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ABSTRACT

The homological functors and nonabelian tensor product have its roots in
algebraic K-theory as well as in homotopy theory. Two of the homological functors
are the Schur multiplier and nonabelian tensor square, where the nonabelian tensor
square is a special case of the nonabelian tensor product. A group is said to be capable
if it is a central factor group. In this research, the Schur multiplier, nonabelian tensor
square and capability for some groups of order p3, p* p> and p® are determined.
An algebraic computation of the center, derived subgroups, abelianization, Schur
multipliers, nonabelian tensor squares and capability of the groups are determined
with the assistance of Groups, Algorithms and Programming (GAP) software. Using
the results of the center, derived subgroups and abelianization, the Schur multiplier,
nonabelian tensor square and capability for the groups are determined. The nonabelian
tensor squares and capability are also determined using the results of the Schur
multipliers. The Schur multiplier of each of the groups considered is found to be trivial
or abelian. The results show that the nonabelian tensor square of the groups are always
abelian. In addition, a group has been shown to be capable if it has a nontrivial kernel

or it is an extra-special p-group with exponent p.
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ABSTRAK

Fungtor homologi dan hasil darab tensor tak abelan berasal dari teori K-
aljabar serta teori homotopi. Dua fungtor homologi adalah pendarab Schur dan kuasa
dua tensor tak abelan, dengan kuasa dua tensor tak abelan adalah kes khas bagi
hasil darab tensor tak abelan. Suatu kumpulan dinamai kumpulan berupaya jika ia
adalah kumpulan faktor berpusat. Dalam penyelidikan ini, pendarab Schur, kuasa dua
tensor tak abelan dan keberupayaan untuk beberapa kumpulan berperingkat p3, p*, p°
dan p® telah ditentukan. Pengiraan aljabar bagi pusat kumpulan, subkumpulan
terbitan, keabelan, pendarab Schur, kuasa dua tensor tak abelan dan keberupayaan
kumpulan tersebut telah ditentukan dengan bantuan perisian Groups, Algorithms and
Programming (GAP). Dengan menggunakan keputusan pusat kumpulan, subkumpulan
terbitan dan keabelan, pendarab Schur, kuasa dua tensor tak abelan dan keberupayaan
kumpulan tersebut telah ditentukan. Kuasa dua tensor tak abelan dan keberupayaan
juga telah ditentukan dengan menggunakan keputusan pendarab Schur. Pendarab
Schur bagi setiap kumpulan yang dipertimbangkan telah didapati remeh atau abelan.
Keputusan menunjukkan yang kuasa dua tensor tak abelan kumpulan tersebut adalah
sentiasa abelan. Tambahan pula, suatu kumpulan telah ditunjukkan berupaya jika ia

mempunyai inti tak remeh atau ia adalah kumpulan- p ekstra-khas dengan eksponen p.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis focuses on the Schur multipliers, the nonabelian tensor squares and
the capability of some finite groups. A brief introduction on the Schur multiplier,

nonabelian tensor square and capability of a group is provided in this chapter.

The Schur multiplier of a group G, denoted by M(G), was first introduced
by Issai Schur in 1904 [1]. Issai Schur began the study with fundamental works on
multipliers and it lead to the computation of the Schur multiplier for projective of
representation groups. Since then, the Schur multiplier has been studied by many

researchers.

The nonabelian tensor square of a group G, G ® G, is a special case of the
nonabelian tensor product G ® H for two arbitrary groups G and H. The nonabelian

tensor square is generated by the symbols g ® /& and defined by two relations which are

gg' ®h= (g ®h)(g@h)and g ® hl' = (g @ h)("g @ "I’)

for all g, g’, h, h’'e G, where the action is taken to be conjugation, i.e. hg = hgh™1.

The determination of the nonabelian tensor square was initiated by Brown and Loday



in [2].

The capability of groups was first discussed by Baer [3] in 1938, who
determined the capability of finitely generated abelian groups. Following an important
remark by Hall in [4], the study on characterizing the capability of groups has become
an interest for many researchers over the years. A group G is said to be capable if there
exists a group H such that the central factor group H /7 (H) is isomorphic to G, or

equivalently if it is an inner automorphism of a group H.

In this research, some properties of the groups including the center, Z(G),
derived subgroups, G’, and abelianization, G?? are determined. By using these results
together with the classifications of the groups, the Schur multipliers, nonabelian tensor
squares and capability are then computed for the groups of order p”, where p is an
odd prime and n equals 3, 4, 5 and 6. From here on, p is denoted for an odd prime. A
large number of groups is constructed and the classification of the groups is split into a
bigger class if p > 3 for n > 4. Furthermore, if n > 7, the classification is still being
improved. In this research, only n = 3,4,5 and 6 are considered as discussed in the

scope of the study.

1.2 Research Background

In 1897, Burnside in [5] constructed the classifications for groups of order p”.

Based on those classifications, this research focuses on case n = 3,4, 5 and 6.

The Schur multiplier of a group is the second cohomology group with

coefficients in Z. In 1956, Green in [6] proved that the order of the Schur multiplier

. . nn— . .
of a finite p-group of order p" is p~ 2 2=t for some non-negative integer #(G).

Continuing the work in [6], Berkovich [7] characterized the structure of a group when



the order of the Schur multiplier is p”(nz_ 21(6) for t(G) = 0 and 1. These researches

have attracted many researchers that lead to the extension until 1(G) = 5. The
nonabelian tensor squares and capability of the groups of order p3, p*, p° and p®

are then computed using the Schur multipliers of these groups.

In 1987, Brown and Loday [2] introduced the nonabelian tensor square as
a special case of the nonabelian tensor product. Later, the open problems on the
nonabelian tensor squares of some finite groups had been posed by Brown et al. in [8].
The use of the nonabelian tensor squares for computing the Schur multipliers and

capability of the groups were shown in this research.

Extending the research on the capability of a group by Baer in [3], many
researches on the capability for various groups have been conducted over the years.
Hall et al. [9] stated that a group is said to be capable if it is a central factor group.
In 1979, the conditions for a group to be capable had been established by Beyl et
al. [10]. They found that a group is capable if and only if the epicenter of the group is
trivial. Later in 1995, Ellis in [11] characterized that a group is capable if and only if

its exterior center is trivial.

In this research, by using the classifications of the groups of order p3, p*, p°
and p®, some of the properties of the groups, the Schur multipliers and nonabelian
tensor squares are computed. After that, the Schur multipliers and nonabelian tensor
squares of the groups are used in computing which groups are capable. Some results
from previous researchers are used in determining the Schur multipliers, nonabelian

tensor squares and capability of the groups.



1.3 Problem Statements

Given the groups of order p3, p* p° and p®, the following questions are

addressed and answered:

(1) What are the center, derived subgroups and abelianization of these
groups?
(i1)) What are the Schur multipliers of these groups?
(ii1) What are the nonabelian tensor squares of these groups?

(iv) Are these groups capable?

1.4  Research Objectives

The objectives of this research are:

(i) to compute the center, derived subgroups and abelianization for all
groups of order p* together with abelian groups of order p> and p°®.
(i1) to determine the Schur multipliers, M(G), where G is the group of
order p3, p* and abelian groups of order p> and p®,
(ii1) to characterize the nonabelian tensor squares, G ® G,

(iv) to classify the capability of G.

1.5  Scope of the Study

This research focuses on the computations of the Schur multipliers, nonabelian
tensor squares and capability of groups of order p3, p*, p> and p®. For the groups
of order p3, there are five groups in the classifications which consists of three abelian
groups and two nonabelian groups. For the nonabelian groups, these groups are also
known as extra-special p-groups. All groups in the classifications for groups of order

p? are considered in this research. For the groups of order p*, 15 groups were classified



and they consist of four abelian groups and 11 nonabelian groups. However, only 11
groups of groups of order p* are determined, which are four abelian groups and seven
nonabelian groups. The remaining four nonabelian groups are not determined since the
classification is split into a bigger class if p > 3. Meanwhile, for groups of order p°
and p®, the computation focuses only on the abelian groups. There are seven abelian
groups and 11 abelian groups for groups of order p° and pS, respectively. For both of
the groups, a large number of nonabelian groups are constructed. Note that there exists
60 nonabelian groups of order p° and 493 nonabelian groups of order p® for p = 3
and there are supplementary if p > 3 are found. Therefore, it is too complex to classify

the groups into one big family. Thus, these groups are not considered in this research.

1.6  Significance of Findings

The results obtained from this research contribute to new findings in Groups
Theory. The results obtained can be used for further determination of the Schur
multipliers, nonabelian tensor squares and capability of a family of groups and related
research area. Besides, this research is to provide new theoretical results on the Schur
multipliers, nonabelian tensor squares and capability of the groups in the scope which
has not been stated in existing literatures. In addition, with the help of Groups,
Algorithms and Programming (GAP) software, new algorithms are also produced.
Thus, the findings of this research provide new results in Computational Group Theory

of finite p-groups.

1.7 Research Methodology

The research starts from examining the classifications of groups of order p>, p*,

p> and pS. As mentioned earlier, classification of groups or order p”" are constructed



by Burnside in [5]. Rashid in [12] had discussed the determinations of the Schur
multipliers, nonabelian tensor squares and capability of groups of order p?g and
p3q. In the first step, Groups, Algorithms and Programming (GAP) software is used
in identifying the properties of the groups, the Schur multipliers, nonabelian tensor
squares and capability of the groups. Next, the properties of the groups such as the
center, derived subgroups and abelianization are computed. All of these properties are
used in determining the Schur multipliers, nonabelian tensor squares and capability
of the groups. Then, by using the same method as in [12], the Schur multipliers,
nonabelian tensor squares and capability of groups of order p3, p*, p° and p® are
determined. The Schur multipliers of the groups is also used in characterizing the
capable groups. The computations are conducted by using some of the definitions and
established results from previous researches. The research methodology is illustrated

in Figure 1.1.
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Figure 1.1 Research methodology




1.8  Thesis Organization

The first chapter gives the introduction to the whole thesis. The Schur
multiplier, nonabelian tensor square and capability of groups are briefly discussed in
this chapter. Chapter 1 includes research background, problem statements, research

objectives, scope of the study, significance of the finding and research methodology.

The literature review of this research is presented in Chapter 2. Some concepts
and established results from previous researchers on the Schur multipliers, nonabelian
tensor squares and capability of groups are provided. Then, the classifications for
groups of order p3, p*, p> and p® constructed by Burnside in [5] are discussed in
this chapter. In addition, a brief introduction on Groups, Algorithms and Programming

(GAP) software is also given.

In Chapter 3, the algebraic computations for some properties of the groups
including the center, derived subgroups and abelianization, the Schur multipliers,
nonabelian tensor squares and capability of groups of order p3, p*, p° and p® are
computed using GAP software. The results are then used to make observations before
a theoretical proof of the Schur multipliers, nonabelian tensor squares and capability
of groups is provided. In addition, the GAP algorithms that generate the results are
provided. Besides, the center, derived subgroups and abelianization of these groups are

also determined in this chapter.

Chapter 4 until Chapter 6 focus on the determinations of the Schur multipliers,
nonabelian tensor squares and capability of the groups, respectively. The Schur
multipliers, nonabelian tensor squares and capability of groups of order p3, p*, p° and

p® are considered in these chapters. The results are presented in several subsections.



Chapter 7 presents the summary and conclusion of this research. Some
suggestions for future studies are also given in this chapter. Figure 1.2 illustrates the

contents of this thesis.
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