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ABSTRACT 

 

 

Fault  detection  and  monitoring  is  essentially  important  in  wastewater  

treatment to ensure that safety, environmental regulations compliance, maintenance  

and operation of the Wastewater Treatment Plant (WWTP) are under control.  Many  

researchers have developed methods in fault detection and monitoring such as fuzzy  

logic, parameter estimation, neural network and Principal Component Analysis  

(PCA).  In studies involving data and signal model approach, PCA is the most  

appropriate method used in this work. Besides when using PCA, the dimensionality  

of the data, noise and redundancy can be reduce. However, PCA is only suitable for  

data with mean constant or steady state data.  The use of PCA can also increase false  

alarm and produce false fault in a plant such as WWTP. Modifications of PCA need  

to be done to overcome the problems and hence, enhanced methods of PCA are  

proposed in this work. The enhanced methods are Multiscale PCA (MSPCA) and  

Recursive PCA (RPCA), which are appropriate for offline monitoring test and online  

monitoring test, respectively. To see the effectiveness of the methods, they were  

applied into the european Co-operation in the field of Scientific and Technical  

Research (COST) simulation benchmark WWTP. The results from the simulation  

plant were then applied in a real WWTP, IWK Bunus Regional Sewage Treatment  

Plant (RSTP).  The  data  of  WWTP  involved  are  Dissolved  Oxygen (DO),  

Biochemical  Oxygen  Demand (BOD),  Chemical  Oxygen  Demand  (COD)  and  

Nitrate (SNO).  In analysis for both plants, faults were detected when the confidence  

limit is over 95% and confidence limits in the range of 90-95% were considered for  

alarm region in the data, using Hotelling‟s T
2
 and residual.  Finally, simulation  

results of the proposed methods were compared and it was found that the enhanced  

methods of PCA (MSPCA and RPCA) were able to reduce false alarm and false fault  

in the analysis of fault detection by 70% for steady state influence and dynamic  

influence and hence provides more accurate results in detecting faults in the process  

data. 
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ABSTRAK 

 

 

 

Kerosakan pengesanan dan pemantauan kini dianggap sebagai asas penting  

dalam rawatan sisa air bagi memastikan keselamatan, peraturan-peraturan alam  

sekitar, penyelenggaraan dan operasi loji rawatan sisa air (WWTP) adalah di bawah  

kawalan. Ramai penyelidik telah membangunkan kaedah mengesan kerosakan dan  

pemantauan  seperti  logik  kabur,  anggaran  parameter,  rangkaian  neural  dan  

komponen analisis utama (PCA).  Di dalam kajian yang melibatkan data dan  

pendekatan model isyarat, PCA adalah kaedah yang sesuai digunakan dalam kajian  

ini. Selain  itu,  apabila  menggunakan  PCA  kedimensian  data,  bunyi  dan  

pemberhentian dapat dikurangkan.  Walau bagaimanapun,PCA hanya sesuai untuk  

data dengan purata seragam atau data yang stabil. Penggunaan PCA di dalam loji  

seperti WWTP boleh menimbulkan masalah, antaranya pengesanan penggeraan palsu  

dan    kerosakan  palsu.  Pengubahsuaian  kepada  PCA  perlu  dilakukan  untuk  

menyelesaikan  masalah  ini  dengan  mengubah  suai  pengiraan  purata,  maka  

peningkatan PCA diperkenalkan dalam kajian ini.  Kaedah peningkatan PCA yang  

diperkenalkan adalah komponen analisis utama berskala berbilang (MSPCA) dan  

rekursif komponen analisis utama (RPCA) yang mana sesuai untuk ujian pemantauan  

luar talian dan ujian pemantauan dalam talian.  Untuk melihat keberkesanan kaedah  

tersebut,  aplikasi  peningkatan  PCA  dilakukan  ke  atas  loji  rawatan  air  sisa  

menggunakan Kerjasama persatuan eropah dalam bidang Penyelidikan Saintifik dan  

Teknikal (COST) penanda aras simulasi WWTP. Kemudian keputusan simulasi  

digunakan ke atas WWTP sebenar, IWK loji rawatan kumbahan wilayah Bunus.  

Data WWTP yang terlibat ialah oksigen terlarut (DO), permintaan oksigen biokimia  

(BOD), permintaan oksigen kimia (COD) dan nitrat (SNO). Dalam analisis untuk  

kedua-dua loji, kesilapan dikesan apabila had keyakinan adalah melebih 95% dan  

had  keyakinan  dalam  lingkungan 90-95%  telah  dipertimbangkan  untuk  rantau  

penggera dalam data menggunakan T
2
 Hotelling dan sisa analisis.  Akhir sekali, hasil  

dari simulasi yang dicadangkan di dalam kajian ini dibandingkan dan didapati  

kaedah   PCA   yang   dipertingkatkan (MSPCA   dan   RPCA)   berjaya   dalam  

mengurangkan penggera palsu sebanyak 50% untuk input seragam dan 80% input  

dinamik dan memberi ketepatan yang jitu di dalam mengesan kerosakan di dalam  

data proses. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

 

Fault detection and monitoring in wastewater treatment plant (WWTP) has 

been applied decades ago to control and prevent any abnormality in the plant.  The 

fault is detected in the WWTP system and monitoring will be performed to confirm 

the presence of the fault.  When the fault is identified, fault location can be 

determined.  Therefore, the presence of the fault can be controlled by reducing or 

eliminate the existence fault and prevent the next fault happen at the same place. The 

benefit of earlier fault detection is to reduce disturbances within the plant system.   

  

For the WWTP which is continuously monitored from fault, the operational 

risk and the cost of maintenance of the plant can be reduced.  If the WWTP operation 

fails to be constantly monitored, it can contribute to environmental pollution and 

increases the general cost to operate the WWTP.  Therefore in WWTP, monitoring of 

the plant is important to ensure the operational output can be carried out smoothly 
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such as, Chemical Oxygen Demand (COD), pH, Biochemical Oxygen Demand 

(BOD) and Nitrogen. 

 

In addition, the Malaysia Government has issued a regulation that WWTP is 

responsible for the effluent discharged to ensure that no harm will be subjected on 

humans and thus avoiding environmental pollution.  This is due to the fact that 

WWTP could inadvertently produce water pollution instead of treated water should 

they not adhere to the prescribed regulations.  Therefore, wastewater treatment plants 

must be constantly monitored so that any abnormality in the control processes can be 

detected. 

 

Fault or abnormality in WWTP is unwanted signal that occurs in a standard 

condition system of plant [1].  Fault detection and monitoring determine the fault that 

occurs in the monitoring system.  Fault can be in three types which are sensors [2], 

actuators [3] and processes [4] fault.  Based on the three faults, process fault is 

chosen in this work.  Process faults can be in a form of single fault or multiple faults.  

For both cases, multiple faults are more complicated because if the faults have 

different signs it can cancel each other, thus to detect the fault, enhanced method is 

needed [5] and is considered in this work.  The enhanced method in fault detection 

can detect fault more specifically and more accurately.  The method is an 

improvement of conventional method of fault detection by combining with other 

technique such as principal component analysis (PCA) with Wavelet Transform.  In 

fault detection and monitoring system, three main methods are widely implemented.  

The first is knowledge based method.  For example, fuzzy logic  is a knowledge 

based method representing form of production rules and it is quite difficult and 

requires deep understanding of the overall process behaviour [6].  The second is 

process model based method such as parameter estimation [7], [8].  In this method, 

the essence of this concept is analytical redundancy by comparing the actual output 

and the output that is obtained from the mathematical model.  The third method, is 

data and signal model approach.  In this method, the most often used is PCA whereas 
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the exploitation of data is formed from the experimental work [6], [9], [10].  In this 

thesis, the third method is preferable to first and second methods. 

 

1.2 Problem statement  

 

 

Wastewater treatment plant is generally known as highly nonlinear system 

subject to various forms of internal and external disturbances. For the internal 

disturbance, there is a higher possibility of change in the parameter value which may 

affects the growth of the microorganisms (aerobic growth and anoxic growth) 

responsible for treating the wastewater.  External disturbance such as environmental 

and weather factors affect the condition of the plant.  Therefore, the plant must be 

constantly monitored to avoid unnecessary complications in the plant such as low 

dissolved oxygen and prevent toxic leak in the effluent, as these could lead to faulty 

conditions in the process, which may deteriorate the quality of the data.   

 

Principal component analysis has been used to monitor and detect fault in the 

wastewater treatment plant (WWTP).  However, the main limitation of the PCA 

method is poor fault detection for dynamic data.  

 

To solve this problem for effective monitoring and fault detection in WWTP this 

thesis provides enhanced PCA (which are Multiscale PCA and Recursive PCA) 

technique using process history based method.  
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1.3      Objective 

 

 

1. To improve the PCA method by using Multiscale PCA by improving the 

mean calculation for the detection and monitoring fault in off-line 

monitoring. 

 

2. To develop the recursive PCA in fault detection and monitoring by 

enhancing the PCA performance in on-line monitoring. 

 

3. To validate and evaluate the performance of the developed algorithms 

into the COST simulation benchmark WWTP and IWK Bunus regional 

sewage treatment plant (IWK Bunus RSTP). 

 

 

 

1.4 Scope of work 

 

 

The scopes of work in this thesis are listed below.  

 

i. Study the behaviour of fault in the domestic WWTP.  This work involved 

with data collections such as dissolved oxygen (DO), biochemical 

oxygen demand (BOD), chemical oxygen demand (COD), pH and oil 

and grease (O&G) from IWK Bunus RSTP and COST simulation 

benchmark WWTP. 

 

ii. Developing PCA algorithm for detecting and monitoring fault in the 

COST simulations benchmark WWTP. 

 

iii. Reducing the false detection in fault and alarm at the COST simulation 

benchmark WWTP by applying enhanced PCA which are MSPCA and 

RPCA algorithms. 
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iv. Applying results analysis of PCA, Multi-scale PCA (MSPCA) and 

Recursive PCA (RPCA) in the COST simulation benchmark WWTP and 

IWK Bunus RSTP. 

 

 

 

1.5 Research contribution 

 

 

1. The contribution in this work is false detection of fault and alarm in PCA 

analysis had been reduced by applying MSPCA.  In MSPCA, the procedure 

of mean calculation is improved by applying wavelet decomposition to 

separate data into several scales before mean was calculated. MSPCA is then 

used for off-line monitoring in WWTP.  

2. However in on-line monitoring, MSPCA cannot be applied because of 

limitation in wavelet decomposition to update the data. Therefore RPCA is 

used, to reduce the false detection in online monitoring.  In RPCA the false 

detection is reduced by updating the mean, standard deviation and variance.  

3. Both methods for off-line and on-line monitoring are successfully applied in 

the COST simulation benchmark WWTP and IWK Bunus RSTP in order to 

detect and monitor the fault.   

4. Three methods of fault detection in this thesis, which are PCA, MSPCA and 

RPCA have been used to develop toolbox for fault detection and monitoring 

in WWTP.  
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1.6 Thesis Outline 

 

This thesis consists of six chapters. Chapter 2 provides explanation on the 

fundamental concept of domestic WWTP and literature review on fault detection and 

monitoring focuses on PCA and the enhanced PCA method, which are MSPCA and 

RPCA.   

 

Chapter 3 covers the method used in fault detection and monitoring in 

WWTP. The case study plants utilized in this research are COST simulation 

benchmark WWTP and IWK Bunus RSTP. 

 

Chapter 4 presents the simulation results and discussion of fault detection and 

monitoring in COST simulation benchmark WWTP and IWK Bunus RSTP based on 

PCA, Multiscale PCA and Recursive PCA. 

 

Chapter 5 presents Fault Detection and Monitoring Toolbox and its 

applications.  This chapter also describes the procedure in Fault Detection and 

Monitoring Toolbox to detect the fault in the input data.  

 

Chapter 6 concludes the thesis and suggests several possible future works of 

the fault detection and monitoring in WWTP.  This chapter also provides list of paper 

published under this work.  
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