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ABSTRACT 

 

 

 

Biodegradable metals have been suggested for bone scaffold applications due 

to their mechanical properties that are better for load bearing applications. Among 

biodegradable metals, magnesium and its alloy are the most investigated materials due 

to their mechanical properties which are closer to the cancellous bone and could 

prevent complications such as an aseptic loosening of stress shielding effects, and    

potentially to be used as bone scaffolds. Bone adapts the mechanical loading from the 

physiological activities that induced the movement of bone marrow passing through 

the porous structure of cancellous bone due to the pressure differences. The aim of this 

research is to analyse the degradation behaviour of porous magnesium under dynamic 

degradation test for bone scaffold applications. Interconnected holes of porous 

magnesium have been developed with various percentages of porosity (30%, 41% and 

55%) and are fabricated using computer numerical control (CNC) machine. Dynamic 

immersion test rigs are specifically designed to simulate environment of human 

cancellous bone. There are two types of tests that have been conducted in this study: 

(1) fluid flow with different flowrates (0.025, 0.4 and 0.8 ml/min) and (2) fluid flow 

integrated cyclic loading (different cyclic loading (1000, 2000 and 3500 µε) under 

constant flowrate of 0.025 ml/min). A dynamic immersion test has been conducted for 

24, 48 and 72 hours.  The results showed that the specimen with a higher percentage 

of porosity as well as the exposed surface area degrades faster compared to the others. 

The degradation product formation and clogging pores phenomenon are influenced by 

the level of flow rates. The effects of different flow rates towards the mechanical 

integrity of porous magnesium have shown a huge drop of 95% from their original 

mechanical properties within 3 days, which have deteriorated in both functions; 

porosity and degradation time. The variation in flowrates used showed that 

degradation of the material is seven times higher compared to the static immersion test 

environment. Furthermore, the influenced of integrating fluid flow and cyclic loading 

have increased the relative weight loss and degradation rate as high as 61.56% and 

93.67%, respectively. Additionally, the mechanical properties have improved and 

increased from 53% to 87% as compared to dynamic immersion test using the 

mechanical stimulus of fluid flow only. Therefore, the dynamic immersion test with 

integrated cyclic loading was more reliable and provides realistic environment for 

degradation assessment compared to static immersion test for bone scaffold 

application as this study using the boundary of human cancellous bone environment.
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ABSTRAK 

 

 

Logam terbiodegradasi dicadangkan untuk aplikasi penggantian tulang 

disebabkan oleh sifat-sifat mekanik yang lebih baik bagi penggunaan galas beban. 

Dikalangan logam terbiodegradasi, magnesium dan paduannya adalah yang paling 

dikaji kerana sifat mekanikal mereka yang lebih dekat dengan tulang kanselus dan 

boleh mencegah komplikasi seperti aseptik yang merenggangkan kesan perisaian 

tekanan, dan ianya berpotensi untuk digunakan sebagai penggantian tulang. Tulang 

dapat menyesuaikan bebanan mekanikal daripada aktiviti fisiologi yang mengaruhkan 

pergerakan sum-sum tulang melalui struktur poros tulang kanselus kerana perbezaan 

tekanan. Tujuan kajian ini adalah untuk menganalisis kelakuan degradasi magnesium 

berliang di bawah ujian degradasi dinamik untuk aplikasi penggantian tulang. Lubang 

saling magnesium berliang telah dibangunkan dengan pelbagai peratusan keliangan 

(30%, 41% dan 55%) dan direka menggunakan mesin kawalan berangka terkomputer 

(CNC). Pelantar ujian rendaman dinamik direka khusus untuk mensimulasikan 

persekitaran tulang kanselus manusia. Terdapat dua jenis ujian yang telah dijalankan 

dalam kajian ini: (1) aliran cecair dengan kadar aliran yang berbeza (0.025, 0.4 dan 

0.8 ml/min) dan (2) aliran cecair dipadukan dengan kitaran beban (kitaran beban yang 

berbeza (1000, 2000 dan 3500 με) di bawah kadar aliran malar 0.025 ml/min). Ujian 

rendaman dinamik telah dijalankan untuk 24, 48 dan 72 jam. Keputusan menunjukkan 

bahawa spesimen dengan peratusan yang lebih tinggi keliangan serta kawasan 

permukaan yang terdedah lebih cepat degradasi berbanding dengan yang lain. 

Pembentukan produk degradasi dan fenomena liang tersumbat dipengaruhi oleh tahap 

kadar aliran. Kesan kadar aliran yang berbeza terhadap keutuhuan mekanikal 

magnesium berliang telah menunjukkan penurunan yang besar sebanyak 95% dari 

sifat-sifat mekanikal asalnya dalam tempoh 3 hari, yang telah merosot dalam kedua-

dua fungsi; keliangan dan masa degradasi. Variasi kadar aliran yang digunakan 

menunjukkan bahawa degradasi bahan adalah tujuh kali lebih tinggi berbanding 

dengan persekitaran ujian rendaman statik. Tambahan pula, dipengaruhi oleh paduan 

aliran bendalir dan kitaran beban telah meningkat penurunan berat relatif dan kadar 

degradasi setinggi 61.56% dan 93,67%, masing-masing. Selain itu, sifat-sifat 

mekanikal telah bertambah baik dan meningkat daripada 53% kepada 87% berbanding 

dengan ujian rendaman dinamik menggunakan rangsangan mekanikal aliran bendalir 

sahaja. Oleh itu, ujian rendaman dinamik dipadukan dengan kitaran bebanan adalah 

lebih dipercayai dengan persekitaran realistik untuk penilaian degradasi berbanding 

dengan ujian rendaman statik untuk applikasi penggantian tulang kerana kajian ini 

menggunakan sempadan persekitaran tulang kanselus manusia. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Bone grafting is a medical procedure for bone replacement or repairs. It is the 

second most highly performed surgical procedures on tissue transplantation after 

blood transfusion [1]. The usage frequency of bone graft has been paramount every 

year. The transparency market research has reported that due to the rising demand for 

bone graft substitutes, its market  is expected to expand  at a 4.5% compound annual 

growth rate (CAGR)  between 2015 and 2023, and it is estimated to be worth  USD 

3.48 billion by 2023 [2]. Over two million orthopaedics procedures on bone-graft 

substitutes  have  been annually performed  worldwide,  with over 400,000 and 

600,000 procedures recorded in Europe and the United States, respectively [3–6]. 

Asian Audit 2009 has reported from International Osteoporosis Foundation (IOF) [7] 

that in  China, almost 69.4 million of people  over the age of 50 years old suffering 

from osteoporosis. This huge number includes 0.687 and 1.8 million of hip and 

vertebral fractures, respectively stirring each year. Hong Kong and Singapore have 

demonstrated in the past four decades that hip fractures   have remarkably increased 

in number by 300% and 500%, correspondingly. In Japan, 12 million people suffering 

from osteoporosis and the incidence rate of hip fractures are increasing radically 

among both men and women of age 75 years old and above.
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The amplifying prevalence of bone and joint disorder such as deformities, 

trauma, tumor, degenerative and aging population have been accompanied by the 

increase in number of orthopaedics reconstructions. This has driven the high demand 

on bone graft substitutes.  Bone-graft substitutes have been established with different 

types that are available in the worldwide market. The common types of bone-graft 

substitutes used are autografts, allografts and xenografts; which the existence depends 

on their sources. Autografts can be referred to as the gold standard in medical 

procedure to repair damaged bone or for bone replacement. It  provides the best osteo-

conductive, osteo-inductive and osteo-genic properties since their sources are from the 

parts of the patient’s body [8].  As for allografts and xenografts, their tissues sources 

come from different members of the same species and different species respectively.    

However, those bone-graft substitutes have  exhibited a vital concern of donor site 

morbidity (autografts), and limited supply and possibility of pathogen transmission 

and immune-rejection (allografts and xenografts) [9,10]. Therefore, researchers have 

developed the new generation of synthetic bone-grafts substitutes to eliminate 

susceptibility of the aforementioned drawbacks [11]. Hence, with the advancement of 

technology in biomaterials engineering,  the biodegradable materials have attracted 

researchers to investigate a lot in favour of obtaining the ideal synthetic bone-grafts 

substitutes or known as bone scaffolds [12–14].  

 

 

Biodegradable materials have been acknowledged as an ideal model in biomaterials 

that has inspired researchers to focus on.   These materials  serve as a device to provide 

temporary support for tissue regeneration while bone  heals and gradually degrades after 

fulfilling its function [15]. Among biodegradable materials, polymer can be classified as an 

excellent material due to  its good  biodegradability, biocompatibility and easy to fabricate 

[16,17].  However, the advantages of polymer  are  retarded due to its low mechanical 

properties for load bearing applications [18,19].  This has led to the use of biodegradable 

metal which possesses good mechanical properties [14].  In comparison to iron-based and 

newly introduced zinc alloys, magnesium and its alloys are the most investigated 

biodegradable metals for their potential application as biomedical implants [12,14]. 

They have shown an excellent performance to human bone in terms of mechanical 

integrity and their mechanical properties (41-45 GPa of Young’s Modulus [14,20]) is 

close to cortical bone (3–23 GPa of Young’s Modulus [14,21]) while cancellous bone 
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(0.01–3.0 GPa of Young’s Modulus [22]) and bioactivity of Mg stimulatory effects 

have induced the growth of new formation of bone-apatite like of hydroxyapatite (HA) 

crystallization [14,23,24] and are favourable to bone strength [25].  These two factors 

have favoured the idea of using biodegradable metals  to be used as the materials for 

bone tissue engineering [26–28].  

 

 

Recent advancements in bone tissues engineering is to develop the 

multifunctional capabilities of the scaffold to be well-integrated with the biological 

environment and physiological functions of natural bone [12,29]. Bone scaffolds are 

typically required to  have porous structure to allow nutrient to be transported from 

the surrounding tissues and releases waste disposal from the regenerated tissues 

[30,31]. Ideally, this porous structure will have 25-90% porosity and a 10-1000 µm 

pore size to provide an  ideal condition for infiltration of essential nutrients, oxygen, 

and progenitor cells for cell survivability [32,33]. The porosity of porous structure can 

be controlled and regulated to a desired form. Though the employment of porous 

structure reduces the mechanical properties, it is still an advantage in obtaining the 

scaffold that has the mechanical properties which are well-matched with natural bone. 

Researchers have investigated the strength of porous scaffolds using polymers, 

ceramics, composites and metals. It is suggested to use metals due to their mechanical 

properties that are close to the mechanical properties of bone [34].   

 

 

Biomechanically, cancellous bone adapts to the mechanical loading from the 

perpetual motion of physiological activities through the mechanobiological signalling of 

osteocytes [35,36]. Cancellous bone adapts the compressive strain level of 1000 – 3000 µε 

that is generated from various activities and beyond 3500 µε leads to bone fracture [37,38]. 

Due to the cyclic motion of compressive strain, it causes the bone marrow, which is the home 

for progenitor cells of osteoblasts and osteoclasts, moves as a fluid medium with a flowrate 

range of 0.0072-1.67 ml/min  [36,39–42]. The interaction between the bone marrow 

movement and the cancellous bone structure induces mechanical stresses that 

stimulate the mechanobiological response to the bone quality and bone healing process 

[36]. The movement of bone marrow through the porous structure of cancellous bone 

due to pressure differences is generated by continuous cycles of mechanical loading 
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from physiological activities [43].  This cyclic motion of compressive strain and bone 

marrow movement in the cancellous bone must be considered as an actual boundary 

for testing the biodegradable materials of bone scaffolds. 

 

 

 

 

1.2 Problem Statements 

 

 

Bone scaffold were developed by a wide range of the biomaterials. Instead of 

metallic biomaterials, others than that have been produced is unsuitable for load 

bearing purposes [44]. By using load bearing bone scaffold, patients will able to speed 

up in performing their daily lives activities which could  also contribute to a better 

healing process [35]. The metallic biomaterials that already approved and commonly 

used as biomedical implant are  stainless steels, titanium and cobalt chromium based 

alloys [14]. However, the suitability to be acted as an ideal scaffold for bone was 

degraded by the possible release of toxic metallic ions and poor stimulation of new 

bone growth due to elastic moduli mismatch [45,46].  The interest in metallic 

biomaterials have expanded to biodegradable metal which exhibit the  most promising 

properties and can be used temporarily during bone healing process [13]. In order to 

be well integrated with host tissue, bone scaffold is required to have characteristics 

such as porous, mechanical properties, and biocompatibility which are also very 

important for tissues regenerations [34].  

 

 

The comprehensive degradation assessment systems of biodegradable metals 

must be carefully selected towards specific applications [47]. Biodegradable metals 

have an assorted degradation behaviour and mechanism contingent depending on  the 

environments and types of measurements used [12]. Witte et al. have reported that the 

current ASTM degradation test methods for in-vitro test  cannot be used to predict the 

in-vivo degradation rates [48].  They reported that the degradation rates of specimen 

with cylindrical rods in the in-vitro test have shown a four magnitude higher compared 

to the in-vivo test. It is crucial for the in-vitro test to be precisely mimicked the in-vivo 



5 

 

conditions, in order to provide more accurate information and to obtain promising 

implants [49]. In fact, the acceptable degradation rate of the bone scaffold should be 

0.02 mm/y [19,50]. However, based on the literature findings, there was none of the 

studies have obtained the required degradation rate. Thus far, all studies conducted on 

porous biodegradable metals for potential bone scaffold applications have been done 

under static immersion tests only [26,51–53]. The static degradation assessment does 

not represent the actual boundary in human cancellous bone environment. The bone 

scaffolds made of biodegradable metals will be in contacted with cancellous bone  and 

exposed to the surrounding environment once implanted [35,36]. Therefore, to address the 

existing gap, in this study, we had integrated a biomechanical condition of cancellous 

bone for testing porous magnesium specimens under a dynamic immersion condition.  

 

 

 

 

1.3 Objectives 

 

 

The aim of this study is to analyse the degradation behaviour of porous magnesium 

under dynamic degradation test for bone scaffold applications. The specific objectives are: 

(i) To analyse the influences of different flow rates fluid passing through porous 

magnesium structure on dynamic immersion test. 

(ii) To analyse the effects of different cyclic loading of porous magnesium under a 

constant flow rate on dynamic immersion test. 
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1.4 Scopes 

 

 

A commercially pure magnesium (Mg) rod with a diameter of 25.4 mm and 99.9% 

purity (Goodfellow Inc., Cambridge, UK) was used for developing porous specimens with 

three different percentage of porosity (30%, 41% and 55%). The porous structure was 

fabricated using CNC machine. The specific specimen chamber was developed for both 

experimental setups of fluid flow and different cyclic loading test. The specimens were 

cleaned internally and externally using interdental brush to remove any excess materials and 

chemicals and ground using abrasive paper, respectively. The dynamic immersion test rig 

has been built, equipped with data acquisition (record the pressure value of the fluid before 

and after the specimen chamber), water bath (heating the fluids medium to human body 

temperature) and peristaltic pump (pulsatile flow). The simulated body fluid (SBF) was used 

as fluid medium in this study. The dynamic immersion test was conducted for 24, 48 and 72 

hours. The variation of flow rates and cyclic loading were used as the boundaries in the 

dynamic immersion test as there were to mimic the condition of fluid pass through cancellous 

bone structure and compressive strain levels of physiological activities.   The universal testing 

machine (The FastTrack 8874, Instron, Norwood, USA) was used to perform the cyclic 

loading and to determine the mechanical properties of the specimen. The tested specimen 

was characterised using X-ray diffractometer (XRD), Scanning Electron Microscope 

(SEM) and Energy Dispersive Spectrometer (EDS).  The weight loss measurement was 

used as the method to assess the degradation rates of the porous magnesium. Limitations of 

this study was not included the hydrogen evolution measurement as it required the hydrogen 

gas trapping system. 
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1.5 Significance of the Study 

 

 

This study has assessed the potential of the porous magnesium as bone scaffold using 

dynamic degradation under simulated environment of human cancellous bone. The 

implementation boundary of human cancellous bone environment in dynamic 

immersion integrated cyclic loading had demonstrated significant degradation behaviour 

and mechanical property changes of the porous magnesium compare with using static 

immersion test only. Hereby, through this study, the degradation assessment of 

biodegradable material especially metal is required to use the dynamic immersion test 

integrated cyclic loading. This will be very beneficial to the community because once bone 

scaffold implanted, the patients can perform daily routine as usual. Because the use of bone 

scaffold that has taken into account for load bearing purpose. Thus the more activities are 

carried out, it could improve the bone healing process and also the health of the patient 

himself. Not just that, when the process of bone healing occurs in a very good condition, then 

the failure of the bone scaffold that has happened in the past can be avoided so that patients 

no longer need a second surgery. This can reduce the costs to be incurred by the patient and 

the use of bone scaffold causing the patient can continue to perform the desired activity, thus 

reducing the time the patient gets treatment and contribute to a better living environment. 

 

 

 

 

1.6 Thesis Structure and Organization 

 

 

Chapter 1 presents an introduction of this research which provides an overview 

and the needs of bone scaffolds. Background is provided on both mechanobiological 

of bone and degradation techniques used for biodegradable metal evaluation. Then, 

research aims, scopes and significance of this study are highlights. Chapter 2 is the 

literature review which contains reviews on bone remodelling process, the usage of 

biodegradable metal for bone scaffolds and concept of biodegradation. Chapter 3 

explains how the dynamic degradation of porous magnesium were produced, prepared 

tested and analysed. The results and discussion of the study was presented in three 
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subsequent chapter. Chapter 4 reports the results and discussion of the effects using 

dynamic immersion test on degradation behaviour of porous magnesium under 

constant flowrates. Chapter 5 presents the results and discussion of the influences of 

variation flow rates towards degradation behaviour of porous magnesium in dynamic 

immersion test. Chapter 6 contains the results and discussion of the influenced 

integrating the cyclic loading on the dynamic degradation behaviour of porous 

magnesium under dynamic immersion test using constant flow rate. Finally, chapter 7 

concludes the findings attained in this study. The limitations and recommendations 

also are highlight for future works. 
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