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ABSTRACT

Driven by the continuous scaling of Moore’s law, the number of processing
cores in chip multiprocessors and systems-on-a-chip are expected to grow
tremendously in the near future. Connecting the different components of a
multiprocessor chip in a scalable and efficient way has become increasingly
challenging. Current network-on-chip (NoC) topologies are adequate for small-size
networks but are not optimized for large-scale networks. Transmitted packets inside a
large NoC require longer route to reach their destinations, resulting in an increase in
certain performance parameters such as latency and power consumption. Thus, it is
necessary to develop a new topology appropriate for large-size NoCs. In this research,
we proposed a cost-effective network topology for large-size NoCs that improves
performance in terms of end-to-end latency. The topology, called RaMesh, consists
of clusters of mesh networks. A routing algorithm suitable for this topology was also
proposed. The RaMesh architecture together with mesh, torus, and clustered 2D-mesh
were simulated using Noxim (NoC simulator), C for software NoC models, and Altera
ModelSim for Verilog hardware models. Simulations were conducted under different
network traffic and for a variety of network sizes. Experimental results showed that
RaMesh performed better than equivalent 2D-mesh and torus topologies. RaMesh
topology was also benchmarked against a clustered mesh topology. Average hop count
in the proposed topology was at least 22.7% lower compared to the mesh and torus.
Average latency was also decreased by at least 24.66% as compared to the mesh and
torus. Finally, the saturation point for the proposed topology increased by at least 15%
as compared to mesh and torus.
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ABSTRAK

Didorong oleh peningkatan berterusan dalam Hukum Moore, bilangan teras
pemprosesan dalam multiprosesor cip dan sistem dalam satu cip dijangka berkembang
dengan pesat dalam masa terdekat. Menyambung komponen yang berlainan dalam
multiprosesor cip dengan cara yang cekap dan berskala tinggi telah menjadi semakin
mencabar. Topologi Rangkaian-atas-Cip (NoC) semasa adalah cukup untuk rangkaian
saiz kecil tetapi bukan teroptimum untuk rangkaian berskala besar. Paket-paket
yang dihantar di dalam NoC besar mungkin mempunyai laluan yang panjang
untuk sampai ke destinasinya. Ini menyebabkan peningkatan dalam parameter
tertentu seperti kependaman dan penggunaan kuasa. Oleh itu, adalah perlu untuk
menghasilkan topologi baharu sesuai untuk NoC bersaiz besar. Dalam kajian
ini, kami mencadangkan satu topologi rangkaian kos-berkesan untuk NoC bersaiz
besar yang memperbaiki prestasi dari segi pendaman hujung-ke-hujung. Topologi
yang dinamakan RaMesh, terdiri daripada kelompok rangkaian jejaring. Algoritma
penghalaan yang sesuai untuk topologi ini juga dicadangkan. Seni bina RaMesh
bersama-sama dengan jejaring dan torus disimulasi menggunakan Noxim (NoC
Simulator), C untuk model NoC perisian, dan Altera ModelSim untuk model
perkakasan Verilog. Simulasi dilakukan di bawah lalu lintas rangkaian yang berbeza
dan untuk aneka saiz rangkaian. Hasil uji kaji menunjukkan prestasi RaMesh lebih
baik daripada topologi jejaring-2D setara dan torus. Topologi RaMesh juga ditanda
aras dengan topologi jejaring berkelomplok. Kiraan hop purata dalam topologi
yang dicadangkan adalah sekurang-kurangnya 22.7% lebih rendah berbanding dengan
jejaring dan torus. Kependaman purata juga diturunkan sekurang-kurangnya 24.66%
berbanding dengan jejaring dan torus. Akhirnya, titik tepu bagi topologi yang
dicadangkan bertambah sekurang-kurangnya 15% berbanding dengan jejaring dan
torus.
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CHAPTER 1

INTRODUCTION

1.1 Network-on-Chip

Multi-processor system-on-chip (MPSoC) is capable of accommodating
many processing resources for high-performance computation [12, 13]. On-chip
communication is the main bottleneck of MPSoC. Conventional bus-based on-chip
interconnect cannot provide efficiency and scalability to connect many cores on
one chip. Network-on-chip (NoC) has been proposed to meet on-chip interconnect
challenges. NoC consists of interconnected routers based on certain topology (e.g., a
mesh), that integrates memories, computational processors or the Intellectual Property
(IP) components. The method of communication among IPs within an NoC-based
system is through packet transmission via routers instead of circuit switching in bus-
based interconnect.

Designing an efficient high performance and low latency NoC is still an open
area of research. According to [14, 15], MPSoC size with hundreds or thousands of
cores are likely to be common-place today. The increase of on-chip cores requires
a high-bandwidth and scalable communication fabric [16, 17]. To satisfy these
requirements, NoCs have been presented and has very quickly emerged as the preferred
interconnection fabric.

As example, there exists real chips with 80 cores by Intel [1, 18], 100 cores
by Tilera [19], and even a research prototype with 1000 cores by University of
Glasgow [20]. While increased core count has allowed processor chips to scale without
experiencing complexity and power dissipation problems inherent in larger individual
cores, challenges still exist. NoC has been utilized to solve this problem. Figure 1.1
shows an example of a 80-core research prototype from Intel [1] (Figure 1.1a) and
a commercial 64-core chip for embedded applications from Tilera (Figure 1.1b) that
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(a) Intel Teraflops (b) Tilera TILE64

Figure 1.1: Examples of multi-core chips with on-chip networks [1, 2]

employs an on chip network for inter-tile communication [2].

1.2 Problem Statement

NoC topology defines how routers are connected together with network
endpoints (i.e. IP cores). The performance and cost of NoC are greatly affected by
the topology in large-scale MPSoC. Large-scale NoC topology is referred to as the one
that has more than 100 IP cores [21]. An NoC topology is characterized by number of
hop and network latency [22, 23]. The main issue with a large-scale NoC is the large
number of hops that packets have to pass through to reach their final destination, hence
creating significant network latency. A large number of hops also has a direct impact
on the energy consumed in the interconnect for buffering, transmission, and control.

There are several critical outstanding problems of large-scale NoCs. Due to
increasing number of the nodes inside the NoC and also the increase in the transaction
between nodes, the rate of data transmission in the links rises. Thus, some links are
used more excessively than other links which can lead to difficulty in load balancing
inside the NoC. This imbalance makes some packets to take longer paths to reach the
destination [24]. The long route results in increase latency, hop count, packet loss and
power consumption, and decrease in throughput.

One of the ways to remove the aforementioned problems is to use routing
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algorithm. Many routing algorithms were created to solve these problems, but perfect
solution is still elusive. The topologies currently used are good for small size networks
only. Thus it is necessary to design and develop a new topology which is appropriate
for large size NoCs. Besides, an optimized routing algorithm suitable for the suggested
topology must be developed. Nychis et al. in [25] have evaluated large NoCs of up to
4,096 cores, and they have shown two important issues with existing topologies in a
large-scale NoC, which are high latency and low throughput.

Topologies are increasingly becoming the bottleneck that is limiting the
performance of NoC [26, 27]. Indeed, for a large-scale NoC, the topology has a key
impact on the performance and cost of the network [5, 7]. It is responsible for 60% to
75% of the miss latency [28].

The classical NoC topology is the two-dimensional mesh [17, 29]. It is
preferred over other topologies. Since its simple implementation and the overall layout
is very regular [22]. However, in spite of its advantage, the two-dimensional mesh
topology is disadvantaged with congestion, high hop count, and high communication
latency for large-scale NoC. Indeed, a significant disadvantage of the mesh topology
is in its large communication radius which induces long path for packet delivery
[7, 30, 24]. For small-scale network (up to 64 nodes [25]), mesh topology is proven
to be efficient [23, 7, 25]. However, for large-scale NoC network, the performance of
mesh topology degrades significantly [7, 31]. The performance of mesh topology does
not scale well with network size.

The torus is also a favored topology for NoCs [32]. There are many long-range
links in torus topology that may create problems in terms of performance and cost. A
packet that uses a long-range link takes longer time to reach the next hop than when a
packet uses a normal link [33]. In addition, each long link imposes a minimum latency
and is a potential point of contention [3]. However, long-range links may improve
performance by reducing number of hops [3].

Based on aforementioned disadvantages, there is a need to develop a topology
with low network latency and hop count [3, 30]. The combination of mesh and ring
topology have a potential to address latency and hop count and avoidance of congestion
for large-scale networks [7, 8, 34].
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1.3 Objective

The main goal of our research is to develop a topology with a suitable routing
algorithm for large-scale NoC. The objectives in this thesis are:

• To propose a topology based on mesh clusters that reduces the number of
switches, the number of hops, and latency in large-scale NoC. This thesis
proposes a new NoC topology called RaMesh. RaMesh is designed based on
clusters and it is suitable for large-scale NoCs that have more than 100 IP cores.
Each cluster is a mesh topology. However, internal communication between IP
cores inside the cluster uses the rule of ring topology. The target performance
metric include a low hop count and low average network latency, and congestion
avoidance.

• To propose a routing algorithm to cater for the proposed topology. The proposed
routing algorithm is a combination of three existing routing algorithms, which
are ring, XY, and TRANC [13] to avoid congestion and deadlock problems.

1.4 Scope

The proposed topology is a hierarchical network topology based on mesh
clusters suitable for large scale NoCs with more than 100 IP cores. The structure of
each cluster is the mesh topology, but the rule of the ring topology is used for internal
communication among IP cores.

In this thesis, the proposed topology was evaluated for different NoC sizes,
different traffic models, and different traffic ratios. The proposed topology is
benchmarked in terms of average hop count and latency with clustered 2D-mesh [8],
mesh, and torus under the same experimental conditions.

The proposed topology was implemented using Verilog and simulated using
ModelSim. To characterize the proposed topology, we have used random, transpose,
hotspot, and uniform distribution traffic models to obtain average hop count and
average latency for four sizes of network with 144, 324, 576, and 900 IP cores.

The proposed routing algorithm is based on deterministic routing. We used XY
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and TRANC [9] routing algorithms for mesh and torus topology respectively as they
are deadlock free. The switching technique for these routing algorithms is wormhole
switching.

The hardware evaluation to compare hardware cost (in terms of number of
adaptive logic modules (ALM)) and estimate maximum hardware operating frequency
was done based on Stratix V 5SEEBF45I4 FPGA using Quartus II software for 144 IP
cores. The NoC code was written in C and translated to Verilog HDL and compiled
using Quartus II version 13 software. The code was verified using Altera Modelsim.
This process is explained in more detail in section 3.4.3.

1.5 Contribution of Study

This thesis proposed a topology called RaMesh, which is suitable for a large-
scale NoC. A routing algorithm for RaMesh that minimizes congestion and deadlock
is also proposed. The proposed topology is based on mesh clusters, is hierarchical,
and has long-range links to help reduce the hop count. The performance of RaMesh is
superior in terms of network latency compared to existing topologies such as clustered
2D-mesh, mesh and torus. In summary, the main contributions of this thesis are:

• The proposed NoC topology improves significantly the average hop count
compared to clustered 2D-mesh, mesh and torus topologies. For example,
RaMesh on average has 42.1% lower hop count compared to clustered 2D-mesh
topology in tests done for various network sizes.

• In tests using RTL model for each topology, RaMesh also has superior end-to-
end average latency compared to other topologies. Compared to clustered 2D-
mesh, mesh, and torus topologies, Ramesh has 31.2%, 49.5%, and 41.5% lower
average latency respectively.

1.6 Thesis Outline

The rest of the thesis is organized as follows.



6

• Chapter 2 contains literature survey on the studies of NoC, which includes
topology and routing algorithm.

• Chapter 3 covers the methodology for the work done in this thesis. This also
includes the general approach taken for the research done in this work, as well
as tools and platform used.

• Chapter 4 presents the evaluation results of mesh topology. We also have
simulated the topologies with appropriate routing algorithms under different
ratios of traffic pattern.

• Chapter 5 describes the proposed topology that was designed based on
hierarchical mesh topology for large-scale NoC called RaMesh. In addition, this
chapter also presents a proposed routing algorithm for the proposed topology.

• Chapter 6 presents the results and analysis of the experimentations to compare
average latency under different ratios of traffic and different traffic models, and
hardware cost.

• Chapter 7 summarizes the thesis, re-stating contributions, and suggest directions
for future research.
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