogen dioxide (NO2). 

Hence, the highest value among these sub-indexes is chosen as the API for the time in 

question. According to Malaysia’s Department of the Environment (2004), different 

categories of sub-indices represent different effects on human health. These 

information, with different ranges, are reflected as “Good (0-50), Moderate (51-100), 

Unhealthy (101-200), Very Unhealthy (201-300) and Hazardous (301 and above)”. 

These categories can be a benchmark for air quality management or data interpretation 

for decision making processes (Afroz et al., 2003).  

 

 

The API scales and its terms are used in this study in order to measure the air 

quality, since the detection of poor air quality is important as an early warning system 

for air quality control and management. From the recorded API data, this study aims 

to build an API data profiling throughout Malaysia. The profiling will provide timely 

information of air quality conditions to the public, government officials, and 

administrative users. The profiling is developed in terms of graphics presentations. 

These graphics presentations described the data within the range, indicating different 

health status used to give visual information. Moreover, it is also a great instrument to 

highlight polluted areas and the time information period to improve the actions that 

should be taken. 
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Air quality forecasting is also important for the air pollution assessment and 

management (Lim et al., 2008).   It can provide an early notice and a warning to 

individuals and communities, in order to help them in limiting the exposure, reduce 

asthma attacks, prevent the irritation of the eye, nose, and throat, avoid respiratory and 

cardiovascular problems, and save lives (Kampa and Castanas, 2008, Kumar and 

Goyal, 2011, Kurt and Oktay, 2010). Research in air quality forecasting has increased 

and has become an area of interest. However, dealing with air quality is not as easy 

since the recorded air quality are not physically produced nor manufactured. For this 

reason, forecasting accuracy should be periodically maintained by using statistical and 

mathematical tools to obtain the best forecast. 

 

 

In order to find the best forecasting methods, the accuracy measurements play 

an important role in reaching the conclusion of any data analysis (Hyndman and 

Koehler, 2006, Willmott et al., 1985). In air quality, the measurements of error 

magnitude which analyses the difference between the observed and the predicted are 

usually used in forecast evaluations. Mean absolute percentage error (MAPE), mean 

absolute deviation (MAD) and root mean squared error (RMSE) are among the 

measurements that are commonly used to assess forecast accuracy (Armstrong and 

Collopy, 1992). However, accuracy in terms of error magnitude alone is not enough, 

especially in the field of air quality as it needs to relate with decision making. Thus, 

index measurement is also used, which aims to maintain the air quality within assigned 

guidelines (Moustris et al., 2010, Dutot et al., 2007, Schaefer, 1990).  

 

 

Index measurement uses the benchmark quality in the model’s validation to 

ensure that the environment remain acceptable to the public (Armstrong and Collopy, 

1992, Dutot et al., 2007, Schlink et al., 2003, Vautard et al., 2001). Thus, forecast 

accuracy based on threshold values, namely as truely predicted rate (TPR), false 

positive rate (FPR), false alarm rate (FAR) and successful index (SI) are taken into 

consideration for forecast validation. However, these measurements have some 

disadvantage where the obtained results are possible of getting infinite values. Besides, 

different perfect score could lead to different conclusion of the best model. The effect 

of missing values in forecasting are also determined to find the optimal forecast model 

for API data sets as the problem of missing values is common and unavoidable. 
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1.3 Problem Statement 

 

 

Air quality data has been recorded in Malaysia since 1996 and the huge amount 

of data usually presented in the form of text information. Thus, air quality information 

are difficult to be reviewed, especially for the public understanding. Moreover, the 

public, especially those in high risk groups such as asthmatic individuals, children, and 

elderly, need to be alerted beforehand about the cases of poor air quality. Therefore, 

to implement air quality management and public warning strategies for pollution 

levels, a reasonably accurate forecasts of air quality is necessary.  This can be achieved 

by using forecasting. Evaluation of performances are also important to find the best 

forecast performance. Thus, using the common error magnitude measurements is not 

enough to assess air quality. Index measurements are also important to evaluate the 

performance of air quality forecasting, because if the forecast fails to effectively 

predict poor air quality, it could cause a huge negative impact not only to the public 

health but also to the economy. Missing data is another problem that occurs when 

recording data due to many reasons such as instrument malfunction for a period of 

time.  The results of air quality models and forecast could be influenced by considering 

the incomplete series of recorded data as an input in the analysis. Therefore, the 

estimations to replace missing values are always important in air quality studies.  

 

 

The study will be focused on API data set with the following problems: 

 

 

a. What is the profiling of Malaysia’s API as a whole? 

 

b. What is the most appropriate method to model and forecast the API data, the 

classical methods or modern methods? 

 

c. What is the suitable criterion for evaluating and selecting the best model for air 

pollution data and subsequently improve the forecast evaluation? 

 

d. Is there any effect of missing values toward forecasting performance? 
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1.4 Objectives of the Study 

 

 

This study embarks on the following objective: 

 

 

a. To develop the profiling for API for the whole of Malaysia by using 

visualization approach. 

 

b. To improve the API forecasting by using time series method; either the 

classical methods or modern methods. 

 

c. To enhance the API forecast performance evaluation by using index 

measurement together with magnitude measurement to find the best model. 

 

d. To introduce the combination approach for index measurement to improve the 

forecast evaluations. 

 

e. To apply decomposition and spatial method in missing values imputations to 

achieve high accuracy in API forecasting. 

 

 

 

 

1.5 Significance of the Study 

 

 

Air contamination remains as continuing area of interest, which concern the 

effects of poor air quality on the human health and the natural environments around 

the world. Therefore, poor air quality and anticipation approaches are important areas 

of the study, especially in developing countries like Malaysia. Thus, an early warning 

system is essential in order to take the control action. 

 

 

Firstly, alerts could be made from the visualization of the results to give an 

overview of air quality in Malaysia. The trend of air quality can be easily identified 

especially by detecting the seasonality of the data set. Secondly, the air quality level 

could be monitored by forecasting. There is no clear proof to conclude which model 
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performs best in all situations. Therefore, it is appropriate to apply forecasting 

competitions in order to find the best forecasting model (Athanasopoulos et al., 2011, 

Makridakis et al., 1993). The outcomes of the forecasting models in this study will 

cover the industrial, urban and suburban areas in order to provide information to 

predict the quality of the contaminated air. Hence, the harm to the public health and 

environment could be minimized. 

 

 

The forecasting accuracy that has been discussed in this study could provide 

some basic guidelines. Therefore, the identification of the best model would be more 

sensible, particularly in the field of air quality. In addition, the changes in forecast 

performance with the presence of missing data is examined through a comparison 

study. This will provide a beneficial information guideline in deciding the appropriate 

model in forecasting whenever the historical data have missing data. 

 

 

The profiling, the different forecasting methods, performance evaluations and 

imputation of missing data that are considered in this study will provide the 

information to analyse the air quality. Therefore, the practitioners will be able to 

compare between the methods discussed and choose the appropriate approach in 

relation to their context of the study. Finally, the study is crucial to assist the 

Department of Environment or any related agencies to take a quick action in preventing 

environmental deterioration. Consequently, the public will benefit from the study as 

the accuracy and the up to date information on air quality will provide prompt warnings 

for their daily activities.  

 

 

 

 

1.6  Scope of the Study 

 

 

This study used univariate data where the API data are obtained from the 

Malaysian Department of Environment. The data are from 52 sampling stations that 

located in Malaysia and they are accessible starting from the year 1996. For API 

profiling, all sampling stations are taken where the daily data are used from January 

2005 to December 2011. Meanwhile, the data that are involved in the comparison of 
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forecasting models performance include monthly API data and daily API data that are 

located in Johor. The Johor sampling stations consist of three different background, 

namely industrial, urban and suburban areas. The monthly and daily data used are from 

January 2000 to December 2009 and January 2005 to December 2011 respectively.  

 

 

For forecasting comparison, the classical time series methods that were applied 

in the monthly data were Box-Jenkins method, time series regression method and 

winter’s exponential smoothing method. For the daily data, only Box-Jenkins was used 

as the classical approach. The Box-Jenkins used in this study is based on seasonal 

autoregressive integrated moving average (SARIMA) method. The modern methods 

were also implemented as a comparison to the classical methods. Fuzzy time series 

(FTS) based on Chen’s, Yu’s and Cheng’s methods, artificial neural network (ANN) 

and a hybrid method between Box-Jenkins and ANN were all used in both monthly 

and daily data. 

 

 

The forecast accuracy of all these methods will be evaluated and compared by 

using the error magnitude measurements, namely mean absolute error (MAE), mean 

absolute percentage error (MAPE), mean square error (MSE) and root mean square 

error (RMSE). In addition, the index measurements were used, namely true predicted 

rate (TPR), false predicted rate (FPR), false alarm rate (FAR) and successful index 

(SI) includes the proposed combination index measurement (CIM). For the missing 

values imputation, the decomposition method and spatial interpolation weighting 

methods were used. 
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1.7 Thesis Structure 

 

 

This thesis consists of five chapters. The first chapter, gave general information 

and a background of the study. The second chapter presents the literature review which 

encompasses Malaysia’s air quality forecasting and modelling, forecasting methods 

that includes the classical and modern methods, forecast accuracy evaluations and 

imputation methods for missing values. Then, chapter three explains the methodology 

in detail, including the procedure implemented in the study. Next, the results of the 

study will be explained and discussed in chapter four. Finally, chapter five presents 

the conclusion, summary and recommendation for future studies. 
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