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ABSTRACT 

 

 

 

 

The objectives of this research are to investigate the emission characteristics of 

a coal-fired power plant (CFPP) in Malaysia and the ability of the air pollution control 

devices (APCDs) currently in used to comply with the limits specified in the new 

Environmental Quality (Clean Air) Regulations 2014 (CAR 2014) as well as to 

establish emission factors for the studied CFPP. The emission data are further used to 

evaluate the health risks of the emissions from CFPP under CAR 2014 by air 

dispersion modelling and health risk assessment (HRA). The studied CFPP is a 2100 

MW employing APCDs of electrostatic precipitator and flue gas desulphurisation 

(FGD). Emissions were determined using manual and continuous stack samplings. The 

emission characteristics were established from the modified CFPP configuration that 

took into account the effects of coal quality (combustion of only sub-bituminous or 

bituminous coal) with FGD being in on and off modes.  Each pollutant demonstrates 

different characteristics which would further influence the control mechanism.  The 

study also showed that the existing APCDs were able to comply with the CAR 2014. 

The emission factors were established for uncontrolled and controlled emissions which 

would allow the estimation of the impact of emission from CFPP prior to development 

of new plant or expansion of existing plant as well as selection of APCDs needed to 

comply with emission standard.  For HRA, the predicted ground level concentrations 

from air dispersion modelling were used as input.  The HRA demonstrated different 

health risks for scenario of emissions from the studied CFPP under normal operation 

and scenario in the event that pollutants are emitted at limits specified in CAR 2014, 

with further assessment been given to the latter. 
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ABSTRAK 

 

 

 

 

 Objektif-objektif kajian ini adalah untuk menyiasat ciri-ciri pelepasan loji 

janakuasa arang batu (CFPP) di Malaysia dan keupayaan alat-alat kawalan 

pencemaran udara (APCDs) yang sedang digunakan di CFPP di Malaysia untuk 

mematuhi had yang ditetapkan dalam Peraturan Kualiti Alam Sekitar (Peraturan Udara 

Bersih) 2014 (CAR 2014) yang baru serta untuk mewujudkan faktor pelepasan bagi 

loji yang dikaji. Data pelepasan kemudiannya digunakan untuk menilai risiko 

kesihatan daripada CFPP yang dikaji berdasarkan CAR 2014 dengan menggunakan 

pemodelan penyebaran udara dan penilaian risiko kesihatan (HRA). Loji yang dikaji 

berkapasiti 2100 MW dan menggunakan APCDs iaitu pemendak elektrostatik dan 

penyahsulfuran gas flu (FGD). Pelepasan gas flu telah ditentukan menggunakan 

persampelan serombong secara manual dan berterusan. Ciri-ciri pelepasan telah 

diwujudkan dari konfigurasi CFPP yang telah diubahsuai yang mengambil kira 

pengaruh kualiti arang batu (pembakaran arang batu sub-berbitumen atau berbitumen) 

dengan FGD dalam mod beroperasi dan tidak beroperasi. Setiap pencemar 

menunjukkan ciri-ciri yang berbeza yang akan mempengaruhi mekanisma kawalan. 

Kajian ini juga menunjukkan bahawa APCDs sedia ada dapat mematuhi CAR 2014. 

Faktor pelepasan telah diwujudkan untuk pelepasan yang tidak dikawal dan dikawal 

yang membolehkan anggaran impak pelepasan dari CFPP dilakukan sebelum 

pembangunan loji baru atau penambahbesaran loji sedia ada dan juga pemilihan 

APCDs untuk mematuhi piawai pelepasan. Untuk HRA, kepekatan paras tanah yang 

diramalkan oleh permodelan penyebaran udara telah digunakan sebagai input. HRA 

tersebut menunjukkan risiko kesihatan yang berbeza untuk senario pelepasan dari loji 

yang dikaji di bawah operasi normal dan senario sekiranya bahan pencemar dilepaskan 

pada had yang ditetapkan dalam CAR 2014, dengan penilaian lanjut telah diberikan 

kepada senario kedua. 
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CHAPTER 1 

 

 

 

 

1 INTRODUCTION 

 

 

 

 

1.1 Background of Coal-fired Power Plants in Malaysia  

 

 

Prior to 1980s, energy sector in Malaysia was dominated by oil.  However, world 

oil crisis in 1970s has changed the scenario and prompted formulation of policies such 

as National Energy Policy 1979, National Depletion Policy 1980 and Fuel 

Diversification Strategy (1981 & 1999) to reduce major dependence on oil and for 

sustainable economic development (Rahman Mohamed and Lee, 2006). The Four Fuel 

Diversification Strategy implemented in 1981 aimed to achieve balanced utilization of 

natural gas, coal, oil and hydro. The strategy was then substituted by the Five Fuel 

Diversification Strategy in 1999 which include renewable energy as the fifth fuel. 

Implementation of Fuel Diversification Strategy has resulted in drastic drop of oil and 

has led to new development of coal-fired power plant (CFPP) (Oh, 2010).  
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To date, the operating CFPPs in Malaysia are as listed in Table 1.1.  Sultan 

Salahuddin Abdul Aziz Shah Power Station (Kapar Power Plant) in Kapar, Selangor 

which was opened in 1987 is the major power plant in Klang Valley region and the 

first CFPP in Malaysia. It is also the only power plant in the country with triple fuel 

firing capability (coal, natural gas and oil). Based on air quality management study for 

Klang Valley region conducted by Japan International Corporation Agency (JICA) in 

1993, it was reported that the studied power plants (Kapar and another gas-fired power 

plant in Klang Valley region) contributed to the highest sulphur oxide (SOx), nitrogen 

oxide (NOx) and dust emission in that region. Of these two plants, Kapar Power Plant 

that fired oil and coal was the most polluting.  At that time, coal consumption in Kapar 

Power Plant alone reached up to 806,400 ton/year. Till date, there are another three 

coal-fired power plants operating in Peninsular Malaysia (i.e. in Manjung, Tanjung 

Bin and Jimah) with total capacity of 7600 MW as shown in Table 1.1.  Compared to 

CFPPs in Peninsular Malaysia, CFPPs in Sarawak have much lower generation 

capacity from coal at 320 MW only.  This is because total installed capacity in Sarawak 

is only at 1315 MW (Wikipedia, 2016b) compared to Peninsular Malaysia at 21,817 

MW (Wikipedia, 2016a).  Energy mix in Sarawak also includes hydro turbines, diesel 

engine, gas turbine and combine cycle.   

 

Coal supply in Malaysia is handled by TNB Fuel Services (TNBFS) Sdn Bhd. 

TNBFS is a fuel supplier to TNB Generation and Independent Power Producers (IPP) 

having Power Purchase Agreement (PPA) with TNB. Its functions to ensure that fuel 

is procured and delivered at optimal cost taking into account the quality and reliability 

of supply.  In 2010, TNBFS reported that coal consumption for Kapar Power Plant 

increased up to 4,000,000 ton/year and the total coal consumption of the four plants 

was about 16,000,000 ton/year (Figure 1.1).  

 

 

Coal is attractive due to its abundance availability and the price is low and stable. 

Although Malaysia owns coal reserves at Kapit and Mukah in Sarawak and Maliau in 

Sabah (Ong et al., 2011), coals for power generation are mainly imported from 

countries such as Indonesia, Australia, China and South Africa due to the high  
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extraction cost as the coal deposits are located in the interior areas where infrastructure 

are poor (Rahman Mohamed and Lee, 2006). 

 

 

Table 1.1: Coal-fired Power Plant (CFPP) in Malaysia (Oh, 2010) 

Power plant  Location  Operator  Capacity 
(MW) 

Operation 
year 

Sultan 
Salahuddin 
Abdul Aziz 
Shah Power 
Station 

Kapar, 
Selangor 

Kapar Energy Ventures 
Sdn Bhd 

600 
(Phase 1) 

1987 

1000 
(Phase 2) 

2001 

Sejingkat Power 
Corporation 
Plant 

Kuching, 
Sarawak 

Sejingkat Power 
Corporation Sdn Bhd, a 
subsidiary of Sarawak 
Energy Berhad 

210 1993 

Manjung Power 
Station 

Manjung, 
Perak 

Tenaga Nasional Berhad 
(TNB) Janamanjung Sdn 
Bhd 

2100 2003 

1000 2016 

PPLS Power 
Generation 
Plant 

Kuching, 
Sarawak  

PPLS Power Generation, a 
subsidiary of Sarawak 
Energy Berhad 

110 2002 

Tanjung Bin 
Power Station 

Pontian, 
Johor  

Tanjong Bin Power Sdn 
Bhd, a subsidiary of 
Malakoff 

2100 2007 

1000 2016 

Jimah Power 
Station 

Lukut, 
Negeri 
Sembilan 

Jimah Energy Ventures 
Sdn Bhd 

1400 2008 
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Figure 1.1: Coal Demand (million tonne per year) in Peninsular Malaysia (TNBF, 

2010) 

  

 

 Coal-fired power plant (CFPP) is always perceived as dirty and polluting.  In 

Malaysia, a bitter experience had occurred during 2008 until 2010 on the development 

of a CFPP in Sabah (a state located in the east of Malaysia). A plan to build CFPP in 

Sabah has been initiated since 2006 to avoid frequent blackout and brownout. Location 

for the CFPP was first proposed at Silam, Lahad Datu in 2008, but then the project 

proponent was instructed to find another location at Palm Oil Industrial Cluster (POIC) 

Sandakan in 2009 and again another location at Felda Sahabat in 2010. The proposed 

CFPP received strong opposition from the locals and non-governmental organizations 

(NGO). They claimed that exposure to coal burning could lead to both air and water 

pollutions besides threatening marine life. These cause adverse effects on human 

health such as birth defects and gene mutations; deadly diseases such as cancer and 

heart attacks; as well as destroying the wildlife and natural environment. Due to the 

strong objection, the project was later terminated (New Straits Times, 2011). 

 

 

 Nevertheless, it should be noted that coal demand for power plants in 

Peninsular Malaysia demonstrates a steady increment as shown in Figure 1.1.  Current 

electricity generation mix in Malaysia is 58% gas, 33% coal and 9% hydro.  Based on 

the approved generation development plan as reported by Energy Commission (2013), 
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the power generation sector will have more coal plants as the gas price increases, where 

by 2019, the generation mix is projected to be 64% coal, 32% gas and 4% hydro (this 

varies from the previous reported fuel mix shown in Table 1.2).  Such planning is made 

in order to control the cost of electricity as coal prices are less prone to market 

variations.  Two existing coal-fired power plants at Manjung and Tanjung Bin have 

recently completed plant expansion to increase a total of 2000 MW to national capacity 

by year 2016 (Table 1.1), and this consequently will result in increased coal 

consumption of around 25 million tonne/year. More consumption of coal will 

definitely increase the emissions of air pollutants to atmosphere. This situation is a 

challenge to energy sector because while meeting energy demand, the environmental 

aspect should not be neglected. 

 

 

 Coal is an abundant fuel resource in the worlds' developing regions and 

forecasts show that it is likely to remain a dominant fuel for electricity in many 

countries for some years to come (Paul, 1999). This may be the reason of quite a 

number of studies have been conducted on emissions from CFPP in other countries 

such as Japan (Yokoyama et al., 2000), China (Kunli et al., 2002; Zhang et al., 2008; 

Zhao et al., 2008; Zhao et al., 2010), Poland (Glodek and Pacyna, 2009), Korea 

(Pudasainee et al., 2009), Spain (Fernández-Martı́nez et al., 2004), Netherlands (Meij 

and te Winkel, 2006, 2007) and Taiwan (Lin et al., 2007).  Among the subject matters 

discussed in the published papers are the development of emission factors, emission 

trend, effectiveness of air pollution control technologies, regulatory impacts on the 

emission, and health risk assessment. 

 

 

 

 

1.2 Emissions from Coal-fired Power Plant    

 

 

Evaluation of the environmental impact of the fuel mix change in Malaysia as 

shown in Table 1.2 by Jafar et al. (2008) shows that the strategy will somehow generate 

higher CO2, SO2 and NOx emissions by 2020 due to increase in coal consumption for 
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power generation.  Shekarchian et al. (2011) reported that 56% of the total emission 

(i.e. CO, CO2, SO2 and NOx) from electricity generation in Malaysia for year 2008 was 

due to high coal usage. 

 

 

Table 1.2: Change in Fuel Use as Aimed in Fuel Diversification Strategy (EPU, 

2006) 

Fuel  Percentage (%) of fuel use  

Year 2000 Year 2020 

Gas  74.9 40 

Coal  9.7 29 

Hydro  10.4 30 

Petroleum  5 1 

 

 

 Apart from SO2, NOx, carbon dioxide (CO2) and CO emission, CFPP also 

generates hydrogen fluoride (HF), hydrogen chloride (HCl), heavy metals and dioxins 

(Nescaum, 2011) which are toxic and hazardous. In Malaysia, due to environmental 

concern, development of CFPP is listed as Prescribed Activity under Environmental 

Quality (Prescribed Activities) (Environmental Impact Assessment) Order 1987 which 

requires a Detailed Environmental Impact Assessment (DEIA) study to be conducted 

prior to development. Further, emissions from CFPP have to comply with the 

stipulated limits in the Environmental Quality (Clean Air) Regulations.  Emission 

limits for CFPP in Malaysia was initially based on Environmental Quality (Clean Air) 

Regulations 1978 for fuel burning equipment which specifies limit only for particulate 

matter (PM) of 400 mg/Nm3.  This is the reason of Kapar Power Plant (the first CFPP 

in Malaysia) installed electrostatic precipitator (ESP) only as the air pollution control 

system to meet the PM limit.     

 

 

In 2005, DOE Malaysia drafted a new Environmental Quality (Clean Air) 

Regulations to replace Environmental Quality (Clean Air) Regulations 1978, and since 

then, new CFPPs in Malaysia are required to comply with the stipulated limits as 
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shown in Table 1.3. This new regulation is more stringent and specifies limits for 

additional pollutants such as SO2, NO2, HCl, HF, Hg, CO and dioxins/furans. The new 

regulation has been gazetted in year 2014 as Environmental Quality (Clean Air) 

Regulations 2014 (CAR 2014).  

 

 

Table 1.3: Emission Limits for Coal-fired Power Plant (CFPP) as Stipulated in 

the New Environmental Quality (Clean Air) Regulations 2014 

Fuel 
type  

Pollutant Capacity  Limit value  

Solid 
and 
liquid 
fuels  

Sum of SO2 and 
SO3 expressed as 
SO2 

> 10 MWe  500 mg/Nm3 

Sum of NO and 
NO2 expressed as 
NO2 

> 10 MWe 500 mg/Nm3 

Hydrogen chloride 
(HCl) 

> 10 - < 100 MWe 200 mg/Nm3 

Hydrogen chloride 
(HCl) 

≥ 100 MWe 100 mg/Nm3 

Hydrogen fluoride 
(HF) 

> 10 - < 100 MWe 30 mg/Nm3 

Hydrogen fluoride 
(HF) 

≥ 100 MWe 15 mg/Nm3 

Carbon monoxide 
(CO) 

> 10 MWe 200 mg/Nm3 

Total particulate 
matter (PM) 

> 10 MWe 50 mg/Nm3 

Mercury (Hg) > 10 MWe 0.03 mg/Nm3 
Dioxin/furan 
(PCDD/PCDF) 

> 10 MWe 0.1 ng TEQ/Nm3 

Note: Emission limit at standard conditions for temperature and pressure for dry gas (volume at 273K, 

101.3 kPa), O2 reference content at 6%. 

 

 

 Comparison of the Malaysia new emission limits with emission limits from 

other countries (Table 1.4) shows that the new emission limits are less stringent.  New 

limits for SO2 and NO2 of 500 mg/Nm3 are still way too high compared to other 

countries.  Other countries such as European Union (EU), United States, China and 

Japan impose stringent limits due to them heavily relying on coal as a source of energy 

reaching up to 78% in China (Ancora et al., 2015), thus resulting in the existence of 



8 
 

 
 

many CFPPs in their countries.  Malaysia, on the other hand, has diversified sources 

of energy which include natural gas, coal and hydro.    

 

 

Table 1.4: Emission Limits and Emissions from Best Performing Coal-fired 

Power Plants from Other Countries  

Pollutant  European 
Union (EU)  

United States  China  Japan  

Sulphur dioxide 
(SO2) mg/Nm3 

aExisting plants  
130 (annual 
average) 
205 (daily 
average)  
New plant 
75 (annual 
average) 
110 (daily 
average) 

a50 – 60 (new 
units) 

22 (new plants) 

aExisting plants  
50 (hourly 
average) 
New plant 
35 (hourly 
average) 

a30 – 35 
(annual 
average) 

Nitrogen oxides 
(NOx) mg/Nm3 

a150 45 – 70a*  aExisting plants  
100 (hourly 
average) 
New plant 
50 (hourly 
average) 

a60 – 70 
(annual 
average) 
40 (new 
plants) 

Particulate 
matter (PM) 
mg/Nm3 

a16 (large 
existing plants) 
10 (new plants) 

N.A 5a* 4 – 5a*  

Mercury (Hg)  
mg/Nm3 

a0.004 (existing 
plants) 

0.002 (new 
plants) 

a0.0015 
(existing plants) 

0.0005 (new 
plants) 

b0.03 N.A 

Note:  
aMyllyvirta (2015) 
bAncora et al. (2015) 
*Emissions data from best performing coal-fired power plants 
N.A – not available  
 

  

 It should be noted that a number of CFPPs in Malaysia were constructed before 

year 2005, which means that the plants were designed to comply with the emission 

limit in Environmental Quality (Clean Air) Regulation 1978.  Therefore, the ability of 

the CFPPs to comply with the new emission limits is unknown, which is the main aim 

of this study. 
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1.3 Overview of Thesis  

 

 

This study aims to assess the emissions from coal-fired power plant, 

establishment of emission factor and assessment of health risk. This thesis consists of 

seven chapters.  The outlines of each chapter are described as below. 

 

 

Chapter 1 provides the introduction of the study covering the background of 

coal-fired power plant in Malaysia, emissions from the plant and emission limits. In 

addition, an overview of this thesis is also presented. 

 

 

Chapter 2 provides the background of the study such as plant location and study 

area, characteristics of the coal supplied and burned, the process flow of coal 

combustion, air pollution system and emission limits of the studied CFPP. The 

problem statement, objectives and scope of the study are also presented.   

 

 

Chapter 3 presents the methodology adopted to carry out this study covering 

the sampling of coal, ash and stack emission as well as analysis of the samples.  In 

addition, the chapter provides the methodology to estimate emission using mass 

balance and establishment of emission factor.  Finally, the estimation of ground level 

concentration (GLC) by air dispersion modelling and health risk assessment (HRA) 

are presented. 

 

 

Chapter 4 presents the emission characteristics of the studied CFPP covering 

emission into atmosphere (i.e. point source emission) and contaminants (i.e. trace 

elements) that shift into fly ash and bottom ash due to coal combustion. For air 

emission, the focus was on the parameters specified in the new Environmental Quality 

(Clean Air) Regulations 2014 and some heavy metals while trace elements were the 

interest in the generated fly ash and bottom ash.  Finally, the environmental assessment 

of the studied CFPP is presented.  
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Chapter 5 presents the establishment of emission factors for the studied CFPP 

based on the emission data obtained in Chapter 4.  The established emission factors 

were then applied in a case study to develop alternative emission control strategy for 

compliance with the new Environmental Quality (Clean Air) Regulations 2014. 

 

 

Chapter 6 presents the dispersion of air pollutants from the studied plant using 

air dispersion model (AERMOD).  Four emission scenarios were discussed; 1) 

measured emission data as discussed in Chapter 4; 2) emission limits as per CAR 2014; 

3) emission under the alternative control strategy as discussed in Chapter 5; and 4) 

worst case scenario in the event of failure of APC system.  Further, a health risk 

assessment (HRA) of emissions from the studied plant was carried out based on the 

predicted maximum ground level concentrations (GLCs). 

 

 

Chapter 7 presents the overall conclusion of this study and provides 

recommendations for future study.  Finally, the list of publications from this thesis is 

provided in Appendix A. 
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