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ABSTRACT 

Most mathematical models to describe natural phenomena in ecology are 

models with single-phase. The models are created as such to represent the phenomena 

as realistic as possible such as logistic models with different types. However, several 

phenomena in population growth such as embryos, cells and human are better 

approximated by two-phase models because their growth can be divided into two 

phases, even more, each phase requires different growth models.  Most two-phase 

models are presented in the form of deterministic models, since two-phase models 

using stochastic approach have not been extensively studied. In previous study, 

Zheng’s two-phase growth model had been implemented in continuous time Markov 

chain (CTMC). It assumes that the population growth follows Yule process before the 

critical size, and the Prendiville process after that. In this research, Zheng’s two-phase 

growth model has been modified into two new models. Generally, probability 

distribution of birth and death processes (BDPs) of CTMC is intractable; and even if 

its first–passage time distribution can be obtained, the conditional distribution for the 

second-phase is complicated to be determined. Thus, two-phase growth models are 

often difficult to build. To overcome this problem, stochastic differential equation 

(SDE) for two-phase growth model is proposed in this study. The SDE for BDPs is 

derived from CTMC for each phase, via Fokker-Planck equations. The SDE for two-

phase population growth model developed in this study is intended to be an alternative 

to the two-phase models of CTMC population model, since the significance of the 

SDE model is simpler to construct, and it gives closer approximation to real data. 
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ABSTRAK 

Kebanyakan model matematik untuk menggambarkan fenomena semulajadi 

dalam ekologi adalah dengan model fasa tunggal. Model-model dibina supaya dapat 

mewakili fenomena serealistik mungkin, seperti model logistik pelbagai jenis. Walau 

bagaimanapun, beberapa fenomena dalam pertumbuhan populasi seperti embrio, sel 

dan manusia adalah lebih sesuai dianggarkan menggunakan model dua fasa kerana 

pertumbuhan populasi boleh dibahagikan kepada dua fasa, lebih-lebih lagi setiap fasa 

memerlukan model pertumbuhan yang berbeza. Kebanyakan model dua fasa 

dibentangkan dalam bentuk model deterministik, disebabkan model dua fasa 

menggunakan pendekatan stokastik masih belum dikaji secara terperinci. Dalam 

kajian terdahulu, model pertumbuhan dua fasa Zheng telah dilaksanakan dalam 

rantaian Markov masa selanjar (CTMC). Ia menganggap pertumbuhan populasi 

mengikuti proses Yule sebelum mencapai saiz kritikal, dan seterusnya proses 

Prendiville. Dalam penyelidikan ini, model pertumbuhan dua fasa Zheng diubah suai 

menjadi dua model baharu. Secara umum, taburan kebarangkalian proses kelahiran 

dan kematian (BDPs) dari CTMC adalah sukar dikawal; dan walaupun taburan masa 

laluan pertama boleh diperolehi, taburan bersyarat untuk fasa kedua adalah rumit 

untuk ditentukan. Oleh itu, model pertumbuhan dua fasa adalah selalunya sukar untuk 

dibina. Untuk mengatasi masalah ini, persamaan pembezaan stokastik (SDE) untuk 

model pertumbuhan dua fasa dicadangkan dalam kajian ini. SDE untuk BDP 

diterbitkan dari CTMC untuk setiap fasa melalui persamaan Fokker-Planck. Model 

pertumbuhan populasi dua fasa SDE yang dibangunkan dalam kajian ini bertujuan 

sebagai alternatif kepada model populasi dua fasa CTMC, disebabkan kepentingan 

SDE untuk model pertumbuhan populasi dua fasa adalah lebih mudah untuk dibina, 

dan model ini memberi penghampiran yang lebih dekat kepada data sebenar.  
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INTRODUCTION 

1.1    Background of Study 

Many populations, such as cells and humans, indicate limitations in their 

growth. The populations can be identified based on the birth rate change in the size 

range of the population, which grows rapidly in the early and later changes slowly at 

the end of the phase. To describe population growth, two models are commonly used, 

i.e. deterministic and stochastic models. Usually, stochastic modeling for population 

growth is based on deterministic modeling, because deterministic model has been 

developed by many previous studies.  

 

To model population growth using deterministic and stochastic models, the 

birth and death processes in single-phase are referred. The processes are mostly 

modelled using logistic models [1-3]. In logistic models, many distinct biological 

interpretations for different applications can be extracted from them. In some cases, 

the models with single phase may not represent the population growth due to their lack 

of flexibility [4-6]. Therefore, the combination between single phase models, which 

the model are used in their different early and end phase, is proposed. This is because 

there is a growth difference at the beginning and end of the period to fit the change of 

the growth.  

 

Some studies on two-phase population growth model with regard to 

deterministic models have been done by combining the models. Banks [2] developed 

some combinations of  two-growth population growth models, while Meyer [7], 
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Meyer and Ausubel [8], Meyer et al [9] proposed bi-logistic model. Later, Wong and 

Goh [10] made a little modification to Meyer’s approach.  

 

Faddy [4] proposed a simple two-phase population growth model to pure death 

process in stochastic model. Ross and Pollett [6] developed a two-phase population 

growth model using control regime, while Zheng [11] built a two-phase population 

growth model considering the existence of a critical population size. In this method, 

before the population attains certain prescribed critical size, the growth is modelled as 

Yule process. Once the population reaches its critical size, the growth is then modelled 

using Prendiville’s logistic process. So the critical size is the junction itself. The 

junction is known as an inflection point.  The stochastic models used in the previous 

studies are models of continuous time Markov chain (CTMC). 

 

The development of stochastic models is not as fast as the deterministic model, 

although the stochastic models are generally accepted to model the heterogeneity of 

phenomena in reality. In this study, the population growth is focused on the stochastic 

models by using deterministic model as guide to modelling.  

 

Among stochastic models, stochastic differential equation (SDE) model is 

often used besides CTMC model. Both SDE and CTMC models are Markov processes, 

which differ only in state. CTMC model has continuous time and discrete state, while 

SDE model has both continuous time and state [12]. Also, there is a close relationship 

between the CTMC and SDE models. This relationship is derived by the forward 

Kolmogorov differential (Fokker-Planck) equation in diffusion process of CTMC [13, 

14]. Then the BDPs of SDE model can be derived from CTMC model. Therefore, 

some types of the SDE for BDPs model are studied in this study in order to find out 

each other behaviour. 

 

Allen and Allen [15] studied three stochastic models with respect to persistence 

time. The models are discrete time Markov chain (DTMC) models, continuous time 

Markov chain (CTMC) models and stochastic differential equation (SDE) models. 

They used birth and death processes, which were set as analogue to the logistic of 

growth models. The study was extended with the addition of environment variability 

and persistence-time estimation, as shown in [16]. 
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In sum, several natural phenomena require two-phase population growth 

models. Some types of two-phase population growth model are built in deterministic 

and stochastic models. In relation to this, the Zheng’s two-phase population growth 

model can be still modified by changing its second phase by other birth and death 

processes. In stochastic model, two-phase models are only studied by using CTMC 

models, although in case of single phase, the SDE model may be better than CTMC 

models in certain conditions [15-17]. The previous models in SDE growth model have 

only been applied to single-phase of stochastic growth model, and stochastic 

differential equation model for two-phase population growth model has not been done. 

Thus, this research proposes to build stochastic differential equation (SDE) model for 

two-phase population growth model. 

1.2    Problem Statement 

Both CTMC and SDE models have some weaknesses which are simply 

inherent and inevitable to model. In this study, advantages of each model had been 

used to manage their weaknesses. Generally, a growth process is a special case of 

continuous time Markov chain, where its state represents the current size of 

population, occurs in discrete and continuous time, with both change and time 

depending only on the previous state. Meanwhile, in SDE model, there are only 

approximations, in which to estimate drift and diffusion coefficient from discrete 

experimental data for the SDE’s own variable. Nevertheless, SDE nearly matches the 

dynamics of CTMC Model.  

 

Unlike CTMC model, SDE model has continuous trajectories. Although the 

state of the SDE is a vector of real numbers, the process keeps all possession of the 

stochasticity related with the discrete CTMC. For simple stochastic differential 

equations, explicit solutions can be obtained using Ito formula, but it is generally not 

possible to obtain explicit solutions to SDE model. Although there is no possible 

explicit solution, numerical methods can still be used to approximate the sample path 

of SDE. To get the sample path, CTMC model requires a limiting distribution where 
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its stationary probability distribution satisfies certain conditions. In this study, birth 

and death process are furthermore discussed based on the advantages of both CTMC 

and SDE models.  

 

Thus a modification to Zheng’s two-phase growth might be developed with 

respect to birth and processes. Unfortunately, some types of birth and death process 

are difficult to get their probability distribution, thus two-phase growth model are 

often difficult to build. Because generally, probability distribution of CTMC is 

intractable and event if it can be obtained its first –passage time distribution and the 

conditional distribution for the second-phase are complicated to be determined. To 

overcome this problem, building second-phase in SDE model is proposed in this study. 

In this study, two-phase deterministic model proposed by Bank [2] has been used as a 

guide to build the SDE model for two-phase population growth model, while the 

model of each phase of the two-phase growth model was derived from CTMC.  

1.3    Research Objectives 

Based on the research background and problem statement, the objectives of 

this study are: 

1. To derive seven types of the birth and death processes of the continuous time 

Markov chain (CTMC) model for the stochastic differential equation (SDE) 

model. 

2. To modify the second-phase of Zheng’s two-phase growth model of CTMC  

3. To build stochastic differential equation for two-phase growth model. 

4. To apply the models to some population growth data. 

1.4    Research Scope 

In this study, the connection between the CTMC model and the SDE model in 

the growth population was modeled for only birth and death processes with constant 
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parameters, the stochastic process which conditional probability/transition probability 

satisfies forward Kolmogorov/Fokker-Planck equation. Then, whooping crane 

population growth data and the dissolved concentration oxygen data were applied in 

one-phase stochastic differential equation models. Furthermore, to build the two-phase 

population growth model of SDE; two models had been combined in this study; the 

Yule process in early phase and confined exponential process or Prendiville process 

last phase, Pekanbaru and California population data had been applied in this study 

1.5    Significance of Research 

Recently, two-phase population growth models have been used to describe 

various fields such as biology, economies, forecasting and many other purposes. Most 

of these applications use the two-phase population growth models of the deterministic 

models to describe the phenomena, due to the influence of the environment which 

cannot be eliminated thoroughly in the deterministic models, where stochastic two-

phase population growth models are required. In this study, the proposed model is 

obtained by modifying Zheng’s two-phase model. 

Since, there are close relationships among some stochastic models, in this 

study, the birth and death processes of continuous time Markov chain (CTMC) were 

approximated by using the stochastic differential equation via the forward 

Kolmogorov equations. Therefore, stochastic calculus is used for solving the problem 

of intractability of the transition probability of the CTMC. The transition rates of BDPs 

of CTMC are then used to obtain the drift and diffusion coefficient of the SDE. This 

approximation produces Ito SDE models for birth and death processes. By this, the 

combination between two SDE models is used to build the SDE model for two-phase 

population growth model. These models are might be applied to relative areas. 
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1.6    Thesis Organization 

This thesis consists of five chapters. Chapter 1 provides the background, 

problem statement, objectives, scopes, and significance of this study. Chapter 2 

presents previous works related to this study and describes the one-phase and two-

phase growth population models. Chapter 3 presents explanation on the theory of 

continuous Markov chain for the birth and death processes and stochastic differential 

equation. The methodologies to connect between continuous time Markov chain and 

stochastic differential equation, and to build stochastic two-phase population growth 

model are discussed in this chapter. Results and discussion are discussed in Chapter 4 

and Chapter 5. Lastly, Chapter 6 concludes this thesis and gives several suggestions 

for future work.  
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