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ABSTRACT

A major challenge for the circuit designers nowadays is to meet the demand 

for low power, especially those used in portable and wearable devices which have 

limited energy power supply. The reasons of designing low power consumption 

circuit are to reduce energy usage and minimize dissipation of heat. Adiabatic 

technique is an attractive approach to obtain power optimization where some of the 

charge in capacitance can be recycled instead of being dissipated as heat. In this thesis, 

a methodology for designing sequential adiabatic circuits employing a single-phase 

power clock was investigated. Initially, methods to simulate dynamic power were 

analysed by identifying a better and reliable method to simulate adiabatic dynamic 

power. In addition, a method to validate the output voltage swing was presented. The 

relationship between voltage swing and power dissipation was analysed. Then, several 

adiabatic sequential D flip flops (DFF) designs which make use of combinational 

adiabatic circuit design based on quasi-adiabatic were proposed and suitable types of 

alternating current power supply which influence dynamic power were analysed and 

selected. The functionality and performance of the proposed circuits were compared 

against other adiabatic and traditional Complimentary Metal-Oxide Semiconductor 

(CMOS) circuits and verified to function up to 1 GHz operating region. Besides the 

circuits, the layout of the proposed sequential adiabatic design was also produced. All 

simulations were carried out using 0.25 ^m  CMOS technology parameters using 

Tanner Electronic Design Aided and HSPICE tools. The findings showed that the 

proposed combinational circuit had less transistor count, lower power dissipation with 

lower voltage swing as compared to reference adiabatic circuits. Furthermore, the 

proposed sequential DFF circuit showed 25% less power dissipation compared to 

traditional CMOS.
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ABSTRAK

Cabaran utama bagi pereka bentuk litar pada masa kini adalah untuk memenuhi 

permintaan reka bentuk yang menggunakan kuasa minimum, terutamanya yang diguna 

pakai di dalam peranti mudah alih dan boleh pakai yang mempunyai bekalan kuasa 

bertenaga terhad. Tujuan untuk mereka bentuk litar dengan penggunaan tenaga yang 

rendah adalah untuk mengurangkan penggunaan tenaga dan pelesapan haba. Teknik 

adiabatik adalah satu pendekatan yang menarik untuk memperolehi pengoptimuman kuasa 

yakni sebahagian daripada cas di dalam kapasitor boleh dikitar semula dan bukannya 

dibebaskan sebagai haba. Dalam tesis ini, metodologi untuk mereka bentuk litar jujukan 

adiabatik dengan menggunakan bekalan kuasa fasa tunggal telah dikaji. Pertama, kaedah 

untuk simulasi kuasa dinamik bagi litar adiabatik telah dianalisis untuk mengenal pasti 

satu kaedah yang lebih baik dan boleh dipercayai untuk simulasi kuasa dinamik bagi litar 

adiabatik. Selain itu, kaedah untuk mengesahkan ayunan output voltan telah 

dibentangkan. Hubungan antara ayunan voltan dengan pelesapan kuasa telah 

dianalisis. Seterusnya, beberapa reka bentuk litar jujukan adiabatik D flip-flop (DFF) 

yang mengguna pakai reka bentuk litar gabungan adiabatik berdasarkan adiabatik kuasi 

telah dicadangkan dan jenis bekalan kuasa arus ulang-alik yang sesuai yang 

mempengaruhi kuasa dinamik telah dianalisis dan dipilih. Fungsi dan prestasi litar yang 

dicadangkan telah dibandingkan dengan litar adiabatik yang lain dan juga litar 

Semikonduktor Logam Oksida Pelengkap (CMOS) tradisional yang berupaya beroperasi 

sehingga 1 GHz. Selain litar, susunan reka bentuk litar jujukan adiabatik yang 

dicadangkan juga telah dihasilkan. Semua kerja simulasi telah dilakukan dengan 

menggunakan teknologi 0.25 p,m CMOS mengguna pakai alatan Tanner Bantuan Reka 

Bentuk Elektronik dan HSPICE. Dapatan menunjukkan bahawan litar gabungan yang 

dicadangkan mempunyai bilangan transistor yang kurang, pelesapan kuasa yang lebih 

rendah tetapi ayunan voltan yang lebih rendah berbanding litar adiabatik yang dirujuk. 

Tambahan pula litar jujukan DFF yang dicadangkan menunjukkan 25% pengurangan 

pelesapan tenaga berbanding dengan reka bentuk CMOS tradisional.
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CHAPTER 1

INTRODUCTION

This chapter provides an introduction of this research which includes the 

background of the study, problem statement and the motivation for this work. The 

organization of the thesis is also briefly explained in this chapter.

1.1 Background of The Study

The classical approach to obtain low power design are mostly carried out by 

reducing supply voltage, decreasing loading capacitance and reducing switching 

activity to a certain extent. During discharging activity in traditional approach design 

style, the charge is fully thrown away to the ground and this is actually a waste. One 

alternative design style known as adiabatic, recycles the charge and leads to less power 

consumption from the power supply. The adiabatic technique uses alternating current 

(AC) power supply instead of direct current (DC) power supply and some of the 

adiabatic techniques even use multiple phases of AC power supply.
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This research presents issues and challenges of the adiabatic design approach. 

At the end of this research, 4 combinational adiabatic circuits which are Inverter, 

NAND, NOR, and decoder are proposed up to 1 GHz and four D-Flip flop (DFF) 

adiabatic circuits are proposed up to 800 MHz operating frequency with lower power 

dissipation and powered up by a single power supply

This research project is focussed on transistor-based quasi-adiabatic design 

because it has lower power dissipation, simple structure, and no floating output which 

makes it more efficient compared to fully adiabatic design. The project is based on 

CMOS 0.25 ^m  process as the baseline of the process technology in this research. 

Please kindly note, that the technology chosen for this research does not reflect the 

latest technology as the main scope of this research is to focus on low power digital 

logic design. The design tools are Tanner EDA and HSPICE for circuit level design 

and L-EDIT of Tanner EDA for layout design

1.2 Problem Statem ent

Adiabatic circuit design method has been around since the 1990s [1][2] to 

reduce dynamic power dissipation that allows charge to be recycled. However, despite 

reports of its superiority in dynamic power saving over traditional circuit design, not 

much progress have been made to place its design style in the mainstream of low power 

design approach. As a result, it is only found in published papers [3]—[18] but not 

much in actual daily life applications. Adiabatic circuit has 3 main issues which hinder 

it to revolutionize the circuit design method.

It has been shown that the dynamic power of adiabatic circuits could be 

reduced if the charging time is extended. The significance of this fact is that power
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consumption for the adiabatic circuit is governed by its operating speed. Thus, it is 

not surprising to note that almost all of the published works on the adiabatic circuit is 

limited to several MHz speeds of operation and not many of them even achieve 500 

MHz. This is certainly too far behind of the present operating frequency of digital 

circuit which is in the region of several GHz. Although some of the published papers 

[3], [15]—[18] have claimed to have achieved in GHz range operating region but there 

is no evident to prove it. Frequency operation could only be proven in transient 

response and this is not available in those papers. In fact, it is very rare to find papers 

which claim the circuit could work at high frequency especially higher than 500 MHz 

and provide the evidence in transient response. As there is no evident offered in those 

papers, their claims are not taken serious consideration in this report.

The progress in adiabatic sequential circuit design is even more lagging behind 

the progress of combinational adiabatic circuit. This could be understood as the 

operation of sequential circuit is very much dependent on its frequency. As the basic 

cells of sequential circuit are made of combinational circuits, if  there is not much 

progress in the development of combinational circuits, the progress of sequential 

circuits would be much worst. Thus, it is not a surprise to note that majority of 

published works concentrated on combinational circuit which leaves sequential circuit 

far behind.

The first issue of interest in this research is dynamic power measurement 

method that has never been properly addressed. The traditional approach of dynamic 

power measurement technique is carried out by introducing a power simulation meter 

with a dummy voltage controlled current source in parallel with a capacitor and a 

resistor. However, this dynamic power measurement method was developed for DC 

supply voltage. As the supply voltage of the adiabatic circuit is in AC mode rather 

than DC, there is a need to find out whether the traditional measurement method is still 

valid and useful in the adiabatic approach.
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Another issue which could be looked into is the fact that power dissipation, P 

is highly dependent on the quadratic effect of the voltage, V as in equation (1.1). 

Where C is the capacitor and f  is the operating frequency.

P = CV2f (1.1)

Reducing supply voltage is commonly used to reduce power dissipation. 

However, reducing supply voltage has been proven to cause performance degradation 

[9], [19]. The voltage swing of a conventional CMOS digital circuit is normally taken 

as almost equal to the DC supply voltage. As a result, the dynamic power is directly 

controlled by the supply voltage. Thus, if  the voltage swing is made less than the 

supply voltage, there is a possibility that the dynamic power could be reduced as well. 

There is still no known research which studies power dissipation of adiabatic circuit 

with reduction of its voltage swing.

The third issue is that instead of using DC power supply, adiabatic circuit 

employs AC power supply which is called power clock (PC). Some of the popular 

options for PC are sine wave, triangular wave, and trapezoidal wave. Multiphase PCs 

have also been used in the previous work [4], [10], [13], [20]-[24] but they are not 

attractive due to the complexity and clock skew management problem. There is also 

no report on attempts to find out which is the best mode of PC to use which leads to 

reduction in dynamic power dissipation.

In summary, this research aims to study the following questions:

1. If the voltage swing of adiabatic circuit is reduced, would it help to reduce 

dynamic power dissipation?

2. What would be a reliable method to measure dynamic power in adiabatic 

circuit?

3. What would be the best mode of PC for adiabatic circuit which helps reduce 

dynamic power?



5

1.3 Significance of The Study

Demand for low dynamic power consumption circuit design technique is 

always on the rise. The majority of published works are mainly concentrated on 

adiabatic combinational circuit design [3], [5], [7]-[9], [11]—[14] which leave 

sequential circuit design far behind. This is due to their power consumption is 

governed by its operating speed. This research took up this challenge that highlights 

the limitation on the operating frequency of the adiabatic sequential circuit. This 

research investigated the low power dissipation method by reducing the voltage swing 

and explored the relationship of power supply frequency and signal input frequencies 

which have never been reported before. Several DFF adiabatic designs have been 

proposed in this research which is able to operate with extended operating frequency 

with lower dynamic power dissipation. Traditional approaches to measure dynamic 

power was developed for DC supply. This research verified the measurement methods 

to ensure they are reliable in the adiabatic circuit as well. The issue of adiabatic’s 

mode of PC is still unresolved and design community has yet to agree on one particular 

choice. This research project awakens the significance of the PC mode used in low 

power design.
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1.4 Contributions

This research work contributes on low power sequential adiabatic circuit 

design. Specifically, the contributions of the research are as follow:

1. Power meter simulation method has been identified as a reliable method to 

measure dynamic power in the adiabatic circuit.

2. Adiabatic inverter, NAND, NOR, and decoder are proposed based on reduced 

voltage swing which can operate up to 1 GHz.

3. Four adiabatic DFF circuits with low dynamic power dissipation are proposed 

which can operate up to 800 MHz.

4. Triangular PC mode has been identified as the suitable PC in adiabatic circuit.

1.5 Objectives

This research aims to achieve the following objectives:

1. Design basic combinational adiabatic circuits and use them in DFF circuits 

with operating frequency up to 800 MHz.

2. Determine which is more reliable to measure dynamic power between the 

power meter method and HSPICE approach.

3. Determine which is more suitable to be employed as a PC between sine wave, 

triangular wave, and trapezoidal wave.
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1.6 Scope of W ork

This research aimed to propose DFF circuit using the adiabatic technique based 

on quasi-adiabatic with extended operating frequency which includes layout design as 

well. The circuit is aimed to work in 800 MHz frequency region with acceptable 

voltage swing to ensure it can drive subsequent circuit. Dynamic power simulation 

method is also within the scope of this work. This project focussed on a single PC 

rather than multiple PCs. The scope also includes a comparative study to determine 

which one is better between sine wave, triangular wave, and trapezoidal signal to give 

lower dynamic power. The project utilized Tanner EDA and HSPICE for circuit level 

design and L-EDIT of Tanner EDA for layout design.

1.7 Structure of Thesis

This thesis consists of six chapters. Each chapter discusses the detail of the 

particular topic in order to provide a good understanding of this research work. The 

rest of the chapters are as follow.

Chapter 2 discusses the literature review of this research includes the 

challenges, advantages, and disadvantages of the adiabatic method reported in the 

previous work. This chapter also analyses low power design techniques, power 

measurement methods, and type of AC PCs that have been used in previous work.

Chapter 3 details the concept and method used to carry out this research from 

its initial phase until its completion. The detail includes the flow charts, and the tools 

used, as well as the description of the validation method.
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Chapter 4 explains the simulation setup and examines reliable power 

measurement method specifically for the adiabatic circuit. The simulation setup 

includes the choice of suitable adiabatic circuit’s design parameters.

Chapter 5 presents and discusses the simulation results of combinational and 

sequential circuits obtained from this research. The discussion is centred around the 

comparison between the results obtained with the traditional CMOS design and the 

reference design. The post-layout analysis of the proposed sequential adiabatic design 

is presented as well.

Chapter 6 provides the conclusion remark on the overall result and suggestion 

for future work.
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