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ABSTRACT 

Segmentation is the process of dividing the original image into multiple sub 

regions called segments in such a way that there is no intersection between any two 

regions. In medical images, the segmentation is hard to obtain due to the intensity 

similarity among various regions and the presence of noise in medical images. One of the 

most popular segmentation algorithms is Spatial Fuzzy C-means (SFCM). Although this 

algorithm has a good performance in medical images, it suffers from two issues. The first 

problem is lack of a proper strategy for point initialization step, which must be performed 

either randomly or manually by human. The second problem of SFCM is having inaccurate 

segmented edges. The goal of this research is to propose a robust medical image 

segmentation algorithm that overcomes these weaknesses of SFCM for segmenting 

magnetic resonance imaging (MRI) brain images with less human intervention. First, in 

order to find the optimum initial points, a histogram based algorithm in conjunction with 

Grey Wolf Optimizer (H-GWO) is proposed. The proposed H-GWO algorithm finds the 

approximate initial point values by the proposed histogram based method and then by 

taking advantage of GWO, which is a soft computing method, the optimum initial values 

are found. Second, in order to enhance SFCM segmentation process and achieve higher 

accurate segmented edges, an edge detection algorithm called Sobel was utilized. 

Therefore, the proposed hybrid SFCM-Sobel algorithm first finds the edges of the original 

image by Sobel edge detector algorithm and finally extends the edges of SFCM segmented 

images to the edges that are detected by Sobel. In order to have a robust segmentation 

algorithm with less human intervention, the H-GWO and SFCM-Sobel segmentation 

algorithms are integrated to have a semi-automatic robust segmentation algorithm. The 

results of the proposed H-GWO algorithms show that optimum initial points are achieved 

and the segmented images of the SFCM-Sobel algorithm have more accurate edges as 

compared to recent algorithms. Overall, quantitative analysis indicates that better 

segmentation accuracy is obtained. Therefore, this algorithm can be utilized to capture 

more accurate segmented in images in the era of medical imaging.
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ABSTRAK 

Segmentasi adalah proses pembahagian imej asal kepada pelbagai sub kawasan yang 

dipanggil segmen agar tidak terdapat pertembungan antara dua kawasan. Dalam imej 

perubatan, segmentasi sukar untuk diperoleh kerana persamaan keamatan antara pelbagai 

kawasan dan kehadiran hingar dalam imej perubatan.  Salah satu algoritma segmentasi yang 

paling popular adalah Min-C Kabur Ruang (SFCM). Walaupun algoritma tersebut mempunyai 

prestasi yang baik dalam imej perubatan namun menghadapi dua isu. Masalah pertama adalah 

kurangnya strategi yang tepat bagi langkah pengawalan titik yang perlu dijalankan sama ada 

secara rawak ataupun secara manual oleh manusia. Masalah kedua SFCM adalah terdapatnya 

sudut bersegmen yang tidak tepat. Matlamat kajian ini adalah untuk mencadangkan algoritma 

segmentasi imej perubatan yang teguh yang mengatasi kelemahan SFCM tersebut untuk 

pembahagian imej pengimejan resonans magnet (MRI) otak dengan kurang campur tangan 

manusia. Pertama, untuk mencari titik permulaan yang optimum, algoritma berdasarkan 

histogram bersamaan dengan Pengoptimum Musang Kelabu (H-GWO) dicadangkan. 

Algoritma H-GWO yang dicadangkan akan mencari anggaran nilai titik permulaan 

menggunakan kaedah berdasarkan histogram yang dicadangkan dan kemudian mengambil 

manfaat daripada GWO yang merupakan kaedah pengiraan lembut, nilai awal optimum yang 

ditemukan.  Kedua, dalam usaha untuk meningkatkan proses segmentasi SFCM dan mencapai 

ketepatan paling tinggi bagi sudut bersegmen, algoritma pengesanan sudut yang dinamakan 

Sobel telah digunakan. Oleh itu, algoritma hibrid SFCM-Sobel yang dicadangkan tersebut 

pertamanya, mendapatkan pinggir bagi imej asal menggunakan algoritma pengesanan pinggir 

Sobel dan akhirnya memanjangkan sudut bagi imej bersegmen SFCM kepada pinggir yang 

dikesan oleh Sobel. Dalam usaha untuk mencapai algoritma segmentasi teguh dengan kurang 

campur tangan manusia, algoritma segmentasi H-GWO dan SFCM-Sobel disepadukan untuk 

mendapatkan algoritma segmentasi separa automatik yang teguh. Keputusan algoritma H-GWO 

yang dicadangkan menunjukkan titik permulaan yang optimum dapat dicapai dan juga imej 

bersegmen bagi algoritma SFCM-Sobel mempunyai pinggir yang lebih tepat berbanding algoritma 

semasa. Secara keseluruhan, analisis kuantitatif menunjukkan bahawa segmentasi ketepatan yang 

lebih baik telah diperolehi. Oleh itu, algoritma tersebut boleh digunakan untuk memberikan 

gambaran pembahagian yang lebih tepat bagi imej dalam era pengimejan perubatan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

The use of Magnetic Resonance (MR) and Computed Topography (CT) images 

has increased widely for treatment planning, medical analysis and clinical studies. MR 

images with high level of accuracy show three dimensional information of human soft 

tissues and unlike X-ray images, no radiation is needed to scan an MR image. 

Therefore, MR images have become more popular among other formats like CT and 

X-ray. 

The use of computers is almost necessary to help radiological experts to 

diagnose patients by analyzing MR images. Most of these computer applications use 

segmentation algorithms to divide image volume into tissue types. In image processing 

a process in which the boundaries are located to distinguish different regions in an 

image is called image segmentation. This process is applicable in different applications 

such as geographical and medical imaging, robot vision and object recognition. 

(Bezdek et al., 1993, Wells et al., 1996, Xu et al., 2000). 

In general, segmentation is the process that divides an image based on its 

properties such as the grayscale level or color to similar regions (Gonzalez and Woods, 

2004, Pal and Pal, 1993). Segmentation algorithms can be categorized into three 

groups namely boundary-based, region-based and hybrid (Ciesielski and Udupa, 

2010). In boundary-based methods, regions are classified by identifying the edges 

among regions. Snakes (Kass et al., 1987) which is one of the known boundary-based 
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methods, draws contour lines around different regions by minimizing a cost function. The 

second group which is region based algorithms detects different regions based on the level 

of homogeneity of the regions. The simplest and fastest algorithm in this group is intensity 

thresholding. A threshold value simply can categorize the original image into two groups 

namely background and foreground. Otsu’s method (1979) is an intensity thresholding 

algorithm which finds threshold value automatically by analyzing the histogram of the 

image. In case that there exist more than two regions in the original image then more than 

one threshold is used for the segmentation process and this method is called multilevel 

thresholding. Hybrid algorithms which are the third group combine two or more 

segmentation algorithms in order to overcome the shortcomings of other algorithms. 

A region based segmentation algorithm called Fuzzy c-Mean (FCM) which was 

first proposed by Bezdek (1981) is used as the basis of the medical image segmentation 

algorithm in this research. This method is the most powerful and the best known fuzzy 

segmentation algorithm (Cai et al., 2007, Shen et al., 2005, Siyal and Yu, 2005). FCM is 

an enhancement of hard K-means algorithm. In hard K-means, each pixel of the image is 

assigned to only one region while in FCM, pixels of the image are assigned to different 

regions according to a degree of membership. 

In this research the advantages and disadvantages of using FCM in terms of point 

initialization and segmentation accuracy are fully analyzed by implementing the algorithm 

in MATLAB. The method proposed in this thesis is trying to overcome the shortcomings 

of FCM algorithm and to achieve accurate results in a shorter time. 

1.2 Background of the Problem 

The use of image segmentation has increased in medical image analysis. It is 

difficult to achieve medical image segmentation because of complexity of the 

tissue/organ, significant amount of noise and weak boundary in image that is caused 

by equipment and operator. Boundary leakage is another common problem which 

occurs when the boundary among tissues is blur, therefore image segmentation 

algorithm considers both tissues as one region mistakenly (Li et al., 2011a). 
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Recently several image segmentation algorithms are investigated to achieve 

more accurate algorithms. Discontinuity and similarity approaches are widely used to 

run the majority of segmentation algorithms (Richard and Rafael, 2008). Based on the 

abrupt changes in the image, the discontinuity approach locates the partitions. In order 

to detect abrupt changes, intensity value of edges must be evaluated. On the other hand, 

by evaluating the level of similarity for each region in the original image, it is possible 

to locate partitions in the second approach. Since brain tissue has complex intensity 

distributions and the boundary between different regions are not sharp, choosing a 

proper segmentation algorithm is challenging. According to Verma et al. (2016), 

clustering based algorithms are considered as the most efficient algorithms for MRI 

brain segmentation. FCM as a clustering based segmentation algorithm has some 

problematic issues (Cai et al., 2007). The main problem of this method is that noisy 

images highly reduce the quality of segmentation because in standard FCM, spatial 

context between pixels are not considered because the clustering is running based on 

the characteristics of the image pixels itself only (Wang et al., 2008). In order to 

overcome this problem and to achieve better segmentation of images, various FCM 

extension algorithms are proposed by many researchers (Cai et al., 2007, Chuang et 

al., 2006, Ma and Staunton, 2007, Siyal and Yu, 2005, Wang et al., 2008). 

Modifying the objective function is mostly utilized to increase the robustness 

of FCM against noise. For this purpose, Pham (2001) proposed a robust Fuzzy c-Mean 

algorithm (RFCM). By setting a parameter to control the trade-off between sharpness 

and smoothness of the image, Pham incorporated the smooth membership function. A 

similar approach called Bias-Corrected Fuzzy c-Mean (BCFCM) was presented by 

Ahmed et al. (2002). By modifying the objective function, he introduced a term 

allowing the labeling of the pixel to be influenced from the labels in its immediate 

neighborhood. Moreover, in order to control the effect of the neighbor term a 

parameter was set. The FCM method was simplified by Zhang and Chen (2004). They 

replaced the original Euclidean distance function with kernel induced distance metric. 

Shen et al. (2005) proposed improved fuzzy c-means clustering. In this method, the 

features of the neighborhood pixels were used by using a degree of attraction and this 

value was optimized by a neural network. These methods had modified the FCM by 

adding more equations to the objective function which leads to computation and time 

complexity issues and losing the FCM continuity (Shen et al., 2005). 
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Spatial FCM (SFCM) was proposed by Chuang et al. (Chuang et al., 2006). 

This algorithm could resolve FCM noise issue by making modification to FCM 

objective function and considering the intensity values of neighborhood pixels. 

However good segmentation may not be achieved due to presence of noise in 

neighborhood pixels. Fast generalized Fuzzy c-means (FGFCM) was proposed by Cai 

(Cai et al., 2007). In this algorithm, a new image was constructed by utilizing a 

similarity measure which combines gray-level and spatial local information. In these 

methods, at least one parameter exists to control the tradeoff between the original 

image feature and spatial constraint (β in (Pham, 2001), α in (Ahmed et al., 2002, 

Zhang and Chen, 2004)) while selection of these parameters are hard and were done 

by trial and error (Wang et al., 2008). A fuzzy local information c-means (FLICM) 

was proposed by Krinidis and Chatzis (Krinidis and Chatzis, 2010) to solve the 

problem of parameter setting in FCM based algorithms. This algorithm also takes 

advantage of gray-level and spatial local information.  

In order to accelerate the image segmentation, enhanced FCM (EnFCM) was 

proposed by Szilagyi (SziláGyi et al., 2012). In this algorithm, first a linearly weighted 

sum image is pre-calculated and finally FCM algorithm is performed to histogram of 

the new image. Intuitionistic fuzzy c-means (IFCM) algorithm, one of the variants of 

FCM which incorporates the advantage of intuitionistic fuzzy sets theory, was found 

suitable for image segmentation (Jiang et al., 2013). It could handle the uncertainty 

but since it did not incorporate any local spatial information it was sensitive to noise. 

Verma (Verma et al., 2016) presented an algorithm called an improved intuitionistic 

fuzzy c-means (IIFCM). This algorithm considers the local spatial information in an 

intuitionistic fuzzy way. 

In spite of the amount of recent works to modify the FCM, there are still some 

drawbacks in the algorithms such as lacking of a proper strategy for the initial point 

placement and the sensitivity to noise (Benaichouche et al., 2013). For more 

clarification both issues are discussed in the following subsections.  
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1.2.1 Initial Point Optimization  

Regardless of FCM noise issue which is enhanced by SFCM technique, in 

FCM based approaches, the number of regions as well as the initial points location 

values must be determined in advance (Kao et al., 2014). Initial point values can be 

randomly determined and standard SFCM algorithm fails to have a proper strategy for 

this case (Benaichouche et al., 2013). Because the accuracy of the segmentation 

process is highly depended on the point initial values therefore, random selection of 

these points cannot guarantee reasonable accuracy. As such the optimum values for 

these points are required. 

In order to overcome the initialization issue of FCM, recently a hybrid 

algorithm of particle swarm optimization (PSO) which is a technique of population 

based clustering with FCM namely (PSO+FCM) was proposed by researchers 

(Benaichouche et al., 2013, Krishnapuram and Keller, 1993b, Liu et al., 2008, 

Samadzadegan and Naeini, 2011, Wang et al., 2007, Zhang et al., 2011). For 

enhancing the spectral characteristics of features for clustering, Liu Hanli et al (Liu et 

al., 2008) used the PSO-FCM on the image data to enhance the accuracy of wetland 

extraction. Farhad et al (Samadzadegan and Naeini, 2011) used PSO-FCM with four 

iterations to the particles in the swarm for every eight generations such that the fitness 

value of each particle was improved. The result of using PSO-FCM on hyperspectral 

data, in two spaces data and feature showed its higher ability in segmentation than 

fuzzy clustering (Samadzadegan and Naeini, 2011). PSO also was used by Zhang et 

al. (Zhang et al., 2011) as an initialization step in possibilistic c-means clustering 

(PCM) (Krishnapuram and Keller, 1993b) to find the best possible position of cluster 

centers. Wang et.al (Wang et al., 2007) proposed a hybrid fuzzy clustering algorithm 

named QPSO+FCM which FCM was incorporated into quantum-behaved PSO. The 

QPSO has less parameters and higher convergent capability of the global optimizing 

than PSO algorithm. Therefore, the iteration algorithm was replaced by the QPSO 

based on the gradient descent of FCM, that makes the algorithm to have a strong global 

searching capacity and avoids the local minimum problems of FCM and in a large 

degree avoid depending on the initialization values. 
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Although it is possible to find the optimum initial position values by PSO and 

QPSO but the resulted values are not always optimized because both of them are 

trapped into local optimal solution and fail to find the global best value (Liu et al., 

2005, Noel and Jannett, 2004). Further using soft computing technique to find the 

optimum initial points takes a long time to achieve the desired results and in some 

cases the algorithm must be repeated multiple times to get the optimized results.  

1.2.2 Blur Boundaries Issue 

Since the incorporation of spatial constraints into the classification, blurs some 

details; therefore, high contrast pixels that usually represent boundaries between the 

objects should not be included in the neighborhood (Gondal and Khan, 2013). Also 

according to Chuang (Chuang et al., 2006), SFCM algorithm with a higher spatial 

weighting parameter shows a better smoothing effect. However, the possible 

disadvantage of SFCM is the blurring of some of the finer details.  

1.3 Problem Statement  

There are two main drawbacks in SFCM segmentation algorithm. The first 

problem is that there is the lack of a proper strategy for the point initialization step and 

point initialization must be performed manually or randomly in the SFCM algorithm. 

Although algorithms such as QPSO or PSO based are proposed to overcome this issue 

however using of these algorithms are not suitable because they can fall into local 

optimal solution and also performing such algorithms are a time intensive tasks. The 

second problem of SFCM is causing of blur boundaries in the segmented images. This 

issue is mainly caused by spatial weighting parameter used in SFCM algorithm.   
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1.4 Objective of the Thesis 

According to problems stated in the previous section, the main objectives of 

this thesis are as follows: 

i. To evaluate and compare the performance of FCM, SFCM and K-means in 

segmentation of medical brain images. 

ii. To propose enhanced SFCM segmentation algorithm based on edge-detected 

image using edge detection Sobel operator that is called SFCM-Sobel 

Segmentation Algorithm. 

iii. To propose histogram-based GWO algorithm to determine the optimum values 

for initial points. 

1.5 Scope of the Thesis 

In this study, the scope of the proposed algorithm is mainly based on the 

following items: 

i. The desired format of the medical image datasets is Analyze and minc for IBSR 

and BrainWeb datasets respectively. 

ii. The proposed method uses the basic concept of FCM method. 

iii. The performance of the proposed algorithm is evaluated based on quantitative 

measures including Dice Coefficient, Jaccard Index, Sensitivity and Precision. 

iv.  The visual language used for coding is MATLAB. 



8 

 

1.6 Significance of the Thesis 

The significant of this thesis can be divided into two fields including 

segmentation algorithm and medical. The significant of the thesis in terms of 

segmentation algorithm is that the proposed algorithm can determine the optimized 

initial point values for segmentation process of the medical image automatically. 

Moreover, the blurred area around the edges is further enhanced. Therefore, the quality 

of the final segmentation result is getting improved. In this thesis, the large number of 

cases are processed in a short time having the almost same accuracy. The segmentation 

process utilizing the method presented in this thesis becomes easier with less human 

intervention. The significant of the project in terms of medical field is that treatment 

planning by medical expert will be easier because the brain relate diseases such as 

Alzheimer can be found out by measuring brain White Matter (WM) region using 

segmentation algorithm. 

1.7 Organization of the Thesis 

This thesis consists of six chapters. In Chapter 1, introduction, problem 

background, problem statement, objectives, scopes and significant of the thesis are 

presented. In Chapter 2, a background about image segmentation, segmentation 

algorithm techniques, soft computing algorithms including PSO and GWO and finally 

edge detection algorithms are presented and compared. In Chapter 3, a research 

methodology related to development of the method to design an enhanced SFCM 

based medical image segmentation is presented. The research framework of the project 

is also presented in this chapter.  

In Chapter 4, besides the evaluating of K-means, FCM and SFCM 

segmentation algorithms, the framework of proposed enhanced SFCM segmentation 

algorithm that is based on Sobel edge detection is presented. The goal of this 

framework is to achieve higher accuracy around the edges of the SFCM segmented 

image. This framework consists of three main phases namely SFCM segmentation, 

Sobel edge detection and SFCM-Sobel segmentation. Finally, the results of proposed 
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SFCM-Sobel based algorithm is compared with conventional segmentation 

algorithms. 

In Chapter 5, the analysis of initial point selection of SFCM and its impact on 

the segmentation result are presented. The hybrid histogram based GWO algorithm is 

also presented. The result of the proposed algorithm is demonstrated and compared 

with SFCM-Sobel with manual initialization. 

In Chapter 6, the conclusion and summary of the research work is illustrated. 

The summary of the research including objectives, methodology and results are 

presented. Finally, the future work and possible limitations of the current research is 

also provided. 
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