ESTABLISHMENT OF EMISSION CHARACTERISTICS, EMISSION FACTORS AND HEALTH RISK ASSESSMENT FROM A COAL-FIRED POWER PLANT

MUTAHHARAH BINTI MOHD MOKHTAR

UNIVERSITI TEKNOLOGI MALAYSIA

ESTABLISHMENT OF EMISSION CHARACTERISTICS, EMISSION FACTORS AND HEALTH RISK ASSESSMENT FROM A COAL-FIRED POWER PLANT

MUTAHHARAH BINTI MOHD MOKHTAR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Environmental Engineering)

Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia

NOVEMBER 2016

ACKNOWLEDGEMENT

First and foremost, I thank Allah s.w.t for giving me the courage and strength to endure all the troubles in completing this thesis and for showing me the way when I was stuck for ideas.

My sincere appreciation goes to my supervisor Dr Mimi Haryani bt Hassim and co-supervisor Prof. Dr Mohd Rozainee bin Taib for their support, guidance and valuable idea to make this research possible. Plenty of thanks to Dr Mimi Haryani bt Hassim for your continuous guidance and encouragement in my research paper publication. Special thanks to Prof. Dr Mohd Rozainee bin Taib for the valuable work skills that you instil in me, which very much facilitate the completion of this thesis.

I am very grateful to Mr Lim Sze Fook and Dr Casey Ngo Saik Peng for their willingness and time to guide me in AERMOD modelling and knowledge sharing of power plant operation. I am also very grateful to Mr Mohd Azri bin Mohd Salleh for helping me to gain better understanding of the stack sampling procedures and laboratory analysis. Your kindness will always be remembered.

I am also thankful for the financial assistance through My Brain Scholarship from Ministry of Higher Education (MOHE), Malaysia and Research University Grant (RUG) Vote Q.J130000.2544.03H37 from Universiti Teknologi Malaysia and MOHE.

Last but not least, I am indebted to my beloved parents, family members and friends for their endless support and encouragement throughout my study.

ABSTRACT

The objectives of this research are to investigate the emission characteristics of a coal-fired power plant (CFPP) in Malaysia and the ability of the air pollution control devices (APCDs) currently in used to comply with the limits specified in the new Environmental Quality (Clean Air) Regulations 2014 (CAR 2014) as well as to establish emission factors for the studied CFPP. The emission data are further used to evaluate the health risks of the emissions from CFPP under CAR 2014 by air dispersion modelling and health risk assessment (HRA). The studied CFPP is a 2100 MW employing APCDs of electrostatic precipitator and flue gas desulphurisation (FGD). Emissions were determined using manual and continuous stack samplings. The emission characteristics were established from the modified CFPP configuration that took into account the effects of coal quality (combustion of only sub-bituminous or bituminous coal) with FGD being in on and off modes. Each pollutant demonstrates different characteristics which would further influence the control mechanism. The study also showed that the existing APCDs were able to comply with the CAR 2014. The emission factors were established for uncontrolled and controlled emissions which would allow the estimation of the impact of emission from CFPP prior to development of new plant or expansion of existing plant as well as selection of APCDs needed to comply with emission standard. For HRA, the predicted ground level concentrations from air dispersion modelling were used as input. The HRA demonstrated different health risks for scenario of emissions from the studied CFPP under normal operation and scenario in the event that pollutants are emitted at limits specified in CAR 2014, with further assessment been given to the latter.

ABSTRAK

Objektif-objektif kajian ini adalah untuk menyiasat ciri-ciri pelepasan loji janakuasa arang batu (CFPP) di Malaysia dan keupayaan alat-alat kawalan pencemaran udara (APCDs) yang sedang digunakan di CFPP di Malaysia untuk mematuhi had yang ditetapkan dalam Peraturan Kualiti Alam Sekitar (Peraturan Udara Bersih) 2014 (CAR 2014) yang baru serta untuk mewujudkan faktor pelepasan bagi loji yang dikaji. Data pelepasan kemudiannya digunakan untuk menilai risiko kesihatan daripada CFPP yang dikaji berdasarkan CAR 2014 dengan menggunakan pemodelan penyebaran udara dan penilaian risiko kesihatan (HRA). Loji yang dikaji berkapasiti 2100 MW dan menggunakan APCDs iaitu pemendak elektrostatik dan penyahsulfuran gas flu (FGD). Pelepasan gas flu telah ditentukan menggunakan persampelan serombong secara manual dan berterusan. Ciri-ciri pelepasan telah diwujudkan dari konfigurasi CFPP yang telah diubahsuai yang mengambil kira pengaruh kualiti arang batu (pembakaran arang batu sub-berbitumen atau berbitumen) dengan FGD dalam mod beroperasi dan tidak beroperasi. Setiap pencemar menunjukkan ciri-ciri yang berbeza yang akan mempengaruhi mekanisma kawalan. Kajian ini juga menunjukkan bahawa APCDs sedia ada dapat mematuhi CAR 2014. Faktor pelepasan telah diwujudkan untuk pelepasan yang tidak dikawal dan dikawal yang membolehkan anggaran impak pelepasan dari CFPP dilakukan sebelum pembangunan loji baru atau penambahbesaran loji sedia ada dan juga pemilihan APCDs untuk mematuhi piawai pelepasan. Untuk HRA, kepekatan paras tanah yang diramalkan oleh permodelan penyebaran udara telah digunakan sebagai input. HRA tersebut menunjukkan risiko kesihatan yang berbeza untuk senario pelepasan dari loji yang dikaji di bawah operasi normal dan senario sekiranya bahan pencemar dilepaskan pada had yang ditetapkan dalam CAR 2014, dengan penilaian lanjut telah diberikan kepada senario kedua.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	ACK	NOWLEDGEMENT	iii
	ABST	ГКАСТ	iv
	ABST	ſRAK	V
	TAB	LE OF CONTENTS	vi
	LIST	OF TABLES	xii
	LIST	OF FIGURES	xviii
	LIST	OF ABBREVIATIONS	XX
	LIST	OF APPENDICES	xxii
1	INTR	ODUCTION	1
	1.1	Background of Coal-fired Power Plants in	
		Malaysia	1
	1.2	Emissions from Coal-fired Power Plant	5
	1.3	Overview of Thesis	9
2	BACI	KGROUND	11
	2.1	Overview of the Study	11
		2.1.1 Coal Supply and Quality	13
		2.1.2 Coal Combustion Process	20
		2.1.3 Typical Emissions from CFPP	22
		2.1.4 Air Pollution Control System	23

	2.1.4.1 Particulate Emission Control	
	through Electrostatic	
	Precipitator (ESP)	23
	2.1.4.2 SO ₂ Reduction through Flue	
	Gas Desulphurisation (FGD)	24
	2.1.4.3 NO ₂ Control via Low NO _x	
	Burner	25
	2.1.4.4 Review on Multi-Pollutant	
	Control Strategy of CFPP	25
	2.1.5 Discharge of Flue Gas into Atmosphere	28
	2.1.6 Emission Limits for the Studied CFPP	29
2.2	Problem Statement	30
2.3	Purpose and Objectives of Study	31
2.4	Scope of Study	34
MET	THODOLOGY	35
3.1	Flow of the Study	35
3.2	Sampling of Coal, Fly Ash and Bottom Ash	38
3.3	Stack Sampling	39
	3.3.1 Manual Sampling using Sampling Train	39
	3.3.2 Continuous Sampling Using Continuous	
	Emission Monitoring System (CEMS)	39
	3.3.3 Summary of Stack Sampling	41
3.4	Analysis of Stack, Coal and Ash Samples	42
	3.4.1 Analysed Media	42
	3.4.2 Analysed Parameters	42
	3.4.2.1 Analysis of SO ₂ and	
	Particulate Matter (PM)	44
	3.4.2.2 Analysis of PCDD/Fs	45
	3.4.2.3 Analysis of Trace Elements	46
3.5	Methodology for Mass Balance	47
	3.5.1 Assumptions in Mass Balance	
	Calculation	48
	3.5.2 Verification of Mass Balance	50

3

	3.6	Methodology for Establishment of Emission	
		Factors	52
	3.7	Methodology for Air Dispersion Modelling	56
		3.7.1 Gaussian Plume Models	56
	3.8	Methodology for Health Risk Assessment	
		(HRA)	59
4	СНА	RACTERISTICS OF EMISSIONS FROM	
	СОА	L-FIRED POWER PLANT (CFPP)	62
	4.1	Characteristics of Coal	62
	4.2	Characteristics of Emission	65
		4.2.1 Emission Obtained from Manual Stack	
		Sampling	66
		4.2.1.1 Criteria Pollutants (PM and	
		SO ₂) from Coal Combustion	67
		4.2.1.2 Trace Elements (TEs)	69
		4.2.1.3 Polychlorinated Dibenzo	
		Dioxins and Furans	
		(PCDD/Fs)	76
		4.2.2 Emission Obtained from Continuous	
		Sampling	86
	4.3	Enrichment of Trace Elements in Fly Ash and	
		Bottom Ash	88
		4.3.1 Bottom Ash	88
		4.3.2 Fly Ash	91
		4.3.3 Relative Enrichment (RE) Factor	93
	4.4	Emission Estimation using Mass Balance	95
	4.5	Environmental Assessment of the Studied Coal-	
		fired Power Plant	100
		4.5.1 Emission Performance in Compliance	
		with the New Environmental Quality	
		(Clean Air) Regulations 2014	100
		4.5.2 Coal Combustion Products (CCPs)	104
	4.6	Summary and Conclusion	106

EST	ABLISHMENT OF EMISSION FACTORS	1
5.1	Establishment of Emission Factors	1
	5.1.1 Emission Factors for Uncontrolled	
	Condition	1
	5.1.2 Emission Factors for Controlled	
	Condition	-
	5.1.2.1 Emission Factors for Criteria	
	Pollutants	
	5.1.2.2 Emission Factor for Trace	
	Elements	
	5.1.2.3 Emission Factors for	
	PCDD/Fs	
5.2	Application of Emission Factors in	
	Development of Emission Control Strategy	
5.3	Alternative Emission Control Strategy for	
	Compliance with the New Environmental	
	Quality (Clean Air) Regulations 2014	
5.4	Expected Emission Levels With the Alternative	
	Emission Control Strategy	
5.5	Economic Aspects of the Alternative Emission	
	Control Strategy	
5.6	Summary and Conclusion	
DISF	PERSION OF AIR POLLUTANTS AND	
HEA	LTH RISK ASSESSMENT (HRA)	
6.1	Modelling Scenario	
6.2	AERMOD Modelling System	
6.3	Model Set-up	
	6.3.1 Modelling Domain	
	6.3.2 Emission Rates	
	6.3.3 Stack Design Data	
	6.3.4 Meteorological Data	
	6.3.4.1 Comparison of Prognostic	
	(MM5) and Diagnostic (Local	
	Meteorology data from	

ix

	Setiawan Meteorological	
	Station) Meteorological	
	Models	148
	6.3.5 Receptor Grid	149
	6.3.6 Geographical Data	152
	6.3.7 Building Downwash Effects	152
	6.3.7.1 Investigation of Building	
	Downwash Effects in the	
	Studied CFPP	154
6.4	Compliance with Ambient Air Limits	156
6.5	Dispersion of Air Pollutants from the Studied	
	CFPP	157
	6.5.1 Predicted Maximum Ground Level	
	Concentrations (GLCs) for All	
	Emission Scenarios	157
	6.5.2 Dispersion Pattern, Location of	
	Maximum Ground Level	
	Concentrations (GLCs) of Pollutants	
	and GLCs at Sensitive Receptors for All	
	Emission Scenarios	161
	6.5.2.1 Emission Scenario 1	161
	6.5.2.2 Emission Scenario 2	163
	6.5.2.3 Emission Scenario 3	164
	6.5.2.4 Emission Scenario 4	165
	6.5.3 Comparison of Predicted GLCs with	1
	Measured Data of Ambient Air Quality	
	at Project Site	166
6.6	Health Risk Assessment (HRA)	170
	6.6.1 Non-Carcinogenic Health Risk	170
	6.6.2 Carcinogenic Health Risk	174
6.7	Summary and Conclusion	176
CON	NCLUSION AND RECOMMENDATIONS	178
7.1	Conclusion	178
7.2	Research Contributions	180

7

7.3	Recommendations	181
DFFFDFNCFS		192
NEFERENCES		162
Appendices A - D		196 - 232

LIST OF TABLES

TITLE

TABLE NO.

1.1	Coal-fired Power Plant (CFPP) in Malaysia (Oh, 2010)	3
1.2	Change in Fuel Use as Aimed in Fuel Diversification	
	Strategy (EPU, 2006)	6
1.3	Emission Limits for Coal-fired Power Plant (CFPP) as	
	Stipulated in the New Environmental Quality (Clean	
	Air) Regulations 2014	7
1.4	Emission Limits and Emissions from Best Performing	
	Coal-fired Power Plants from Other Countries	8
2.1	General Coal's Characteristics	15
2.2	Ultimate Analysis of Lignite, Sub-bituminous,	
	Bituminous and Anthracite Coal	15
2.3	Effects of Coal Properties to Plant Performance (Spero,	
	1998)	16
2.4	Specifications of Coal Quality by the Studied CFPP	17
2.5	Characteristics of Coal Burned in the Studied CFPP	18
2.6	Characteristics of Sub-bituminous and Bituminous	
	Coal	19
2.7	Technologies Used in Coal-fired Power Plant (CFPP)	
	in Malaysia	21
2.8	Control Technologies for Removal of Pollutants from	
	CFPP	27
2.9	Combination of Air Pollution Control Devises Used in	
	CFPP in Other Countries	28
2.10	Stack Height of Coal-fired Power Plants (CFPPs)	29

PAGE

2.11	Emission Limits for the Studied CFPP	30
2.12	Research Questions Developed from Literature Review	32
3.1	Details of Sampling Runs	38
3.2	Summary of Stack Sampling Methods	40
3.3	Methodology for Estimating Emission of Pollutants	
	Specified in the New Environmental Quality (Clean	
	Air) Regulations 2014	41
3.4	Summary of Media and Solution Sent for Laboratory	
	Analysis	42
3.5	Analysed Parameters and Methods for Media and	
	Solution from Dioxin Sampling Train (US EPA	
	Method 23)	43
3.6	Analysed Parameters and Methods for Media and	
	Solution from PM Sampling Train (US EPA Method 5)	43
3.7	Analysed Parameters and Methods for Coal, Fly Ash	
	and Bottom Ash	44
3.8	Reported Excess Air for Pulverised Coal Combustion	49
3.9	Typical Amount of Excess Air Required by Different	
	Fuels (The Engineering Toolbox, 2013)	49
3.10	Input and Output of Mass Balance	50
3.11	Typical Flue Gas Flow Rate for Coal Combustion	52
3.12	Methodology for Establishment of Uncontrolled and	
	Controlled Emission Factors	55
4.1	Measured and Literature Values of S, Cl, F and Hg	
	Contents in Coal	63
4.2	Trace Elements (mg/kg) in Sub-bituminous and	
	Bituminous Coal	64
4.3	Details of Sampling Runs (from modified USEPA	
	Method 5 sampling train)	66
4.4	Concentration (mg/Nm ³) of Particulate Matter (PM) at	
	6% O2 Level Obtained from Manual Stack Sampling	67
4.5	Concentration (mg/Nm ³) of SO ₂ at 6% O ₂ Level	
	Obtained from Manual Stack Sampling (modified US	
	EPA Method 5) and CEMS	68

4.6	Trace Elements (TEs) (mg) in Filter Paper (particle	
	phase)	70
4.7	Trace Elements (TEs) (mg/L) in H ₂ O ₂ Solution	
	(gaseous phase)	70
4.8	Mercury in KMnO ₄ Absorbing Solution	71
4.9	Laboratory Analysis of PCDD/Fs in Sampling Media	77
4.10	Concentration of PCDD/Fs in Flue Gas at 6% O ₂	78
4.11	Toxic Equivalent Factors (TEF) of PCDD/Fs	79
4.12	PCDD/Fs Emissions from Power Plants in Other	
	Countries	80
4.13	Vapour Pressure of PCDD/Fs (McKay, 2002)	84
4.14	CEMS Data of SO ₂ , NO ₂ and CO	87
4.15	One Year Emission Monitoring Data for Chimney No.	
	3 (April 2009 – March 2010)	87
4.16	SO ₂ and NO _x Emissions from Combustion of	
	Bituminous Coal (Zhao et al., 2010)	88
4.17	Major Elements and Trace Elements in Bottom Ash	90
4.18	Major Elements and Trace Elements in Fly Ash	92
4.19	Classification of TEs According to RE Factor (Meij,	
	1995)	94
4.20	Relative Enrichment (RE) Factor for Bottom Ash and	
	Fly Ash	95
4.21	Mass Balance (based on average value) for One	
	Generating Unit (1 x 700 MW)	97
4.22	Flue Gas Composition Obtained from Mass Balance	
	Calculation	99
4.23	Minimum, Maximum and Average Concentrations	
	(mg/Nm ³) at 6% O ₂ Level of SO ₂ , HCl, HF and Hg in	
	Flue Gas Exiting Furnace Boiler Obtained from Mass	
	Balance Calculation	99
4.24	Maximum Concentration of Element in Coal for	
	Compliance with Emission Limit Value without Flue	
	Gas Treatment (i.e. without ESP and FGD)	100

4.25	Summary of Factors that Influenced Emission of Air	
	Pollutants from the Studied Coal-fired Power Plant	103
4.26	Emissions Performance of One generating Unit (1 x	
	700 MW) of the Studied Plant Compared with the	
	Specified Limits in the New Environmental Quality	
	(Clean Air) Regulations 2014	105
5.1	Summary of Emission Factor for Coal-fired Power	
	Plant from AP-42 Document	111
5.2	Descriptions of Emission Factor Quality Ratings in AP-	
	42	112
5.3	Emission Factor Database (kg/ton) for Coal-fired	
	Power Plant (Zhao et al., 2010)	113
5.4	Uncontrolled Emission Factors for 700 MW Boiler	114
5.5	Cl and F Emission Factor (López-Vilariño et al., 2003)	116
5.6	Emission Factors of PM for 700 MW Boiler	118
5.7	Emission Factors of SO ₂ for 700 MW boiler	119
5.8	Emission Factors of CO for 700 MW boiler	120
5.9	Emission Factors of NO ₂ for 700 MW Boiler	120
5.10	Emission Factors for HCl for 700 MW Boiler	121
5.11	Emission Factors for HF for 700 MW boiler	122
5.12	Emission Factors of Hg for 700 MW boiler	122
5.13	Literature Values of Hg Emission Factors	123
5.14	Emission Factors of PCDD/F for 700 MW Boiler	124
5.15	Emission Factors of PCDD/Fs from Other Countries	125
5.16	Factors for Selection of Air Pollution Control	
	Technology	127
5.17	Coal quality specification for elements S, Cl, F and Hg	129
5.18	Chemical Requirements of Fly Ash for Use in Concrete	
	(ASTM C618 12-a)	130
5.19	Emission Factor (EF) for Uncontrolled Particulate	
	Matter (PM)	134
5.20	Emission Reduction (ER) Factors for Hg, PCDD/Fs	
	and PM from Emission Control Strategies of Activated	
	Carbon Injection (ACI) and Fabric Filter (FF)	135

5.21	Data for Equation 5.1 (AR, EF and ER)	135
5.22	Emission Concentrations of Hg and Dioxins/Furans	
	from the Existing and the Alternative Emission Control	
	Strategy	136
5.23	Summary of the Established Uncontrolled Emission	
	Factor (EFs)	137
5.24	Summary of the Established Controlled Emission	
	Factors (EFs)	137
5.25	Effects of Coal Quality and APC system to Emission	
	Factors (EFs)	138
6.1	Stack Emission Concentration and Rate of One	
	Generating Unit (1 x 700 MW) of the Studied CFPP for	
	Scenario 1, 2, 3 and 4	145
6.2	Stack Design Data	146
6.3	Comparison of Mesoscale Meteorological Model	
	(MM5) Data and Setiawan Meteorological Station	149
6.4	Sensitive Receptors at the Studied CFPP	150
6.5	Ground Level Concentration (GLC) of Particulate	
	Matter (PM) Obtained from Running AERMOD With	
	and Without Building Input	155
6.6	Malaysian Ambient Air Quality Guidelines (MAAQG)	
	2013	156
6.7	Ambient Air Standards from Other Countries	157
6.8	Predicted Maximum Ground Level Concentrations	
	(GLCs) for Scenario 1, 2 and 3 Compared with	
	Ambient Air Quality Limit	159
6.9	Predicted Maximum Ground Level Concentrations	
	(GLCs) for Scenario 4 Compared with Ambient Air	
	Quality Limit	160
6.10	Ground Level Concentration (GLC) of Pollutants for	
	Scenario 1 at Receptor C_3	163
6.11	Ground Level Concentration (GLC) of Pollutants for	
	Scenario 2 at Receptor C_3	164

6.12	Ground Level Concentration (GLC) of Pollutants for	
	Scenario 3 at Receptor C_3	165
6.13	Ground Level Concentration (GLC) of Pollutant for	
	Scenario 4 at Receptor C_3	166
6.14	Summary of Measured Monthly Ambient Air Quality	
	Monitoring Data at Station A_1 (April 2009 to March	
	2010) and Predicted GLCs	169
6.15	Summary of Monthly Ambient Air Quality Monitoring	
	Data at Station B_2 (April 2009 to March 2010) and	
	Predicted GLCs	169
6.16	Parameters for Health Risk Assessment (HRA)	170
6.17	Assessment of Non-Carcinogenic Health Risk of	
	Pollutants from the Studied Coal-Fired Power Plant	173
6.18	Summary of Emission Concentration, Predicted GLCs	
	and Calculated HQ for SO ₂	174
6.19	Assessment of Carcinogenic Health Risk from the	
	Studied Coal-Fired Power Plant for Scenario 1	175

xviii

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Coal Demand (million tonne per year) in Peninsular	
	Malaysia (TNBF, 2010)	4
2.1	Process Flow Diagram of the Studied Coal-fired Power	
	Plant	12
2.2	Storage of Coal at Coal Yard According to Shipment	14
2.3	Comparison of Hazardous Air Pollutants (HAPs)	
	Emissions from Top Performing and Randomly	
	Selected Coal-Fired Power Plants (CFPPs) Selected by	
	EPA	26
3.1	Flow Chart of Overall Research Work	36
3.2	Process Flow Diagram Showing Location of Samples	
	Collection	37
3.3	Mass Balance Calculation from Microsoft Excel	
	Spreadsheet	51
3.4	Approach to Emission Estimation	53
3.5	Procedures for Assessing the Dispersion of Pollutants	
	via Air Dispersion Modelling	58
4.1	Concentration (mg/Nm ³) of Hg, HCl and HF in flue gas	74
4.2	PCDD/Fs congener distribution in Run 1 and 2	82
4.3	PCDD/Fs congener distribution in Run 3 (F –	
	particulate phase, R – gas phase)	83
4.4	PCDD/Fs congener distribution in Run 4 (F –	
	particulate phase, R – gas phase)	83
4.5	PCDD/Fs congener distribution in Run 4 (fly ash)	83

4.6	Location of Stream Number for Mass Balance			
	Calculation	98		
5.1	Alternative Plant Configuration for Compliance with			
	the New Environmental Quality (Clean Air)			
	Regulations 2014	133		
6.1	Flow in AERMOD modelling system	142		
6.2	Modelling Domain (30 km × 30 km)	143		
6.3	Wind rose from MM5 Data (A) and Setiawan			
	Meteorological Station (B)	149		
6.4	Location of Sensitive Receptors for Air Dispersion			
	Modelling	151		
6.5	Cross sectional elevation of one generating unit in the			
	studied CFPP	153		
6.6	Aerial View of the Studied CFPP	154		
6.7	One-hour Average SO ₂ Concentration for Scenario 1	162		
6.8	Twenty four (24) hour Average SO ₂ Concentration for			
	Scenario 1	162		
6.9	Annual Average SO ₂ Concentration for Scenario 1	163		
6.10	Locations of Ambient Air Monitoring Stations	168		

LIST OF ABBREVIATIONS

ACI	-	Activated carbon injection
APC	-	Air pollution control
CAR	-	Clean Air Regulations
CEMS	-	Continuous emission monitoring system
CFPP	-	Coal-Fired Power Plant
DEIA	-	Detailed Environmental Impact Assessment
EF	-	Emission factor
EPA	-	Environmental Protection Agency
ESP	-	Electrostatic precipitator
FGD	-	Flue gas desulphurisation
FF	-	Fabric filter
GLC	-	Ground level concentration
HAP	-	Hazardous air pollutants
HC1	-	Hydrochloric acid
HF	-	Hydrogen fluoride
Hg	-	Mercury
HRA	-	Health risk assessment
IPP	-	Independent Power Producer
MAAQG	-	Malaysia Ambient Air Quality Guidelines
NO _x	-	Nitrogen oxide
TNB	-	Tenaga Nasional Berhad
РАН	-	Polyaromatic hydrocarbon
PCDD	-	Polychlorinated dibenzo dioxin
PCDF	-	Polychlorinated dibenzo furan
PM	-	Particulate matter
PC	-	Pulverised coal

PPA	-	Power Purchase Agreement
SCR	-	Selective catalytic reduction
SNCR	-	Selective non-catalytic reduction
SO_2	-	Sulphur dioxide
TE	-	Trace element
VOC	-	Volatile organic compounds

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
A	List of Publications	196	
В	Certificate of Analysis of Coal Obtained from the		
	Studied Plant	198	
С	Sampling Methods	204	
D	Certificate of Analysis (analysis done for the purpose		
	of this study)	209	

CHAPTER 1

INTRODUCTION

1.1 Background of Coal-fired Power Plants in Malaysia

Prior to 1980s, energy sector in Malaysia was dominated by oil. However, world oil crisis in 1970s has changed the scenario and prompted formulation of policies such as National Energy Policy 1979, National Depletion Policy 1980 and Fuel Diversification Strategy (1981 & 1999) to reduce major dependence on oil and for sustainable economic development (Rahman Mohamed and Lee, 2006). The Four Fuel Diversification Strategy implemented in 1981 aimed to achieve balanced utilization of natural gas, coal, oil and hydro. The strategy was then substituted by the Five Fuel Diversification Strategy in 1999 which include renewable energy as the fifth fuel. Implementation of Fuel Diversification Strategy has resulted in drastic drop of oil and has led to new development of coal-fired power plant (CFPP) (Oh, 2010).

To date, the operating CFPPs in Malaysia are as listed in Table 1.1. Sultan Salahuddin Abdul Aziz Shah Power Station (Kapar Power Plant) in Kapar, Selangor which was opened in 1987 is the major power plant in Klang Valley region and the first CFPP in Malaysia. It is also the only power plant in the country with triple fuel firing capability (coal, natural gas and oil). Based on air quality management study for Klang Valley region conducted by Japan International Corporation Agency (JICA) in 1993, it was reported that the studied power plants (Kapar and another gas-fired power plant in Klang Valley region) contributed to the highest sulphur oxide (SO_x), nitrogen oxide (NO_x) and dust emission in that region. Of these two plants, Kapar Power Plant that fired oil and coal was the most polluting. At that time, coal consumption in Kapar Power Plant alone reached up to 806,400 ton/year. Till date, there are another three coal-fired power plants operating in Peninsular Malaysia (i.e. in Manjung, Tanjung Bin and Jimah) with total capacity of 7600 MW as shown in Table 1.1. Compared to CFPPs in Peninsular Malaysia, CFPPs in Sarawak have much lower generation capacity from coal at 320 MW only. This is because total installed capacity in Sarawak is only at 1315 MW (Wikipedia, 2016b) compared to Peninsular Malaysia at 21,817 MW (Wikipedia, 2016a). Energy mix in Sarawak also includes hydro turbines, diesel engine, gas turbine and combine cycle.

Coal supply in Malaysia is handled by TNB Fuel Services (TNBFS) Sdn Bhd. TNBFS is a fuel supplier to TNB Generation and Independent Power Producers (IPP) having Power Purchase Agreement (PPA) with TNB. Its functions to ensure that fuel is procured and delivered at optimal cost taking into account the quality and reliability of supply. In 2010, TNBFS reported that coal consumption for Kapar Power Plant increased up to 4,000,000 ton/year and the total coal consumption of the four plants was about 16,000,000 ton/year (Figure 1.1).

Coal is attractive due to its abundance availability and the price is low and stable. Although Malaysia owns coal reserves at Kapit and Mukah in Sarawak and Maliau in Sabah (Ong *et al.*, 2011), coals for power generation are mainly imported from countries such as Indonesia, Australia, China and South Africa due to the high extraction cost as the coal deposits are located in the interior areas where infrastructure are poor (Rahman Mohamed and Lee, 2006).

Power plant	Location	Operator	Capacity	Operation
			(MW)	year
Sultan	Kapar,	Kapar Energy Ventures	600	1987
Salahuddin	Selangor	Sdn Bhd	(Phase 1)	
Abdul Aziz			1000	2001
Shah Power			(Phase 2)	2001
Station			(1 11030 2)	
Sejingkat Power	Kuching,	Sejingkat Power	210	1993
Corporation	Sarawak	Corporation Sdn Bhd, a		
Plant		subsidiary of Sarawak		
		Energy Berhad		
Manjung Power	Manjung,	Tenaga Nasional Berhad	2100	2003
Station	Perak	(TNB) Janamanjung Sdn	1000	2016
		Bhd		
PPLS Power	Kuching,	PPLS Power Generation, a	110	2002
Generation	Sarawak	subsidiary of Sarawak		
Plant		Energy Berhad		
Tanjung Bin	Pontian,	Tanjong Bin Power Sdn	2100	2007
Power Station	Johor	Bhd, a subsidiary of	1000	2016
		Malakoff	1000	2010
Jimah Power	Lukut,	Jimah Energy Ventures	1400	2008
Station	Negeri	Sdn Bhd		
	Sembilan			

Table 1.1:Coal-fired Power Plant (CFPP) in Malaysia (Oh, 2010)

Figure 1.1: Coal Demand (million tonne per year) in Peninsular Malaysia (TNBF, 2010)

Coal-fired power plant (CFPP) is always perceived as dirty and polluting. In Malaysia, a bitter experience had occurred during 2008 until 2010 on the development of a CFPP in Sabah (a state located in the east of Malaysia). A plan to build CFPP in Sabah has been initiated since 2006 to avoid frequent blackout and brownout. Location for the CFPP was first proposed at Silam, Lahad Datu in 2008, but then the project proponent was instructed to find another location at Palm Oil Industrial Cluster (POIC) Sandakan in 2009 and again another location at Felda Sahabat in 2010. The proposed CFPP received strong opposition from the locals and non-governmental organizations (NGO). They claimed that exposure to coal burning could lead to both air and water pollutions besides threatening marine life. These cause adverse effects on human health such as birth defects and gene mutations; deadly diseases such as cancer and heart attacks; as well as destroying the wildlife and natural environment. Due to the strong objection, the project was later terminated (New Straits Times, 2011).

Nevertheless, it should be noted that coal demand for power plants in Peninsular Malaysia demonstrates a steady increment as shown in Figure 1.1. Current electricity generation mix in Malaysia is 58% gas, 33% coal and 9% hydro. Based on the approved generation development plan as reported by Energy Commission (2013),

the power generation sector will have more coal plants as the gas price increases, where by 2019, the generation mix is projected to be 64% coal, 32% gas and 4% hydro (this varies from the previous reported fuel mix shown in Table 1.2). Such planning is made in order to control the cost of electricity as coal prices are less prone to market variations. Two existing coal-fired power plants at Manjung and Tanjung Bin have recently completed plant expansion to increase a total of 2000 MW to national capacity by year 2016 (Table 1.1), and this consequently will result in increased coal consumption of around 25 million tonne/year. More consumption of coal will definitely increase the emissions of air pollutants to atmosphere. This situation is a challenge to energy sector because while meeting energy demand, the environmental aspect should not be neglected.

Coal is an abundant fuel resource in the worlds' developing regions and forecasts show that it is likely to remain a dominant fuel for electricity in many countries for some years to come (Paul, 1999). This may be the reason of quite a number of studies have been conducted on emissions from CFPP in other countries such as Japan (Yokoyama *et al.*, 2000), China (Kunli *et al.*, 2002; Zhang *et al.*, 2008; Zhao *et al.*, 2000), China (Glodek and Pacyna, 2009), Korea (Pudasainee *et al.*, 2009), Spain (Fernández-Martínez *et al.*, 2004), Netherlands (Meij and te Winkel, 2006, 2007) and Taiwan (Lin *et al.*, 2007). Among the subject matters discussed in the published papers are the development of emission factors, emission trend, effectiveness of air pollution control technologies, regulatory impacts on the emission, and health risk assessment.

1.2 Emissions from Coal-fired Power Plant

Evaluation of the environmental impact of the fuel mix change in Malaysia as shown in Table 1.2 by Jafar *et al.* (2008) shows that the strategy will somehow generate higher CO₂, SO₂ and NO_x emissions by 2020 due to increase in coal consumption for power generation. Shekarchian *et al.* (2011) reported that 56% of the total emission (i.e. CO, CO₂, SO₂ and NO_x) from electricity generation in Malaysia for year 2008 was due to high coal usage.

Fuel	Percentage (%) of fuel use			
	Year 2000	Year 2020		
Gas	74.9	40		
Coal	9.7	29		
Hydro	10.4	30		
Petroleum	5	1		

Table 1.2:	Change in Fuel Use as Aimed in Fuel Diversification Strategy (EPU,
	2006)

Apart from SO₂, NO_x, carbon dioxide (CO₂) and CO emission, CFPP also generates hydrogen fluoride (HF), hydrogen chloride (HCl), heavy metals and dioxins (Nescaum, 2011) which are toxic and hazardous. In Malaysia, due to environmental concern, development of CFPP is listed as Prescribed Activity under Environmental Quality (Prescribed Activities) (Environmental Impact Assessment) Order 1987 which requires a Detailed Environmental Impact Assessment (DEIA) study to be conducted prior to development. Further, emissions from CFPP have to comply with the stipulated limits in the Environmental Quality (Clean Air) Regulations. Emission limits for CFPP in Malaysia was initially based on Environmental Quality (Clean Air) Regulations 1978 for fuel burning equipment which specifies limit only for particulate matter (PM) of 400 mg/Nm³. This is the reason of Kapar Power Plant (the first CFPP in Malaysia) installed electrostatic precipitator (ESP) only as the air pollution control system to meet the PM limit.

In 2005, DOE Malaysia drafted a new Environmental Quality (Clean Air) Regulations to replace Environmental Quality (Clean Air) Regulations 1978, and since then, new CFPPs in Malaysia are required to comply with the stipulated limits as shown in Table 1.3. This new regulation is more stringent and specifies limits for additional pollutants such as SO₂, NO₂, HCl, HF, Hg, CO and dioxins/furans. The new regulation has been gazetted in year 2014 as Environmental Quality (Clean Air) Regulations 2014 (CAR 2014).

Table 1.3:Emission Limits for Coal-fired Power Plant (CFPP) as Stipulated inthe New Environmental Quality (Clean Air) Regulations 2014

Fuel	Pollutant	Capacity	Limit value
type			
Solid	Sum of SO ₂ and	> 10 MWe	500 mg/Nm^3
and	SO ₃ expressed as		-
liquid	SO2		
fuels	Sum of NO and	> 10 MW _e	500 mg/Nm ³
	NO ₂ expressed as		0
	NO ₂		
	Hydrogen chloride	> 10 - < 100 MWe	200 mg/Nm ³
	(HCl)		
	Hydrogen chloride	$\geq 100 \text{ MW}_{e}$	100 mg/Nm ³
	(HCl)		
	Hydrogen fluoride	> 10 - < 100 MWe	30 mg/Nm^3
	(HF)		
	Hydrogen fluoride	$\geq 100 \text{ MW}_{e}$	15 mg/Nm^3
	(HF)		_
	Carbon monoxide	> 10 MWe	200 mg/Nm ³
	(CO)		
	Total particulate	> 10 MWe	50 mg/Nm^3
	matter (PM)		
	Mercury (Hg)	> 10 MWe	0.03 mg/Nm ³
	Dioxin/furan	$> 10 \text{ MW}_{e}$	0.1 ng TEQ/Nm ³
	(PCDD/PCDF)		-

Note: Emission limit at standard conditions for temperature and pressure for dry gas (volume at 273K, 101.3 kPa), O₂ reference content at 6%.

Comparison of the Malaysia new emission limits with emission limits from other countries (Table 1.4) shows that the new emission limits are less stringent. New limits for SO₂ and NO₂ of 500 mg/Nm³ are still way too high compared to other countries. Other countries such as European Union (EU), United States, China and Japan impose stringent limits due to them heavily relying on coal as a source of energy reaching up to 78% in China (Ancora *et al.*, 2015), thus resulting in the existence of many CFPPs in their countries. Malaysia, on the other hand, has diversified sources of energy which include natural gas, coal and hydro.

Table 1.4:	Emission Limits	and Emissions	s from Best Perf	forming Coal-fired
Power Plants f	From Other Countr	ries		

Pollutant	European	United States	China	Japan
	Union (EU)			
Sulphur dioxide	^a Existing plants	a50 - 60 (new	^a Existing plants	$a^{a}30 - 35$
(SO_2) mg/Nm ³	130 (annual	units)	50 (hourly	(annual
	average)	22 (new plants)	average)	average)
	205 (daily		New plant	
	average)		35 (hourly	
	New plant		average)	
	75 (annual			
	average)			
	110 (daily			
	average)			
Nitrogen oxides	^a 150	$45 - 70^{a}$ *	^a Existing plants	a60 - 70
(NO_x) mg/Nm ³			100 (hourly	(annual
			average)	average)
			New plant	40 (new
			50 (hourly	plants)
			average)	
Particulate	^a 16 (large	N.A	5 ^a *	$4 - 5^{a*}$
matter (PM)	existing plants)			
mg/Nm ³	10 (new plants)			
Mercury (Hg)	^a 0.004 (existing	^a 0.0015	^b 0.03	N.A
mg/Nm ³	plants)	(existing plants)		
	0.002 (new	0.0005 (new		
	nlants)	nlants)	1	

Note:

^aMyllyvirta (2015)

^bAncora et al. (2015)

**Emissions data from best performing coal-fired power plants* N.A – not available

It should be noted that a number of CFPPs in Malaysia were constructed before year 2005, which means that the plants were designed to comply with the emission limit in Environmental Quality (Clean Air) Regulation 1978. Therefore, the ability of the CFPPs to comply with the new emission limits is unknown, which is the main aim of this study.

1.3 Overview of Thesis

This study aims to assess the emissions from coal-fired power plant, establishment of emission factor and assessment of health risk. This thesis consists of seven chapters. The outlines of each chapter are described as below.

Chapter 1 provides the introduction of the study covering the background of coal-fired power plant in Malaysia, emissions from the plant and emission limits. In addition, an overview of this thesis is also presented.

Chapter 2 provides the background of the study such as plant location and study area, characteristics of the coal supplied and burned, the process flow of coal combustion, air pollution system and emission limits of the studied CFPP. The problem statement, objectives and scope of the study are also presented.

Chapter 3 presents the methodology adopted to carry out this study covering the sampling of coal, ash and stack emission as well as analysis of the samples. In addition, the chapter provides the methodology to estimate emission using mass balance and establishment of emission factor. Finally, the estimation of ground level concentration (GLC) by air dispersion modelling and health risk assessment (HRA) are presented.

Chapter 4 presents the emission characteristics of the studied CFPP covering emission into atmosphere (i.e. point source emission) and contaminants (i.e. trace elements) that shift into fly ash and bottom ash due to coal combustion. For air emission, the focus was on the parameters specified in the new Environmental Quality (Clean Air) Regulations 2014 and some heavy metals while trace elements were the interest in the generated fly ash and bottom ash. Finally, the environmental assessment of the studied CFPP is presented. Chapter 5 presents the establishment of emission factors for the studied CFPP based on the emission data obtained in Chapter 4. The established emission factors were then applied in a case study to develop alternative emission control strategy for compliance with the new Environmental Quality (Clean Air) Regulations 2014.

Chapter 6 presents the dispersion of air pollutants from the studied plant using air dispersion model (AERMOD). Four emission scenarios were discussed; 1) measured emission data as discussed in Chapter 4; 2) emission limits as per CAR 2014; 3) emission under the alternative control strategy as discussed in Chapter 5; and 4) worst case scenario in the event of failure of APC system. Further, a health risk assessment (HRA) of emissions from the studied plant was carried out based on the predicted maximum ground level concentrations (GLCs).

Chapter 7 presents the overall conclusion of this study and provides recommendations for future study. Finally, the list of publications from this thesis is provided in Appendix A.

REFERENCES

- Abu-Eishah, S. I., and Babahar, H. S. A. (2011). Investigation on the Minimization of SO2 Emissions at Das Island (UAE): Part I- Current Schemes vs. Modified Schemes. *Journal of Environmental Pollution Control and Management*, 3(1), 47-67.
- Álvarez-Ayuso, E., Querol, X., and Tomás, A. (2006). Environmental impact of a coal combustion-desulphurisation plant: Abatement capacity of desulphurisation process and environmental characterisation of combustion by-products. *Chemosphere*, 65(11), 2009-2017.
- Ancora, M. P., Zhang, L., Wang, S., Schreifels, J., and Hao, J. (2015). Economic analysis of atmospheric mercury emission control for coal-fired power plants in China. *Journal of Environmental Sciences*, 33, 125-134.
- Asakura, K. (2004). Inhalation Risk Assessment of Trace Elements Emitted from Coal-fired Power Plants. (CRIEPI Report (T03032)), 36-37.
- Aul, E., and Pechan, E. H. (1993). Emission Factor Documentation for AP-42 Section
 1.2 Anthracite Coal Combustion. Research Triangle Park, NC 27711: U.S.
 Environmental Protection Agency.
- Aurell, J., Fick, J., Haglund, P., and Marklund, S. (2009). Effects of sulfur on PCDD/F formation under stable and transient combustion conditions during MSW incineration. *Chemosphere*, 76(6), 767-773.
- Ballschmiter, K., Kramer, W., Magg, H., Schafer, W., Zoller, W., Nottrodt, A., and Sladek, K. D. (1984). Distribution of polychlorodibenzodioxin and –furan emissions between particulates, flue gas condensate and impinger absorption in stack gas sampling. *Chemosphere*, 13, 1139-1142.
- Benfenati, E., Pastorelli, R., Castelli, M. G., Fanelli, R., Carminati, A., Farneti, A., and Lodi, M. (1986). Studies on the tetrachlorodibenzo–p–dioxins (TCDD) and tetrachlorodibenzofurans (TCDF) emitted from an urban incinerator. *Chemosphere*, 15, 557-561.

- Bhangare, R. C., Ajmal, P. Y., Sahu, S. K., Pandit, G. G., and Puranik, V. D. (2011). Distribution of trace elements in coal and combustion residues from five thermal power plants in India. *International Journal of Coal Geology*, 86(4), 349-356.
- Boxley, C., Akash, and Siegel, V. (2006). High volume utilization of fly ash containing mercury impregnated activated carbon
- Boyd, R. J. Trace elements in coal from Collinsville, Bowen Basin, Australia-inground mode of occurence and behaviour during utilisation. James Cook University Townsville, Queensland, Australia. 2004
- Bruce, G. M. Coal Energy Systems (Chapter 1: Introduction to Coal). Elsevier Inc. 2005
- Bruce, G. M. Clean Coal Engineering Technology. Elsevier Inc. . 2011
- Buekens, A., Cornelis, E., Huang, H., and Dewettinck, T. (2000). Fingerprints of dioxin from thermal industrial processes. *Chemosphere*, 40(9–11), 1021-1024.
- Buitrago, P. A. Gas-Phase Mercury Oxidation: Effects of Bromine, Chlorine and SO2 Under Air Firing and Oxy-Fuel Conditions, Experimental and Modeling Study. (Doctor of Philosophy), The University of Utah, United States. 2011
- Burtraw, D., Palmer, K., Paul, A., Beasley, B., and Woerman, M. (2012). Reliability in the electric industry under new environmental regulations. *Discussion Paper*. <u>http://www.rff.org/files/sharepoint/WorkImages/Download/RFF-DP-12-18.pdf</u>
- Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M., and Stellacci, P. (2008). Health risk assessment of air emissions from a municipal solid waste incineration plant
 A case study. *Waste Management*, 28(5), 885-895.
- Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., . . . Wei, F. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. *Science of The Total Environment*, 472(0), 1001-1009.
- Cavallaro, A., Luciani, L., Ceroni, G., Rocchi, I., Invernizzi, G., and Gorni, A. (1982). Summary of results of PCDDs analyses from incinerator effluents. *Chemosphere*, 11, 859-868.
- Chakraborty, N., Mukherjee, I., Santra, A. K., Chowdhury, S., Chakraborty, S., Bhattacharya, S., . . . Sharma, C. (2008). Measurement of CO2, CO, SO2, and

NO emissions from coal-based thermal power plants in India. *Atmospheric Environment*, 42(6), 1073-1082.

- Chang, M. B., and Huang, T. F. (1999). Dioxin contents in fly ash from large-scale MSW incinerators in Taiwan. *Chemosphere*, 39(15), 2671-2680.
- Chi, K. H., Chang, M. B., Chang-Chien, G. P., and Lin, C. (2005). Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan. *Science of The Total Environment*, 347(1–3), 148-162.
- Chi, K. H., Chang, M. B., and Chang, S. H. (2006). Evaluation of PCDD/F partitioning between vapor and solid phases in MWI flue gases with temperature variation. *Journal of Hazardous Materials*, 138, 620-627.
- Clarke, L. B. The fate of trace elements in emissions control systems In D. J. Swaine
 & F. Goodarzi (Eds.), *Environmental aspects of trace elements in coal* Netherlands: Kluwer Academic Publishers. 1995
- Clay, D. R. (1991). Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions (Memorandum from D. R. Clay, OSWER 9355.0-30, April 1991). Washington D.C. United States.
- Córdoba, P., Ochoa-Gonzalez, R., Font, O., Izquierdo, M., Querol, X., Leiva, C., . . . Tomás, A. (2012). Partitioning of trace inorganic elements in a coal-fired power plant equipped with a wet Flue Gas Desulphurisation system. *Fuel*, 92(1), 145-157.
- Dabrowski, J. M., Ashton, P. J., Murray, K., Leaner, J. J., and Mason, R. P. (2008). Anthropogenic mercury emissions in South Africa: Coal combustion in power plants. *Atmospheric Environment*, 42(27), 6620-6626.
- Depoi, F. S., Pozebon, D., and Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. *International Journal of Coal Geology*, 76(3), 227-236.
- Derenne, S., Sartorelli, P., Bustard, J., Stewart, R., Sjostrom, S., Johnson, P., . . . Chang, R. (2009). TOXECON clean coal demonstration for mercury and multipollutant control at the Presque Isle Power Plant. *Fuel Processing Technology*, 90(11), 1400-1405.
- Ding, F. (2012). Analysis of upper air environmental impact of pollutants discharged by power plant. *Procedia Environmental Sciences*, 13(0), 1149-1154.

- Dios, M., Souto, J. A., and Casares, J. J. (2013). Experimental development of CO2, SO2 and NOx emission factors for mixed lignite and subbituminous coal-fired power plant. *Energy*, 53(0), 40-51.
- DOE. (1989). Department of Environment, Pollution Paper No.27, Dioxins in the Environment. UK, HMSO.
- DOE. (2009). Guidance Document on Health Impact Assessment (HIA) in Environmental Impact Assessment (EIA). Malaysia.
- Energy Commission. (2013). Peninsular Malaysia Electricity Supply Industry Outlook 2013. In Energy Commission (Ed.). Malaysia.
- EPRI. (1994). Electric Utility Trace Substances Synthesis Report. Volume 1: Synthesis Report (TR-104614-V1). Palo Alto, California: Electric Power Research Institute (EPRI).
- EPU. (2006). Ninth Malaysia plan 2006–2010. Malaysia. In E. P. U. (EPU) (Ed.).
- Fernández-Martínez, G., López-Vilariño, J. M., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D., Abad, E., and Rivera, J. (2004). First assessment of dioxin emissions from coal-fired power stations in Spain. *Chemosphere*, 57(1), 67-71.
- Garcia, J. P., Beyne-Masclet, S., Mouvier, G., and Masclet, P. (1992). Emissions of volatile organic compounds by coal-fired power stations. *Atmospheric Environment. Part A. General Topics*, 26(9), 1589-1597.
- Gieré, R., Smith, K., and Blackford, M. (2006). Chemical composition of fuels and emissions from a coal + tire combustion experiment in a power station. *Fuel*, 85(16), 2278-2285.
- Glodek, A., and Pacyna, J. M. (2009). Mercury emission from coal-fired power plants in Poland. *Atmospheric Environment*, 43(35), 5668-5673.
- Goodarzi, F. (2006). The rates of emissions of fine particles from some Canadian coalfired power plants. *Fuel*, 85(4), 425-433.
- Goodarzi, F. (2009). Environmental Assessment of Bottom Ash from Canadian Coal-Fired Power Plants. *The Open Environmental & Biological Monitoring Journal*, 2, 1-10.
- Goodarzi, F., Huggins, F. E., and Sanei, H. (2008). Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. *International Journal of Coal Geology*, 74(1), 1-12.

- Grochowalski, A., and Konieczyński, J. (2008). PCDDs/PCDFs, dl-PCBs and HCB in the flue gas from coal fired CFB boilers. *Chemosphere*, 73(1), 97-103.
- Guerriero, E., Guarnieri, A., Mosca, S., Rossetti, G., and Rotatori, M. (2009). PCDD/Fs removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant. *Journal of Hazardous Materials*, 172(2–3), 1498-1504.
- Gulyurtlu, I., Crujeira, A. T., Abelha, P., and Cabrita, I. (2007). Measurements of dioxin emissions during co-firing in a fluidised bed. *Fuel*, 86(14), 2090-2100.
- Guo, S., Yang, J., and Liu, Z. (2006). The Fate of Fluorine and Chlorine during Thermal Treatment of Coals. *Environmental Science & Technology*, 40(24), 7886-7889.
- Hagan, N., Robins, N., Hsu-Kim, H., Halabi, S., Morris, M., Woodall, G., . . . Vandenberg, J. (2011). Estimating historical atmospheric mercury concentrations from silver mining and their legacies in present-day surface soil in Potosí, Bolivia. *Atmospheric Environment*, 45(40), 7619-7626.
- Hanseni, R., and Rensburg, R. v. (2006). Cost comparisons between electrostatic precipitators and pulse jet fabric filters and inherent challenges of both technologies at Eskom's 6 x 600 MW units at Duvha power station. Paper presented at the *ICESP X*, Australia.
- Herrera, I., De Ruyck, J., Ocaña, V. S., Rubio, M., Martínez, R. M., and Núñez, V. (2013). Environmental impact of decentralized power generation in Santa Clara City, Cuba: An integrated assessment based on technological and human health risk indicators. *Applied Energy*, 109(0), 24-35.
- Huang, H., and Buekens, A. (1995). On the mechanisms of dioxin formation in combustion processes. *Chemosphere*, 31(9), 4099-4117.
- IEA. (2016). Electrostatic precipitators (ESP). Retrieved 28 July, 2016, from <u>http://www.iea-coal.org.uk/site/ieacoal/databases/ccts/electrostatic-precipitators-esp</u>
- Ito, S., Yokoyama, T., and Asakura, K. (2006). Emissions of mercury and other trace elements from coal-fired power plants in Japan. *Science of The Total Environment*, 368(1), 397-402.
- Jafar, A. H., Al-Amin, A. Q., and Siwar, C. (2008). Environmental impact of alternative fuel mix in electricity generation in Malaysia. *Renewable Energy*, 33(10), 2229-2235.

- Junk, G. A., and Richard, J. J. (1981). Dioxins not detected in effluents from coal/refuse combustion. *Chemosphere*, 10(11–12), 1237-1241.
- Kakareka, S., and Kukharchyk, T. (2002). Expert Estimates of PCDD/F and PCB Emissions for some European Countries, Technical Note 2.: Meteorological Synthesizing Centre - East.
- Kansal, A., Khare, M., and Sharma, C. S. (2011). Air quality modelling study to analyse the impact of the World Bank emission guidelines for thermal power plants in Delhi. *Atmospheric Pollution Research*, 2(1), 99-105.
- Kelly, K. E. (1991). The myth of 10-6 as a definition of acceptable risk Paper presented at the Updated From a Paper Originally Presented at the 84th Annual Meeting Air & Waste Management Association, Vancouver, B.C., Canada.
- Kesarkar, A. P., Dalvi, M., Kaginalkar, A., and Ojha, A. (2007). Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. *Atmospheric Environment*, 41(9), 1976-1988.
- Kim, J.-H., Park, J.-M., Lee, S.-B., Pudasainee, D., and Seo, Y.-C. (2010). Anthropogenic mercury emission inventory with emission factors and total emission in Korea. *Atmospheric Environment*, 44(23), 2714-2721.
- Koh, S. L., and Lim, Y. S. (2010). Meeting energy demand in a developing economy without damaging the environment—A case study in Sabah, Malaysia, from technical, environmental and economic perspectives. *Energy Policy*, 38(8), 4719-4728.
- Kunli, L., Lirong, X., Ribang, L., and Lianhua, X. (2002). Fluorine emission from combustion of steam coal of North China Plate and Northwest China. *Chinese Science Bulletin*, 47(16), 1346-1350.
- Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., and Zhou, J. (2012). Environmental geochemistry of the feed coals and their combustion byproducts from two coal-fired power plants in Xinjiang Province, Northwest China. *Fuel*, 95(0), 446-456.
- Lin, L.-F., Lee, W.-J., Li, H.-W., Wang, M.-S., and Chang-Chien, G.-P. (2007). Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. *Chemosphere*, 68(9), 1642-1649.

- Littarru, P. (2006). Repartition of PCDD and PCDF in the emissions of municipal solid waste incinerators between the particulate and volatile phases. *Waste Management*, 26(8), 861-868.
- Lockwood, A. H., Welker-Hood, K., Rauch, M., and Gottlieb, B. (2009). Coal's assault on human health. A Report from Physicians for Social Responsibility.
- López-Vilariño, J. M., Fernández-Martínez, G., Turnes-Carou, I., Muniategui-Lorenzo, S., López-Mahía, P., and Prada-Rodríguez, D. (2003). Behavior of Fluorine and Chlorine in Spanish Coal Fired Power Plants With Pulverized Coal Boilers and Fluidized Bed Boiler. *Environmental Technology*, 24(6), 687-692.
- López, M. T., Zuk, M., Garibay, V., Tzintzun, G., Iniestra, R., and Fernández, A. (2005). Health impacts from power plant emissions in Mexico. *Atmospheric Environment*, 39(7), 1199-1209.
- Louvar, J. F., and Louvar, B. D. Health and Environmental Risk Analysis: Fundamentals with Applications. . United States: Prentice Hall. 1998
- Ma, J., Yi, H., Tang, X., Zhang, Y., Xiang, Y., and Pu, L. (2013). Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city. *Journal of Environmental Sciences*, 25(8), 1608-1617.
- Ma, Z., Deng, J., Li, Z., Li, Q., Zhao, P., Wang, L., . . . Duan, L. (2016). Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies. *Atmospheric Environment*, 131, 164-170.
- Mahlia, T. M. I. (2002). Emissions from electricity generation in Malaysia. *Renewable Energy*, 27(2), 293-300.
- McKay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. *Chemical Engineering Journal*, 86(3), 343-368.
- Meij, R. The distribution of trace elements during the combustion of coal Environmental aspects of trace elements in coal (pp. 111 - 127). Dordrecht, The Netherlands: Kluwer Academic Publishers 1995
- Meij, R., and te Winkel, B. (2004). The emissions and environmental impact of PM10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD. *Fuel Processing Technology*, 85(6–7), 641-656.

- Meij, R., and te Winkel, H. (2006). Mercury emissions from coal-fired power stations: The current state of the art in the Netherlands. *Science of The Total Environment*, 368(1), 393-396.
- Meij, R., and te Winkel, H. (2007). The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. *Atmospheric Environment*, 41(40), 9262-9272.
- Mekhilef, S., Safari, A., Mustaffa, W. E. S., Saidur, R., Omar, R., and Younis, M. A. A. (2012). Solar energy in Malaysia: Current state and prospects. *Renewable* and Sustainable Energy Reviews, 16(1), 386-396.
- Mekhilef, S., Saidur, R., Safari, A., and Mustaffa, W. E. S. B. (2011). Biomass energy in Malaysia: Current state and prospects. *Renewable and Sustainable Energy Reviews*, 15(7), 3360-3370.
- Meneses, M., Schuhmacher, M., and Domingo, J. L. (2004). Health risk assessment of emissions of dioxins and furans from a municipal waste incinerator: comparison with other emission sources. *Environment International*, 30(4), 481-489.
- Miller, C. E., Feeley, T. J., Aljoe, W. W., Lani, B. W., Schroeder, K. T., Kairies, C., .
 . Murphy, J. T. (2006). Mercury Capture and Fate Using Wet FGD at Coal-Fired Power Plants *DOE/NETL Mercury and Wet FGD R&D*: U.S. Department of Energy Office of Fossil Energy's National Energy Technology Laboratory (DOE/NETL).
- MOH. (2011). Guidance Document on Health Risk Assessment for Solid Waste Management. Malaysia.
- Moretti, A. L., and Jones, C. S. (2012). Advanced emissions control technologies for coal-fired power plants Paper presented at the *Power-Gen Asia*, Bangkok, Thailand.
- Myllyvirta, L. (2015). Smoke & Mirrors: How Europe's biggest polluters became their own regulators. Retrieved from <u>www.greenpeace.eu</u> website: www.greenpeace.org/.../Smoke%20and%20Mirror%20final%20report.pdf
- Napier, J., Heidbrink, J., Keene, J., Li, H., Pan, W.-P., and Riley, J. T. (1996). A study of on-line analysis of chlorine during coal combustion. *American Chemical Society, Fuel Division*, 41(1), 56-61.
- NATA. (2016). NATA: Glossary of Terms. Retrieved 24 August, 2016, from https://www.epa.gov/national-air-toxics-assessment

- NCSU. (2013). The importance of excess air in the combustion process. from http://www.mae.ncsu.edu/eckerlin/courses/mae406/chapter3.pdf
- Nescaum. (2011). Control Technologies to Reduce Conventional and Hazardous Air Pollutants from Coal-Fired Power Plants. In Nescaum (Ed.). Boston.
- New Straits Times. (2011, February 17, 2011). Government pulls plug on coal-fired power plant. , *New Straits Times*.
- NIWAR. (2004). Good Practice Guide for Atmospheric Dispersion Modelling. Wellington, New Zealand: National Institute of Water and Atmospheric Research.
- Nyberg, C. M., Thompson, J. S., Zhuang, Y., Pavlish, J. H., Brickett, L., and Pletcher, S. (2009). Fate of trace element haps when applying mercury control technologies. *Fuel Processing Technology*, 90(11), 1348-1353.
- Oh, T. H. (2010). Carbon capture and storage potential in coal-fired plant in Malaysia—A review. *Renewable and Sustainable Energy Reviews*, 14(9), 2697-2709.
- Ong, H. C., Mahlia, T. M. I., and Masjuki, H. H. (2011). A review on energy scenario and sustainable energy in Malaysia. *Renewable and Sustainable Energy Reviews*, 15(1), 639-647.
- Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. *Atmospheric Environment*, 40(22), 4048-4063.
- Pai, P., Niemi, D., and Powers, B. (2000). A North American inventory of anthropogenic mercury emissions. *Fuel Processing Technology*, 65–66(0), 101-115.
- Paul, I. (1999). Supercritical coal fired power plants: A technology being successfully deployed in developing countries. *Energy Issues. The World Bank*, 19, 1-8.
- Pudasainee, D., Kim, J.-H., and Seo, Y.-C. (2009). Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea. *Atmospheric Environment*, 43(39), 6254-6259.
- Pudasainee, D., Kim, J.-H., Yoon, Y.-S., and Seo, Y.-C. (2012). Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD. *Fuel*, 93(0), 312-318.

- Pudasainee, D., Lee, S. J., Lee, S.-H., Kim, J.-H., Jang, H.-N., Cho, S.-J., and Seo, Y.-C. (2010). Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants. *Fuel*, 89(4), 804-809.
- Rahman Mohamed, A., and Lee, K. T. (2006). Energy for sustainable development in Malaysia: Energy policy and alternative energy. *Energy Policy*, 34(15), 2388-2397.
- Reddy, M. S., Basha, S., Joshi, H. V., and Jha, B. (2005). Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. *Journal of Hazardous Materials*, 123(1–3), 242-249.
- Sakulniyomporn, S., Kubaha, K., and Chullabodhi, C. (2011). External costs of fossil electricity generation: Health-based assessment in Thailand. *Renewable and Sustainable Energy Reviews*, 15(8), 3470-3479.
- Sargent and Lundy. (2009). New Coal-Fired Power Plant Performance and Cost Estimates.
- Schleicher, O., Jensen, A. A., Roots, O., Herrmann, T., and A., T. (2004). Dioxin emission from two oil shale fired power plants in Estonia. *Organohalogen Compounds*, 66, 4089-4095.
- Seangkiatiyuth, K., Surapipith, V., Tantrakarnapa, K., and Lothongkum, A. W. (2011). Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. *Journal of Environmental Sciences*, 23(6), 931-940.
- Serre, S. D., and Chun, W. L. (2009). Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor – the Effect of Coal Blending. Washington, D.C. : U.S. Environmental Protection Agency.
- Shekarchian, M., Moghavvemi, M., Mahlia, T. M. I., and Mazandarani, A. (2011). A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008. *Renewable and Sustainable Energy Reviews*, 15(6), 2629-2642.
- Sjostrom, S., Durham, M., Bustard, C. J., and Martin, C. (2010). Activated carbon injection for mercury control: Overview. *Fuel*, 89(6), 1320-1322.
- Spero, C. (1998). Walloon's coal: Their properties and power station performance.
- Staudt, J. E., and Bradley, M. J. (2011). Control Technologies to Reduce Conventional and Hazardous Air Pollutants from Coal-Fired Power Plants.

- Sumathi, S., Chai, S. P., and Mohamed, A. R. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. *Renewable and Sustainable Energy Reviews*, 12(9), 2404-2421.
- Sushil, S., and Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. *Fuel*, 85(17–18), 2676-2679.
- Swaine, D. J., and Goodarzi, F. *Environmnetal aspects of trace element in coal*. Netherlands Kluwer Academic Publisher. 1995
- Swanson, S. M., Engle, M. A., Ruppert, L. F., Affolter, R. H., and Jones, K. B. (2013). Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States. *International Journal of Coal Geology*, 113(0), 116-126.
- Świetlik, R., Trojanowska, M., and Jóźwiak, M. A. (2012). Evaluation of the distribution of heavy metals and their chemical forms in ESP-fractions of fly ash. *Fuel Processing Technology*, 95(0), 109-118.
- Tang, Q., Liu, G., Yan, Z., and Sun, R. (2012). Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China. *Fuel*, 95(0), 334-339.
- Tang, S., Wang, L., Feng, X., Feng, Z., Li, R., Fan, H., and Li, K. (2016). Actual mercury speciation and mercury discharges from coal-fired power plants in Inner Mongolia, Northern China. *Fuel*, 180, 194-204.
- The Engineering Toolbox. (2013). Optimal Combustion Processes Fuels and ExcessAirRetrieved17thOctober2013,2013,http://www.engineeringtoolbox.com/fuels-combustion-efficiency-d_167.html
- Thomas, V. M., and McCreight, C. M. (2008). Relation of chlorine, copper and sulphur to dioxin emission factors. *Journal of Hazardous Materials*, 151(1), 164-170.
- TNBF. (2010, 22 May 2010). Coal Supply & Transportation.
- Travis, C. C., Crouch, E. A. C., Milson, R., and Klema, E. D. (1987). Cancer risk management: A review of 132 regulatory decisions. 21(5): 415-420. *Environmental Science and Technology*, 21(5), 415-420.
- Turtós Carbonell, L., Meneses Ruiz, E., Sánchez Gácita, M., Rivero Oliva, J., and Díaz Rivero, N. (2007). Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of external costs. *Atmospheric Environment*, 41(10), 2202-2213.

- US EPA. (1985). Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulation) Research Triangle Park NC27711: United States Environmental Protection Agency
- US EPA. (1997). Procedures for preparing emission factors documents. Research Triangle Park, NC 27711: U.S. Environmental Protection Agency Retrieved from <u>http://nepis.epa.gov</u>.
- US EPA. (1999). Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources. Research Triangle Park NC 27711: U.S. Environmental Protection Agency Retrieved from http://nepis.epa.gov.
- US EPA. (2003). Comparison of Regulatory Design Concentrations, AERMOD vs ISCST3, CTDM Plus and ISC-PRIME. In U. S. E. P. Agency (Ed.). Research Triangle Park, North Carolina.
- US EPA. (2005a). Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. (EPA530-R-05-006).
- US EPA. (2005b). Revision to the Guideline on Air Quality Models: Adoption of a Preferred General Purpose (Flat and Complex Terrain) Dispersion Model and Other Revisions; Final Rule.
- US EPA. (2010). Available and emerging technologies for Reducing greenhouse gas emissions from coal-fired electric generating units. Sector Policies and Programs Division Office of Air Quality Planning and Standards (S. P. a. P. D. O. o. A. Q. P. a. Standards, Trans.). Research Triangle Park, North Carolina 27711: U.S. Environmental Protection Agency.
- US EPA. (2013). Estimated Risk: Background on Risk Characterization. http://www.epa.gov/ttnatw01/nata/riskbg.html
- USEPA. (2002). *EPA Air Pollution Control Cost Manual*. Research Triangle Park, North Carolina 27711.
- USEPA. (2006). An inventory of sources and environmental releases of dioxin-like compounds in the United States for the years 1987, 2995, and 2000 (N. C. f. E. Assessment, Trans.). Washington, DC: US EPA.
- Vassilev, S. V., Eskenazy, G. M., and Vassileva, C. G. (2000). Contents, modes of occurrence and behaviour of chlorine and bromine in combustion wastes from coal-fired power stations. *Fuel*, 79(8), 923-938.

- Vejahati, F., Xu, Z., and Gupta, R. (2010). Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization – A review. *Fuel*, 89(4), 904-911.
- Vogg, H., Metzger, M., and Stieglitz, L. (1987). Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid–waste incineration. *Waste Management & Research*, 5, 285-294.
- Wang, S. X., Zhang, L., Li, G. H., Wu, Y., Hao, J. M., Pirrone, N., . . . Ancora, M. P. (2010). Mercury emission and speciation of coal-fired power plants in China. *Atmospheric Chemistry and Physics*, 10, 1183-1192.
- Wang, Y.-j., Duan, Y.-f., Yang, L.-g., Jiang, Y.-m., Wu, C.-j., Wang, Q., and Yang, X.-h. (2008). Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants. *Journal of Fuel Chemistry and Technology*, 36(1), 23-29.
- Wikipedia. (2015). Ekibastuz GRES-2 Power Station Retrieved 7 December 2015, from https://en.wikipedia.org/wiki/Ekibastuz_GRES-2_Power_Station
- Wikipedia. (2016a). Energy policy of Malaysia. Retrieved 24 August, 2016, from https://en.wikipedia.org/wiki/Energy_policy_of_Malaysia
- Wikipedia. (2016b). Sarawak Energy. Retrieved 24 August, 2016, from https://en.wikipedia.org/wiki/Sarawak_Energy
- Wu, H.-L., Lu, S.-Y., Li, X.-D., Jiang, X.-G., Yan, J.-H., Zhou, M.-S., and Wang, H. (2012a). Inhibition of PCDD/F by adding sulphur compounds to the feed of a hazardous waste incinerator. *Chemosphere*, 86(4), 361-367.
- Wu, Y.-L., Rahmaningrum, D. G., Lai, Y.-C., Tu, L.-K., Lee, S.-J., Wang, L.-C., and Chang-Chien, G.-P. (2012b). Mercury emissions from a coal-fired power plant and their impact on the nearby environment. *Aerosol and Air Quality Research*, 12, 643-650.
- Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., and Sheng, C. (2004). Status of trace element emission in a coal combustion process: a review. *Fuel Processing Technology*, 85(2–3), 215-237.
- Yan, J. H., Chen, T., Li, X. D., Zhang, J., Lu, S. Y., Ni, M. J., and Cen, K. F. (2006). Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China. *Journal of Hazardous Materials*, 135(1–3), 47-51.

- Yokoyama, T., Asakura, K., Matsuda, H., Ito, S., and Noda, N. (2000). Mercury emissions from a coal-fired power plant in Japan. *Science of The Total Environment*, 259(1–3), 97-103.
- Zhang, G., Hai, J., and Cheng, J. (2012). Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China. Waste Management, 32(6), 1156-1162.
- Zhang, H., Zhang, B., and Bi, J. (2015). More efforts, more benefits: Air pollutant control of coal-fired power plants in China. *Energy*, 80, 1-9.
- Zhang, L., Zhuo, Y., Chen, L., Xu, X., and Chen, C. (2008). Mercury emissions from six coal-fired power plants in China. *Fuel Processing Technology*, 89(11), 1033-1040.
- Zhao, Y., Wang, S., Duan, L., Lei, Y., Cao, P., and Hao, J. (2008). Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. *Atmospheric Environment*, 42(36), 8442-8452.
- Zhao, Y., Wang, S., Nielsen, C. P., Li, X., and Hao, J. (2010). Establishment of a database of emission factors for atmospheric pollutants from Chinese coalfired power plants. *Atmospheric Environment*, 44(12), 1515-1523.