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ABSTRACT

Hyperthermia therapy is one of the therapy methods used for cancer treatment. 
It has shown to be an effective way of treating the cancerous tissue when compared to 
surgery, chemotherapy and radiation. However, real time monitoring method is 
capable in delivering a consistent heat and preventing any damages to the nearby 
tissue. Ultrasound is among the widely used technique in clinical setting. A-Mode 
ultrasound involves one-dimensional (1D) signal processing which enables a 
quantitative measurement on different types of breast tissues to be conducted faster as 
it has relatively simple signal processing requirement. On the other hand, B-Mode 
ultrasound offers good spatial resolution for thermal monitoring. Therefore, the aim of 
this study is to investigate and to compare the most optimum A-Mode and B-Mode 
ultrasound parameters to monitor hyperthermia in normal and pathological breast 
tissue. A series of experiment was conducted on 40 female Sprague Dawley rats. The 
pathological and normal rats were dissected and exposed to hyperthermia at variation 
temperature of 37oC (body temperature) and 40oC, 45oC, 50oC and 55oC for 
hyperthermia temperatures. A-Mode and B-Mode of 7.5 Mhz and 6Mhz was used 
simultaneously during the experiment for collecting acoustic information and scanning 
purposes before and after the hyperthermia exposure. Result obtained shows that, for 
normal tissue condition of both A-Mode and B-Mode, the attenuation calculation to 
mean of pixel intensity found to be (3.59±0.04)dB and 187.68 at temperature value of 
50 oC. Meanwhile, in pathological tissue condition, the attenuation value with respect 
to pixel intensity was obtained by (3.36±0.26)dB at temperature value of 45oC and 
199.26 was achieved at temperature value of 40oC. For backscatter coefficient to 
variance analysis, the result found that, in both A-Mode and B-Mode normal tissue 
condition, at temperature value of 40oC, (1.81±0.25) of backscatter coefficient was 
obtained while at 45oC, the variance value of 3298.94 was achieved. In pathological 
tissue, the temperature value of 40oC and 55oC was the most pronounce temperature 
dependent of (1.45±0.28) for backscatter coefficient with respect to 3275.35 of 
variance analysis. The result obtained from artificial neural network have shown that, 
91.67% to 87.5% of testing to validation percentage accuracy of A-Mode was 
achieved, while in B-Mode, 88.89% and 81.25% of testing and validation data was 
obtained. Therefore, it is shown that, the use of A-Mode with comparison to B-Mode 
ultrasound can be used as another potential approach since its attenuation to pixel 
intensity and backscatter coefficient with respect to variance of A-Mode and B-Mode 
is very sensitive to the tissue structure in monitoring hyperthermia therapy with respect 
to the changes of temperature.
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ABSTRAK

Terapi hipertermia merupakan salah satu kaedah terapi untuk rawatan kanser. 
Ia telah terbukti untuk dijadikan salah satu cara yang berkesan untuk merawat tisu 
kanser berbanding pembedahan, kemoterapi dan radiasi. Hipertermia memerlukan 
kaedah pemantauan masa yang nyata bagi meningkatkan keupayaan penghantaran 
haba yang tetap dan mencegah sebarang kecederaan terhadap tisu yang berdekatan. 
Ultra bunyi adalah teknik yang digunakan secara meluas dalam bidang klinikal. Ultra 
bunyi A-Mod melibatkan pemprosesan isyarat satu dimensi (1D) yang membolehkan 
ukuran kuantitatif dapat dijalankan dengan lebih cepat terhadap pelbagai jenis tisu 
payudara kerana ia mempunyai keperluan pemprosesan isyarat yang agak mudah. 
Malah, ultra bunyi B-Mod menawarkan resolusi spatial yang baik untuk memantau 
haba. Tujuan kajian ini adalah untuk menyiasat dan membandingkan parameter yang 
paling sesuai bagi ultra bunyi A-Mod dan ultra bunyi B-Mod dalam pemantauan 
hipertermia terhadap tisu payudara yang normal dan patologi. Satu siri eksperimen 
telah dijalankan terhadap 40 ekor tikus betina jenis Spague Dawley. Tikus patologi 
dan normal telah dibedah dan terdedah kepada hipertermia kepada pelbagai suhu 
dimana 37oC (suhu badan) dan 40oC, 45oC, 50oC dan 55oC merupakan suhu 
hipertermia. Sebanyak 7.5Mhz dan 6Mhz frekuensi A-Mod dan B-Mod telah 
digunakan serentak semasa eksperimen dijalankan bagi tujuan mengumpul dan 
mengimbas maklumat akustik sebelum dan selepas pemantauan terapi hipertermia. 
Haisl kajian menunjukkan, untuk tisu normal kedua-dua A-Mod dan B-Mod, 
pengiraan pengecilan terhadap keamatan piksel didapati (3.59±0.04)dB dan 187.68 
pada suhu 50 oC. Untuk tisu patologi, nilai pengecilan terhadap keamatan piksel telah 
diperolehi sebanyak (3.36±0.26)dB pada suhu 45oC dan 199.26 dicapai pada suhu 40 
oC. Untuk penyerakan pekali terhadap varian analisis, keputusan mendapati, untuk 
kedua-dua ultra bunyi bagi keadaan tisu normal, pada suhu 40oC, sebanyak 
(1.81±0.25) penyerakan pekali telah diperolehi dan pada suhu 45oC, varian sebanyak 
3298.94 telah dicapai. Bagi tisu patologi, suhu 40oC dan 55oC telah dipilih sebagai 
suhu paling optimum dengan perolehan penyerakan pekali sebanyak(1.45±0.28) 
terhadap analisis varian sebanyak 3275.35. Peratusan rangkaian neural A-Mod dan B- 
Mod menunjukkan, sebanyak 91.67 % dan 87.5%, 88.89% dan 81.25% daripada data 
percubaan dan data validasi dicapai. Ini menunjukkan, kegunaan ultra bunyi A-Mod 
dengan perbandingan B-Mod berpotensi dan sangat sensitif terhadap struktur tisu 
dalam memantau terapi hipertermia dengan perubahan suhu yang pelbagai.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Randomized trials on the benefits of hyperthermia therapy have been 

demonstrated over the past 20 years [1]. Hyperthermia is a cancer therapy that elevates 

the tumor to cytotoxic temperatures from 41oC to 45oC to boost in their control of 

temperature [2, 3]. Hyperthermia has proven to be potential in order to replace the 

current clinical treatment including radiotherapy and chemotherapy [2, 3, 4-8]. It has 

been applied in several diseases including breast cancer [5], glioblastoma [9], neck and 

head cancer [10], hepatocellular carcinoma [11] and lung cancer [12]. However, 

different type of thermal therapy with high temperature value have also been searched 

and investigated [13-17].

In 2012, The International Agency for Research in Cancer (GLOBOCAN) 

reported 5,410 new breast cancer cases in Malaysia, in which 50% of Malaysian 

women were diagnosed with breast cancer at an early age while 20% of women in 

developed countries were diagnosed before the age of 50 [18, 19]. Some tumors are 

very aggressive, grow much faster, and require immediate treatment. The detection of 

breast masses of breast abnormalities at the earliest stage significantly improved the 

survival rate of patients as demonstrated by group of investigators [20, 21].



2

Hence, early treatment of breast cancer is very important at this time to get rid of the 

cancer and perhaps save lives.

The application of hyperthermia therapy is now growing rapidly in medical 

field especially for treatment of benign and malignant solid tumors [22] as an 

innovative and less invasive therapy method. Hyperthermia therapy is one of the 

cancer treatments that also include surgery, chemotherapy, radiation therapy and 

immunotherapy [23]. It involves the changes and increase in body temperature over 

the threshold temperature of an organism [23]. In other words, hyperthermia is a 

process of delivering heat to cancerous tissue until its durable temperature has been 

exceeded by expose to heating ablation, including water bath and coagulation of 

microwave. The treatment could be done successfully if the temperature value of 

targeted tissues is controlled and monitored within a suitable range [24]. Hyperthermia 

treatment makes use of artificial heat, usually in the range of 40oC to 60oC, from 

external sources to destroy cancerous cells or to prevent their further growth [25]. Also, 

as reported by previous study, the temperature range of hyperthermia therapy is from 

40 to 48oC and is maintained at the treated site for a period of one hour or more [26

29]. In some cases, hyperthermia therapy is used as adjuvant therapy [26] with other 

therapy methods such as radiation to increase the tumor regression rate rather than 

radiation alone [30].

The lack of precise information available in guiding therapy has been reported 

to be a major limitation in thermal therapies [2,3,7,31-35]. In order to achieve the goals 

and competency of current and forthcoming heating devices and systems, the 

temperature distribution is routinely measured invasively. To meet the distributions of 

temperature satisfaction for the purpose of assessing thermal dosage appropriately, the 

limited number of measurement distribution could be avoided [7,32]. Multiple heating 

devices has boosted the demand for controlling measurement of temperature values 

that has potential to provide the feedback related to distribution of temperature in 

details. Thus, it improves the capability and consistency in delivering the heat source 

by achieving desired temperature value [36-40].
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Hyperthermia monitoring with the guidance of Magnetic Resonance Imaging 

(MRI) is the current gold standard in clinical setting and it is based on the concept of 

shift of proton resonance frequency. Its function is primarily for surgeons to perform 

a real-time progression assessment of in-vivo tissue necrosis [41,42]. Although MRI 

has shown to be capable in visualizing very clear and anatomically correct images, it 

is found that its performance degrades during hyperthermia treatment due to small 

temperature interval changes [43]. In contrast to ultrasound system, investigation into 

clinical trials in hyperthermia therapy using A-Mode has not yet been tested in clinical 

setting although it is an attractive modality with a simple signal processing approach 

for data acquisition. Previous study has been focused only on applying heat to study 

properties of tissue. Hence a comparison between A-Mode and B-Mode ultrasound 

performance is not reported. However, B-Mode ultrasound is more widely accepted in 

clinical environment for hyperthermia therapy as compared to A-Mode. Notably, it is 

sensitive to temperature change, requires simple signal processing and provides good 

spatial resolution [44]. Additionally B-Mode ultrasound is widely used and capable to 

evaluate the different kind of tumors and frequently applied in guiding the biopsies 

especially for breast, liver, thyroid, ovarian, kidney, prostate and uterine [45,46]. 

Technically, the monitoring approaches of B-Mode are based on variation in acoustic 

speed, [47-49], energy of backscattered pulsed ultrasound and acoustic nonlinear 

parameter imaging [49-51]. Although B-Mode system is widely accepted among 

clinicians, the presence of motion artefacts and degradation of image contrast is the 

biggest challenge and limitation experienced by B-Mode in hyperthermia therapy, 

which affects the performance of treatment as a whole.

Therefore, this research was conducted to further search and analyse the 

potential and its effectiveness of A-Mode ultrasound in monitoring hyperthermia in 

comparison to B-Mode ultrasound system. Both of this ultrasound system is relevant 

to be use in this study specifically to monitor temperature during hyperthermia 

monitoring because this technique is relatively inexpensive, portable and can be easily 

employed in almost any current heating monitoring system with little concern about 

system compatibility.
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Ultrasound is an attractive medical device compared with the other medical 

imaging modality, as it offers at low cost, non-ionizing, portable, easy to access and 

yet compatible [41]. This study will help to improve the overall hyperthermia therapy 

reliability to be accepted in clinical practice while assisting physicians and medical 

practitioners in monitoring hyperthermia treatment efficiently with minimal 

intervention.

1.2 Problem Statement

MRI is the current gold standard in hyperthermia monitoring. It is based on 

the quantification of shifts in the proton resonance frequency. However, this modality 

becomes more complex during hyperthermia monitoring and the cost itself is 

expensive in clinical applications [52,53]. Due to the requirement of significant 

facilities and capital investment with advancement of complexity heating devices, it 

limits the current usage though it appear to have spatial resolution satisfaction [54]. In 

addition, MRI requires capital investment and labour-intensive [43]. Ultrasound is a 

widely used modality in hyperthermia monitoring, as it is non-ionizing and has 

capability in giving real-time image acquisition for rapid monitoring of physiological 

changes and temperature values [55,56]. However, A-Mode ultrasound is not yet tested 

in clinical setting for hyperthermia therapy monitoring though it has simple 

requirement for signal processing. Additionally, B-Mode ultrasound is available at low 

cost, accessible, portable and compatible with other medical imaging modality [57].

Despite the wide acceptance in using B-Mode ultrasound for hyperthermia 

monitoring, this modality itself experiences certain limitations including insufficient 

image contrast and motion artefacts [58-63]. To resolve this problem, further 

investigation on the effectiveness of using A-Mode ultrasound performance in 

monitoring hyperthermia therapy in comparison to B-Mode ultrasound system was 

conducted.
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In this study, a set of preclinical ex-vivo studies are carried out on both normal 

and pathological tissues that are harvested from animal models in order to observe the 

relationship between ultrasonic parameters of A-Mode signals and B-Mode images 

with the microstructural changes occurring in normal and pathological tissue samples. 

The subjects were dissected and exposed to hyperthermia at various temperatures of 

37oC (body temperature) and 40oC, 45oC, 50oC and 55oC for hyperthermia 

temperatures. This indicates the progression of tissue necrosis during hyperthermia 

treatment. Additionally, a classification study is also conducted to compare the 

performance accuracy of A-Mode with the widely used B-Mode ultrasound technique 

via ANN in Matlab offline environment in which hyperthermia treatment method has 

recently displayed the potential to be promising as an adjuvant breast cancer treatment 

method in clinical setting.

1.3 Research Objectives

The main objective of this research is to investigate the accuracy of A-Mode 

ultrasound as a hyperthermia monitoring method in comparison to B-Mode ultrasound. 

Specifically, this study aims are as follows:

i. To identify the A-Mode and B-Mode ultrasound parameters that are 

sensitive to changes in temperature and tissue structure

ii. To compare the performance of A-Mode and B-Mode ultrasound in 

monitoring tissue denaturation process in hyperthermia treatment using 

ANN
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1.4 Scope of Research

This research has been carried out to study the feasibility of A-Mode 

ultrasound and to compare its performance in B-Mode ultrasound as a monitoring 

method in hyperthermia therapy with variation of temperature value from 37 oC - 55oC. 

Specifically, the scope of this study is to identify the main parameter of A-Mode and 

B-Mode ultrasound that are sensitive to tissue denaturation during hyperthermia.

It involves the measurement of the attenuation and backscatter coefficients for 

A-Mode and determination of pixel value and standard deviation for B-Mode. The 

performance percentage of A-Mode and B-Mode ultrasound in monitoring tissue 

denaturation process in hyperthermia treatment using ANN will then be compared. For 

this purpose, a series of experiments was conducted on 40 female Sprague Dawley rats 

in which 30 pathological rats were used as pathological study and 10 healthy rats were 

used for control group purposes in order to assess the potentiality and the effectiveness 

on the overall system. The experimental outcomes are fed to signal and image 

processing for performance measurements and the water bath method is used to mimic 

the real hyperthermia procedure.

1.5 Significance of Study

In this study, three main purposes that have been addressed. First, this study is 

conducted to identify the A-Mode and B-Mode parameters that are sensitive to changes 

in temperature and tissue structure and second, to compare the performance of A-Mode 

and B-Mode in monitoring tissue denaturation process in hyperthermia treatment using 

ANN. To date, MRI is the current gold standard in hyperthermia therapy.
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Due to the requirement of significant facilities and capital investment with 

advancement of complexity heating devices, it limits the current usage though it appear 

to have spatial resolution satisfaction [54]. A-Mode ultrasound is no longer tested for 

hyperthermia therapy monitoring, although it provides simple signal processing; 

however, B-Mode ultrasound is widely used for hyperthermia therapy in clinical 

setting. While it has been widely accepted in clinical environment, B-Mode ultrasound 

has certain limitations, especially in terms of contrast and motion artefacts of image 

itself. Hence, further investigation on the effectiveness of using A-Mode ultrasound 

performance in monitoring hyperthermia therapy in comparison to B-Mode ultrasound 

system was conducted as solution to this issue.

The signal energy of breast tissue was monitored using A-mode and B-mode 

scanner before and after heating exposure of the breast at different temperature values 

of 37oC as body temperature and followed by 40oC, 45oC, 50oC and 55oC, as 

monitoring temperatures respectively. The success of this study will help to provide a 

simple and safe method in monitoring local hyperthermia therapy using A-Mode 

ultrasound.

1.6 Thesis Structure Organization

The outline of this thesis is comprised of five chapters. Chapter 1 discusses the 

introduction to several primary point of view including research overview, research 

objectives, problem statement, scope of work, significance of study and as well as 

thesis outline. Brief reviews and discussions relevant to this study was delivered in 

chapter 2, especially in breast cancer treatment, hyperthermia therapy and ultrasonic 

parameter in hyperthermia monitoring. Next, methodological approach that was 

enrolled in study is explained in detail which includes the modelling processing and 

designation of system, experimental procedure and ultrasonic data analysis of signal 

and image processing via Matlab. Results and discussions are presented and discussed
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in chapter 4. Finally, summary of all the findings was delivered in chapter 5 with 

several recommendations that possible could be done in future work.



REFERENCES

1. Van der Zee J. Heating the Patient: A Promising Approach? Ann Oncol, 2002. 
13:1173-1184..

2. Dewhirst, M., Prosnitz, L., Thrall, D., Prescott, D., Cleff, S., Charles, C., 
Macfall, J., Rosner, G., Samulski, T., Gillette, E., LaRue, S., Hyperthermic 
Treatment of Malignant Diseases: Current Status and a View Toward the 
Future. Seminars in Oncology, 1997. 24:616-625.

3. Myerson, R.J., Moros, E., RotiRoti, J.L., Hyperthermia. In: Perez CA, Brady 
LW, editors. Principles and Practice of Radiation Oncology. 3rd ed. 
Philadelphia: Lippincott-Raven; 1998. 637-683.

4. Overgaard, J., Gonzales, D., Hulshof, M., Arcangeli, G., Dahl, O., Mella, O., 
Bentzen, S., Hyperthermia as an adjuvant to radiation therapy of recurrent or 
metastatic malignant melanoma. A multicenter randomized trial by the 
European Society for Hyperthermic Oncology. International Journal of 
Hyperthermia, 1996. 12:3-20.

5. Vernon, C., Hand, J., Field, S., Machin, D., Whaley, J., Van der Zee, J., Lez, 
Liu, Goodman, P., Sherar M. Radiotherapy with or without hyperthermia in the 
treatment of superficial localized breast cancer: Results from five randomized 
controlled trials. International Journal o f Radiation Oncology, Biology & 
Physics, 1996. 35:731-744.

6. Lee, H.K., Antell, A.G., Perez, C.A., Straube, W.L., Ramachandran, G., 
Myerson, R.J, Emami, B., Molmenti, E.P., Buckner, A., Lockett, M.A., 
Specific absorption rate as a predictor of outcome in superficial tumors treated 
with hyperthermia and radiation therapy. International Journal o f Radiation 
Oncology, Biology & Physics, 1998. 40:365-375.

7. Myerson, R.J., Straube, W.L., Moros, E.G., Emami, B.N., Lee, H.K., Perez, 
C.A., Taylor, M.E., Simultaneous superficial hyperthermia and external 
radiotherapy: report of thermal dosimetry and tolerance to treatment. 
International Journal o f Hyperthermia, 1999. 15:251-266.



102

8. Van der Zee, J., Gonzalez, D., Van Rhoon, G., Van Dijk, J., Van Putten, W., 
Hart, A., Comparison of radiotherapy alone with radiotherapy plus 
hyperthermia in locally advanced pelvic tumours: A prospective, randomised, 
multicentre trial. The Lancet, 2000. 355:1119-1125.

9. Sneed, P.K., Stauffer, P.R., McDermott, M.W., et al., Survival benefit of 
hyperthermia in a prospective randomized trial of brachytherapy boost + /- 
hyperthermia for glioblastoma multiforme. Int JRadiat Oncol Biol Phys, 1998. 
40:287- 295.

10. Moffat, F.L., Rotstein, L.E., Calhoun, K., et al., Palliation of advanced head 
and neck cancer with radiofrequency hyperthermia and cytotoxic 
chemotherapy. Can JSurg, 1984. 27:38-41.

11. Kim, S.K., Lim, H.K., Kim, Y.H., et al., Hepatocellular carcinoma treated with 
radio-frequency ablation: spectrum of imaging findings. Radiographics, 2003. 
23:107-121.

12. Simon, C.J., Dupuy, D.E., DiPetrillo, T.A., et al., Pulmonary radiofrequency 
ablation: long-term safety and efficacy in 153 patients. Radiology, 2007. 
243:268-275.

13. Hynynen, K., Chung, A., Fjield, T., Buchanan, M., Daum, D., Colucci, V., 
Lopath, P., Jolesz, F., Feasibility of using ultrasound phased arrays for MRI 
monitored noninvasive surgery. IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, 1996. 43:1043-1053.

14. Ter Haar, G.R., High intensity focused ultrasound for the treatment of tumors. 
Echocardiography, 2001. 18:317-322.

15. Sherar, M.D., Gertner, M.R, Yue, C.K., O’Malley, M.E., Toi. A., Gladman, 
A.S., Davidson, S.R., Trachtenberg, J., Interstitial microwave thermal therapy 
for prostate cancer: Method of treatment. Journal o f Urology, 2001. 166:1707
1714.

16. McCann, C., Kumaradas, J.C., Gertner, M.R., Davidson, S.R., Dolan, A.M., 
Sherar, M.D., Feasibility of salvage interstitial microwave thermal therapy for 
prostate. Physics in Medicine and Biology, 2003. 48:1041- 1052.

17. Tempany, C.M., Stewart, E.A., McDannold, N., Quade, B.J., Jolesz, F.A., 
Hynynen, K., MR imaging-guided focused ultrasound surgery of uterine 
leiomyomas. Radiology, 2003. 226:897-905.



103

18. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., et al., GLOBOCAN 2012
: Cancer Incidence and Mortality Worldwide. Lyon, Fr. Int. Agency Res.
Cancer. 2013, 11.

19. Yip, C.H., Pathy, N.B., Teo, S.H., A Review of Breast Cancer Research in 
Malaysia, 2014. 69:8-22.

20. Tabar, L., Vitak, B., Chen, H.HT., Yen, M.F., Duffy, S.W., and Smith, R.A.,
Beyond Randomized Trials: Organized Mammographic Screening
Substantially Reduces Breast Carcinoma Mortality. Cancer, 2001. 91:1724 -  
1731.

21. Andersson, I., and Ryden, S., Early Detection and Prevention: Benefits, Costs 
and Limitations of Screening. Breast Cancer: New Horisons in Research and 
Treatment, Tobias, J.S., Houghton, J., and Henderson, I.C. eds. London: 
Arnold, 2001. 105-117.

22. Kennedy, J.E., High-intensity focused ultrasound in the treatment of solid 
tumours. Nature Reviews: Cancer, March 2005. 5(4): 321-327.

23. Dewhirst, M.W., Gibbs, F.A., Jr., Roemer, R.B., Samulski, T.V., Gunderson, 
L.L., Tepper, J.E., Hyperthermia in cancer treatment. 1st ed. Chapter 14. New 
York, NY: Churchill Livingstone, Clinical Radiation Oncology, 2000. 256-82

24. Bailey, M.R., Khokhlova, V.A., Sapozhnikov, O.A., Kargl, S.G., Crum, L.A., 
Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust 
Phys, 2003. 49(4):369-388.

25. Chichel, A., Skowronek, J., Kubaszewska, M., Kanikowski, M., Hyperthermia: 
Description of a method and a review of clinical applications. Reports Pract. 
Oncol. Radiother, 2007. 12:267-275.

26. J Sneed, P.K., Stauffer, P.R., Li, G.C., Stege, G.J.J., Hyperthermia.In: Leibel 
SA, Phillips TL (eds.). Textbook o f Radiation Oncology. 2nd ed. Chapter 70. 
Saunders, 2004. 1569-96.

27. Wust, P., Hildebrandt, B., Sreenivasa, G., et al., Hyperthermia in combined 
treatment of cancer. Lancet Oncol, 2002. 3: 487-497.

28. Falk, M.H., Issels, R.D., Hyperthermia in oncology. Int J  Hyperthermia, 2001. 
17(1): 1-18.



104

29. Overgaard, J., Horsman, M.R., Hyperthermia. In: Steel, G.G., Basic clinical 
radiobiology. 2nd ed. Edward Arnold, 1997, 212.

30. Kim, J.H., Hahn, E.W., Ahmed, S.A., Combination hyperthermia and radiation 
therapy for malignant melanoma. Cancer, 1982. 50(3): 478-82.

31. Dewhirst, M., Sim, D., Sapareto, S., Coner, W., Importance of minimum tumor 
temperature in determining early and long-term responses of spontaneous 
canine and feline tumors to heat and radiation. Cancer Research, 1984. 44:43
50.

32. Myerson, R., Perez, C., Emami, B., Straube, W., Kuske, R., Leybovich, L., 
VonGerichten, D., Tumor control in longterm survivors following superficial 
hyperthermia. International Journal o f Radiation Oncology, Biology & 
Physics, 1990. 18:1123-1129.

33. Leopold, K., Dewhirst, M., Samulski, T., Dodge, R., George, S., Blivin, J., 
Progsnitz, L., Oleson, J., Relationships among tumor temperature, treatment 
time, and histopathological outcome using preoperative hyperthermia with 
radiation in soft tissue sarcomas. International Journal o f Radiation Oncology, 
Biology & Physics, 1992. 22:989-998.

34. Hand, J., Machin, D., Vernon, C., Whaley, J., Analysis of thermal parameters 
obtained during phase III trials of hyperthermia as an adjunct to radiotherapy 
in the treatment of breast carcinoma. International Journal o f Hyperthermia, 
1997. 13:343-364.

35. Dewhirst, M.W., Sneed, P.K., Those in gene therapy should pay closer 
attention to lessons from hyperthermia. International Journal o f Radiation 
Oncology, Biology & Physics, 2003. 57:597-600.

36. Underwood, H.R., Burdette, E.C., Ocheltre, K.B., Magin, R.L., A multi 
element ultrasonic hyperthermia applicator with independent element control. 
International Journal o f Hyperthermia, 1987. 3:257-267.

37. Samulski, T.V., Grant, W.J., Oleson, J.R., Leopold, K.A., Dewhirst, M.W., 
Vallario, P., Blivin. J., Clinical experience with a multi-element ultrasonic 
hyperthermia system: Analysis of treatment temperatures. International 
Journal o f Hyperthermia, 1990. 6:909-922.

38. Stauffer, P., Rossetto, F., Leoncini, M., Gentilli, G., Radiation patterns of dual 
concentric conductor microstrip antennas for superficial hyperthermia. IEEE 
Transactions on Biomedical Engineering, 1998. 45:605-613.

39. Moros, E.G., Fan, X., Straube, W.L., Experimental assessment of power and 
temperature penetration depth control with a dual frequency ultrasonic system. 
Medical Physics, 1999. 26:810-817.



105

40. Novak, P., Moros, E.G., Straube, W.L., Myerson, R.J., SURLAS: a new 
clinical grade ultrasound system for sequential or concomitant thermos 
radiotherapy of superficial tumors: applicator description. Medical Physics, 
2005. 32:230-240.

41. McDannold, N., Quantitative MRI-based temperature mapping based on the 
proton resonant frequency shift: review of validation studies. Int. J. 
Hyperthermia, 2005. 21: 533-546.

42. Bolomey, J.C., LeBihan, D., Mizushina, S., Recent trends in noninvasive 
thermal control. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C., (eds) 
Principles and practice of thermoradiotherapy and thermochemotherapy. 
Recent trends in noninvasive thermal control thermo-radiotherapy and thermo
chemotherapy. Springer, Heidelberg, 1995. 1:361-379.

43. Zhou, Y.F., Syed Arbab, A., Xu, R.X., High intensity focused ultrasound in 
clinical tumor ablation. World J  Clin Oncol, 2011. 2:8-27.

44. Bazan, I., Vazquez, M., Ramos, A., Vera, A., Leija, L., A performance analysis 
of echographic ultrasonic techniques for non-invasive temperature estimation 
in hyperthermia range using phantoms with scatterers. Ultrasonics, 2009. 
49:358-376.

45. Damianou, C.A., Sanghvi, N.T., Fry, F.J., MaassMoreno R. Dependence of 
ultrasonic attenuation and absorption in dog soft tissues on temperature and 
thermal dose. Journal o f the Acoustical Society o f America, 1997. 102:628
634.

46. Worthington, A.E., Trachtenberg, J., Sherar, M.D., Ultrasound properties of 
human prostate tissue during heating. Ultrasound in Medicine & Biology,
2002. 28:1311-1318.

47. Liu, X., Gong, X., Yin, C., Li, J., Zhang, D., Non-invasive estimation of 
temperature elevations in biological tissues using acoustic non-linearity 
parameter imaging. Ultrasound Med Biol, 2008. 34:414-424.

48. Clarke, R.L., Bush, N.L., Haar, G.R., The changes in acoustic attenuation due 
to in vitro heating. Ultrasound in Medicine & Biology, 2003. 29:127-135.

49. Techavipoo, U., Varghese, T., Chen, Q., Stiles, T.A., Zagzebski, J.A., Frank, 
G.R., Temperature dependence of ultrasonic propagation speed and attenuation 
in excised canine liver tissue measured using transmitted and reflected pulses. 
Journal o f the Acoustical Society o f America, 2004. 115:2859-2865.

50. Ribault, M., Chapelon, J., Cathignol, D., Gelet, A., Differential attenuation 
imaging for the characterization of high intensity focused ultrasound lesions. 
Ultrasonic Imaging, 1998. 20:160-177.



106

51. Straube, W.L., Arthur, R.M., Theoretical estimation of the temperature 
dependence of backscattered ultrasonic power for noninvasive thermometry. 
Ultrasound in Medicine and Biology, 1994. 20:915-922.

52. Carter, D., Mc Fall, J., Clegg, S.T., Wan, X., Prescott, D., Charles, H., 
Samulski, T., Magnetic resonance thermometry during hyperthermia for 
human high grade sarcoma. Int J  Radiat Oncol Biol Phys, 1998. 4(4):815-822.

53. Nadobny, J., Wlodarezyk, W., Westhoff, L., Gellermann, J., Felix, R., Wust, 
P., A clinical water coated antenna applicator for MR-controlled deep-body 
hyperthermia. A comparison of calculated and measured 3D temperature data 
sets. IEEE Trans BiomedEng, 2005. 52(3):505-519.

54. Arthur, R.M., Basu, D., Guo, Y., Trobaugh, J.W., Moros, E.G., 3D in vitro 
estimation of temperature using the change in backscattered ultrasonic energy. 
IEEE Trans Ultrason Ferroelectr Freq Control, 2010. 57(8):1724-33.

55. Orsi, F., Zhang, L., Arnone, P., Bonomo, G., Della Vigna P., Monfardini, L., 
et al., High intensity focused ultrasound (HIFU) ablation: effective and safe 
therapy for solid tumors at difficult locations. AJR Am J  Roentgenol, 2010. 
195(3):245-52.

56. Zhang, L., Zhu, H., Jin, C., Zhou, K., Li, K., Su, H., et al., High intensity 
focused ultrasound (HIFU): effective and safe therapy for hepatocellular 
carcinoma adjacent to major hepatic veins. Eur Radiol, 2009. 19:437-445.

57. Li Sheng., Pei Hong Wu., Magnetic resonance image guided versus ultrasound- 
guided high-intensity focused ultrasound in the treatment of breast cancer. 
Chin J  Cancer, 2013. 32(8):441-452.

58. Hill, C.R., ter Haar, G.R., High intensity focused ultrasound potential for 
cancer treatment. Br JRadiol,1995. 68:1296-1303.

59. Hsiao, Y.S., Focused ultrasound thermal therapy monitoring using ultrasound, 
infrared thermal, and photoacoustic imaging techniques (Ph.D. dissertation at 
the University of Michigan) 2013.

60. Hynynen, K., Vykhodtseva, N.I., Chung, A., Sorrentino, V., Colucci, V., 
Jolesz, F.A., Thermal effects of focused ultrasound on the brain: determination 
with MR imaging. Radiology, 1997. 204:247-253.

61. Rangraz, P., Behnam, H., Tayakkoli, J., Nakagami., Imaging for detecting 
thermal lesions induced by high-intensity focused ultrasound in tissue. Proc 
Inst Mech Eng, Part H: J  Eng Med, 2014. 228(1):19-26.

62. Haar, G.R., Ultrasound focal beam surgery. Ultrasound Med Bio, 1995. 
21:1089-1100.



107

63. Zhang, S., Wan, M., Zhong, H., Xu, C., Liao, Z., Liu, H., et al., Dynamic 
changes of integrated backscatter, attenuation coefficient and bubble activities 
during high intensity focused ultrasound (HIFU) treatment. Ultrasound Med 
Biol, 2009. 35(11): 1828-1844.

64. Zipes, D.P., Haissaguerre, M., (eds). Catheter Ablation of Arrhythmias. 2nd 
ed. New York, NY: Futura Publishing Co, 2002.

65. Manaf, NA., Aziz, MN., Ridzuan, DS., Mohamad Salim, MI., Wahab, AA., 
Lai, KW., Hum, YC., Feasibility of A-mode Ultrasound Attenuation as a 
Monitoring Method of Local Hyperthermia Treatment. Journal o f Medical and 
Biological Engineering and Computing, 2016. 54:967-981.

66. Sullivan, L.D., McLoughlin, M.G., Goldenberg, L.G., Gleave, M.E., Marich, 
K., Early experience with high-intensity focused ultrasound for the treatment 
of benign prostatic hypertrophy. Br J  Urol, 1997. 79:172-176.

67. Elham, S., Michael, K., Transmission Ultrasound Imaging to guide Thermal 
Therapy. IEEE Ultrasonics Symposium, 2007. 1812-1815.

68. Z. Zhao., F. Wu., Minimally-invasive thermal ablation of early-stage breast 
cancer: A systemic review. Journal of Cancer Surgery, 2010. 36:1149-1155.

69. Kudo, M., Local ablation therapy for hepatocellular carcinoma: current status 
and future perspective. J. Gastroenterol, 2004. 39:205-214.

70. Chiou, S.Y., Liu, J.B., Needleman, L., Current status of sonographically guided 
radiofrequency ablation techniques. J  Ultrasound Med, 2007. 26:487-499.

71. Jeffrey, S.S., Birdwell, R.L., Ikeda, D.M., et al., Radiofrequency ablation of 
breast cancer: first report of an emerging technology. Arch Surg, 1999. 
134:1064-8.

72. Izzo, F., Thomas, R., Delrio, P., et al., Radiofrequency ablation in patients with 
primary breast carcinoma: a pilot study in 26 patients. Cancer, 2001. 92:2036
44.

73. Burak Jr, W.E., Agnese, D.M., Povoski, S.P., et al., Radiofrequency ablation 
of invasive breast carcinoma followed by delayed surgical excision. Cancer,
2003. 98:1369-76.

74 Hayashi, A.H., Silver, S.F., van der Westhuizen, N.G., et al., Treatment of
invasive breast carcinoma with ultrasound-guided radiofrequency ablation. Am 
J  Surg, 2003. 185:429-35.

75. Fornage, B.D., Sneige, N., Ross, M.I., et al., Small (< or % 2-cm) breast cancer
treated with US-guided radiofrequency ablation: feasibility study. Radiology,
2004. 231:215-24.



108

76. Earashi, M., Noguchi, M., Motoyoshi, A., Fujii, H., Radiofrequency ablation 
therapy for small breast cancer followed by immediate surgical resection or 
delayed mammotome excision. Breast Cancer, 2007. 14:39-47.

77. Imoto, S., Wada, N., Sakemura, N., Hasebe, T., Murata, Y., Feasibility study 
on radiofrequency ablation followed by partial mastectomy for stage I breast 
cancer patients. Breast, 2009. 18:130-4.

78. Medina Franco, H., Soto Germes, S., Ulloa Go'mez, J.L., et al., 
Radiofrequency ablation of invasive breast carcinomas: a phase II trial. Ann 
Surg Oncol, 2008. 15:1689-95.

79. Manenti, G., Bolacchi, F., Perretta, T., et al., Small breast cancers: in vivo 
percutaneous US-guided radiofrequency ablation with dedicated cool tip 
radiofrequency system. Radiology, 2009. 251:339-46.

80. Susini, T., Nori, J., Olivieri, S., et al., Radiofrequency ablation for minimally 
invasive treatment of breast carcinoma. A pilot study in elderly inoperable 
patients. Gynecol Oncol, 2007. 104:304-10.

81. Marcy, P.Y., Magne, N., Castadot, P., Bailet, C., Namer, M., Ultrasound- 
guided percutaneous radiofrequency ablation in elderly breast cancer patients: 
preliminary institutional experience. Br J  Radiol, 2007. 80:267-73.

82. Oura, S., Tamaki, T., Hirai, I., et al., Radiofrequency ablation therapy in 
patients with breast cancers two centimeters or less in size. Breast Cancer, 
2007. 14:48-54.

83. Dowlatshahi, K., Francescatti, D.S., Bloom, K.J., Laser therapy for small 
breast cancers. Am J  Surg, 2002. 184:359-63.

84. Korourian, S., Klimberg, S., Henry Tillman, R., et al., Assessment of 
proliferating cell nuclear antigen activity using digital image analysis in breast 
carcinoma following magnetic resonance-guided interstitial laser 
photocoagulation. Breast J, 2003. 9:409-13.

85. Haraldsdottir, K.H., Ivarsson, K., Gotberg, S., Ingvar, C., Stenram, U., 
Tranberg, K.G., Interstitial laser thermotherapy (ILT) of breast cancer. Eur J  
Surg Oncol, 2008. 34:739-45.

86. Dowlatshahi, K., Dieschbourg, J.J., Bloom, K.J., Laser therapy of breast cancer 
with 3-year follow-up. Breast J, 2004. 10:240-3.



109

87. Akimov, A.B., Seregin, V.E., Rusanov, K.V., et al., Nd: YAG interstitial laser 
thermotherapy in the treatment of breast cancer. Lasers Surg Med, 1998. 
22:257-67.

88. Chunlan, Y., Hao, Z., Shuicai, W., Yanping, B., Hongjian, G., Correlations 
Between B-Mode Ultrasonic Image Texture Features and Tissue Temperature 
in Microwave Ablation. J  Ultrasound Med, 2010. 29:1787-1799.

89. Gardner, R.A., Vargas, H.I., Block, J.B., et al., Focused microwave phased 
array thermotherapy for primary breast cancer. Ann Surg Oncol, 2002. 9:326
32.

90. Vargas, H.I., Dooley, W.C., Gardner, R.A., et al., Focused microwave phased 
array thermotherapy for ablation of early-stage breast cancer: results of thermal 
dose escalation. Ann Surg Oncol, 2004. 11:139-46.

91. Vargas, H.I., Dooley, W.C., Gardner, R.A., Gonzalez, K.D., Heywang Ko 
brunner, S.H., Fenn, A.J., Success of sentinel lymph node mapping after breast 
cancer ablation with focused microwave phased array thermotherapy. Am J  
Surg, 2003. 186:330-2.

92. A. Szent-Gyorgyi, Chemical and biological effects of ultra-sonic radiation. 
Nature131, 1933. 278

93. J.G. Lynn., R.L. Zwemer., A.J. Chick., The biological application of focused 
ultrasonic waves. Science, 1942. 96(2483):119-120.

94. P.D. Wall., W.J. Fry., R. Stephens., D. Tucker., J.Y. Lettvin., Changes 
produced in the central nervous system by ultrasound. Science, 1951. 
114(2974): 686-687.

95. W.J. Fry., J.W. Barnard., F.J. Fry., R.F. Krumins., J.F. Brennan., Ultrasonic 
lesions in the mammalian central nervous system. Science, 1955. 122(3168): 
517-518.

96. F.J. Fry., H.W. Ades., W.J. Fry., Production of reversible changes in the central 
nervous system by ultrasound. Science, 1958. 127(3289):83-84.

97. F.A. Jolesz., N. McDannold., Current status and future potential of MRI- 
guided focused ultrasound surgery. J. Magn. Reson. Imaging, 2008. 27:391
399.



110

98. K. Hynynen., MRI-guided focused ultrasound treatments. Ultrasonics, 2010. 
50:221-229.

99. P.S. Yarmolenko., E.J. Moon., C. Landon., A. Manzoor., D.W. Hochman., B.L. 
Viglianti., M.W. Dewhirst., Thresholds for thermal damage to normal tissues: 
an update. Int. J. Hyperthermia, 2011. 27:320-343.

100. G. Ter Haar., C. Coussios., High intensity focused ultrasound: physical 
principles and devices. Int. J. Hyperthermia, 2007 23:89-104.

101. N.M. Hijnen., E. Heijman., M.O. Kohler., M. Ylihautala., G.J. Ehnholm., A.W. 
Simonetti., H. Grull., Tumour hyperthermia and ablation in rats using a clinical 
MR-HIFU system equipped with a dedicated small animal set-up. Int. J. 
Hyperthermia, 2012. 28(2):141-155.

102. M. de Smet., E. Heijman., S. Langereis., N.M. Hijnen., H. Grull., Magnetic 
resonance imaging of high intensity focused ultrasound mediated drug delivery 
from temperature-sensitive liposomes: an in vivo proof-of-concept study. J. 
Control. Release, 2011. 150:102-110.

103. A.H. Negussie., P.S. Yarmolenko., A. Partanen., A. Ranjan., G. Jacobs., D. 
Woods., H. Bryant., D. Thomasson., M.W. Dewhirst., B.J. Wood., M.R. 
Dreher., Formulation and characterization of magnetic resonance imageable 
thermally sensitive liposomes for use with magnetic resonance-guided high 
intensity focused ultrasound. Int. J. Hyperthermia, 2011. 27:140-155.

104. Wu, F., Wang, Z.B., Cao, Y.D., et al., A randomised clinical trial of high 
intensity focused ultrasound ablation for the treatment of patients with 
localized breast cancer. Br J  Cancer, 2003. 89:2227-33.

105. Gianfelice, D., Khiat, A., Amara, M., Belblidia, A., Boulanger, Y., MR 
imaging- guided focused ultrasound surgery of breast cancer: correlation of 
dynamic contrast-enhanced MRI with histopathologic findings. Breast Cancer 
Res Treat, 2003. 82:93-101.

106. Furusawa, H., Namba, K., Thomsen, S., et al., Magnetic resonance-guided 
focused ultrasound surgery of breast cancer: reliability and effectiveness. J  Am 
Coll Surg, 2006. 203:54-63.

107. Gianfelice, D., Khiat, A., Boulanger, Y., Amara, M., Belblidia, A., Feasibility 
of magnetic resonance imaging-guided focused ultrasound surgery as an 
adjunct to tamoxifen therapy in high-risk surgical patients with breast 
carcinoma. J  Vasc Interv Radiol, 2003. 14:1275-82.



111

108. Furusawa, H., Namba, K., Nakahara, H., et al., The evolving non-surgical 
ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast 
Cancer, 2007. 14:55-8.

109. Cline, H.E., Hynynen, K., Schneider, E., et al., Simultaneous magnetic 

resonance phase and magnitude temperature maps in muscle. Magn Reson 

Med, 1996. 35(3):309-315.

110. Hutchinson, E., Dahleh, M., Hynynen, K., The feasibility of MRI feedback

control for intra cavitary phased array hyperthermia treatments. Int J

Hyperthermia, 1998. 14(1):39-56.

111. James, R., MacFall Brian, J., Soher., MR Imaging in Hyperthermia. Radio 
Graphics, 2007. 27:1809-1818

112. Delannoy, J., LeBihan, D., Hoult, D.I., Levin, R.L., Hyperthermia system 
combined with a magnetic resonance imaging unit. Med Phys, 1990. 17(5): 
855-860.

113. Jolesz, F.A., Bleier, A.R., Jakab, P., Ruenzel, P.W., Huttl, K., Jako, G.J., MR 
imaging of laser-tissue interactions. Radiology, 1988. 168(1):249-253.

114. Clegg, S.T., Das, S.K., Zhang, Y., Macfall, J., Fullar, E., Samulski, T.V.,
Verification of hyperthermia model method using MR thermometry. Int J
Hyperthermia, 1995. 11(3):409-424.

115. Craciunescu, O.I., Samulski, T.V., MacFall, J.R., Clegg, S.T., Perturbations in 
hyperthermia temperature distributions associated with counter-current flow: 
numerical simulations and empirical verification. IEEE Trans Biomed Eng, 
2000. 47(4):435-443.

116. Craciunescu, O.I., Das, S.K., McCauley, R.L., MacFall, J.R., Samulski, T.V., 
3D numerical reconstruction of the hyperthermia induced temperature 
distribution in human sarcomas using DE-MRI measured tissue perfusion: 
validation against non-invasive MR temperature measurements. Int J  
Hyperthermia, 2001. 17(3):221-239.

117. MacFall, J.R., Prescott, D.M., Charles, H.C., Samulski, T.V., 1H MRI phase 
thermometry in vivo in canine brain, muscle, and tumor tissue. Med Phys,
1996. 23(10):1775-1782.



112

118. Craciunescu, O.I., Raaymakers, B.W., Kotte, A.N., Das, S.K., Samulski, T.V., 
Lagendijk, J.J., Discretizing large traceable vessels and using DE-MRI 
perfusion maps yields numerical temperature contours that match the MR 
noninvasive measurements. Med Phys, 2001. 28(11):2289-2296.

119. Samulski, T.V., Clegg, S.T., Das, S., MacFall, J., Prescott, D.M., Application 
of new technology in clinical hyperthermia. Int J  Hyperthermia, 1994. 
10(3):389-394.

120. Samulski, T.V., MacFall, J., Zhang, Y., Grant, W., Charles, C.. Non-invasive 
thermometry using magnetic resonance diffusion imaging: potential for 
application in hyperthermic oncology. Int J  Hyperthermia, 1992. 8(6):819-829.

121. Samulski, T.V., Fessenden, P., Lee, E.R., Kapp, D.S., Tanabe, E., McEuen, A., 
Spiral microstrip hyperthermia applicators: technical design and clinical 
performance. Int J  Radiat Oncol Biol Phys, 1990. 18(1):233-242.

122. Zhang, Y., Joines, W.T., Oleson, J.R., Prediction of heating patterns of a 
microwave interstitial antenna array at various insertion depths. Int J  
Hyperthermia, 1991, 7(1):197-207.

123. Prescott, D.M., Charles, H.C., Sostman, H.D., et al., Therapy monitoring in 
human and canine soft tissue sarcomas using magnetic resonance imaging and 
spectroscopy. Int J  Radiat Oncol Biol Phys, 1994. 28(2):415-423.

124. Das, S.K., Clegg, S.T., Samulski, T.V., Computational techniques for fast 
hyperthermia temperature optimization. Med Phys, 1999. 26(2):319-328.

125. Sheng Li and Pei Hong Wu. Magnetic resonance image-guided versus 
ultrasound-guided high-intensity focused ultrasound in the treatment of breast 
cancer. Chines Journal o f Cancer, 2013. 32(8): 441-452.

126. Chen, J.W., Huang, T.Y., Peng, H.H., et al., Proton resonance frequency shift- 
weighted imaging for monitoring MR-guided high-intensity focused 
ultrasound transmissions. J  Magn Reson Imaging, 2011. 33:1474-1481.

127. U. Techavipoo, T. Varghese, J. A. Zagzebski, T. Stiles, and G. Frank., 
Temperature dependence of ultrasonic propagation speed and attenuation in 
canine tissue. Ultrason. Imaging, 2002. 24:246-260



113

128. Wu, S.C., Bai, Y.P., Ren, X.Y., Current situation home and abroad in the 
research of noninvasive temperature estimation by ultrasound in cancer 
hyperthermia. Chin JRehabil, 2004. 17:3424-3425.

129. Jignesh, S., Salavar, R.A., Konstantin, S., et al., Ultrasound imaging to monitor 
photothermal therapy: feasibility study. Opt Express, 2008. 16:3776-3785.

130. Liu, H.L., Li, M.L., Shih, T.C., et al., A novel ultrasonic-imaging based 
temperature estimation approach by instantaneous frequency detection. In:
Proceedings o f the 2008 IEEE International Ultrasonics Symposium. 
Piscataway, NJ:Institute o f Electrical and Electronics Engineers, 2008. 2984
2087.

131. Zhu, N., Jiang, Y., Kato, S., Ultrasonic computerized tomography (CT) for 
temperature measurements with limited projection data based on an 
extrapolated filtered back projection (FBP) method. Energy, 2005. 30:509
522.

132. Techavipoo, U., Varghese, T., Zagzebske, J.A., Stiles, T., Frank, G., 
Temperature dependence of ultrasonic propagation speed and attenuation in 
canine tissue. Ultrason Imaging, 2002. 24:246-260.

133. Anand, A., Kaczkowski, P.J., Noninvasive measurement of local thermal 
diffusivity using backscattered ultrasound and focused ultrasound heating. 
Ultrasound Med Biol 2008; 34:1449-1464.

134. Trobaugh, J.W., Arthur, R.M., Straube, W.L., Moros, E.G., A simulation 
model for ultrasonic temperature imaging using change in backscattered 
energy. Ultrasound Med Biol, 2008. 34:289-298.

135. Arthur, R.M., Trobaugh, J.W., Straube, W.L., Moros, E.G., Temperature 
dependence of ultrasonic backscattered energy in motion compensated images. 
IEEE Trans Ultrason Ferroelectr Freq Control, 2005. 52:1644-1652.

136. Arthur, R.M., Straube, W.L., Trobaugh, J.W., Moros, E.G., In Vivo Change in 
Ultrasonic Backscattered Energy with Temperature in Motion-Compensated 
Images”. Int. J. Hyperthermia, August 2008. 24(5): 389-398.

137. Lu, Y., Liu, X.Z., Gong, X.F., et al., Relationship between the temperature and 
the acoustic nonlinearity parameter in biological tissues. Chin Sci Bull, 2004. 
49:2360-2363.



114

138. R. Seip., and E. Ebbini., Noninvasive estimation of tissue temperature response 
to heating fields using diagnostic ultrasound. IEEE Trans. Biomed. Eng, 1995. 
42:828-839

139. C. Simon., P. VanBaren., and E. Ebbini., Two-dimensional temperature 
estimation using diagnostic ultrasound, IEEE Trans. Ultrason., Ferroelect., 
Freq. Contr, 1998. 45:1088-1099, 1998.

140. Abolohassani, M., Alirezaie, J., Norouzi, A., Study of fast temperature
estimation during hyperthermia using ultrasound digital images. Signal
Process Appl, 2007.

141. Constant, A., Wright, W.M.D., Estimation of tissue elasticity by image
processing of simulated B-Mode ultrasound images. In: IER Irish signal and
systems conference, 2009. 5.

142. Pouch, A.M., Theodore, W.C., Shultz, S.M., Seghal, C.M., In vivo noninvasive 
temperature measurement by B-mode ultrasound imaging. J  Ultrasound Med, 
2010. 29(11):1595-1606.

143. Zhang, J., Zhou, S., Brunke, S., Comaniciu, D., Databaseguided breast tumor 
detection and segmentation in 2D ultrasound images. In: Proceedings o f the 
SPIE 7624 medical imaging computer aided diagnosis, 2010.

144. Haar, G.R., Ultrasound focal beam surgery. Ultrasound Med Bio, 1995. 
21:1089-1100

145. Goksel, O., Salcudean, S.E., B-mode ultrasound image simulation in 
deformable 3D medium. IEEE Trans Med Imaging, 2009. 28(11):1657-1669

146. Rawat, V., Jain, A., Shrimali V., Investigation and assessment of disorder of 
ultrasound B-mode images. Int J  Comput Sci In f Secur, 2010. 7(2).

147. Frizzell, L.A., Carstensen, E.L., Shear properties of mammalian tissues at low 
megahertz frequencies. JAcoust Soc Am, 1976. 60:1409-1411.

148. Gheonea, D.I., Saftoiu, A., New trends in elasticity imaging. Ultraschall in 
Med, 2010. 31(5):525-527.

149. Madsen, E.L., Sathoff, H.J., Zagzebski, J.A., Ultrasonic shear wave properties 
of soft tissues and tissue like materials. J  Acoust Soc Am, 1983. 74:1346-1355.



115

150. C. Le Floch., M. Tanter., and M. Fink., Self-defocusing in Hyperthermia: 
Experiments and simulations. Appl. Phys. Lett ,1999. 74:3062-3064.

151. Arthur, R.M., Trobaugh, J.W., Straube, W.L., Moros, E.G., Sangkatumvong, 
S., Non-invasive Estimation of Hyperthermia Temperatures with Ultrasound. 
Int. J. Hyperthermia, September 2005. 21(6): 589-600.

152. Mladina, R., Risavi, R., Branica, S., Heinzel, B., A-mode diagnostic ultrasound 
of maxillary sinuses: possibilities and limitations. Rhinology, 1994. 32(4):179-
183.

153. Craig C.F., How Ultrasounds Work, Available at: 
http://www.physics.utoronto.ca/~jharlow/teaching/phy138_0708/lec04/ultras 
oundx.htm; Accessed on: September 2015.

154. Gallotti, A., D’Onofrio, M., Mucelli, R.P., Acoustic Radiation Force Impulse 
(ARFI) technique in ultrasound with Virtual Touch tissue quantification of the 
upper abdomen. Radiol Med (Torino), 2010. 115(6):889-897.

155. Bota, S., Sporea, I., Sirli, R., Popescu, A., Danila, M., Costachescu, D., Intra- 
and interoperator reproducibility of acoustic radiation force impulse (ARFI) 
elastography-preliminary results. Ultrasound Med Biol, 2012. 38(7):1103- 
1108.

156. Lee, S., Kim, D.Y., Non-invasive diagnosis of hepatitis B virus-related 
cirrhosis. World J  Gastroenterol, 2004. 20(2):445-459.

157. Towa, R.T., Miller, R.J., Frizzell, L.A., Zachary, J.F., O’Brien, W.D., Jr., 
Attenuation coefficient and propagation speed estimates of rat and pig 
intercostal tissue as a function of temperature. IEEE Transactions on 
Ultrasonics, Ferroelectrics, and Frequency Control 2002. 49:1411-1420.

158. Robinson, T.C., Lele, P.P., An analysis of lesion development in the brain and 
in plastics by high intensity focused ultrasound at low-megahertz frequencies. 
Journal o f the Acoustical Society o f America, 1972. 5:1333-1351.

159. Bamber, J.C., Hill, C.R., Ultrasonic attenuation and propagation speed in 
mammalian tissues as a function of temperature. Ultrasound in Medicine and 
Biology, 1979. 5:149-157.

http://www.physics.utoronto.ca/~jharlow/teaching/phy138_0708/lec04/ultras


116

160. J. Fessler., Reflection-mode ultrasound imaging, 2009. 11:18.
http://web.eecs.umich.edu/ ~fessler/course/516/l/cu-ultra.pdf, accessed June 
2015.

161. Getner, Mr., Wilson, B.C., Sherar, M.D., Ultrasound imaging of thermal 
therapy in in-vitro liver. Ultrasound Med Biol, 1998. 24:1023-1032.

162. Jeremy, P.K., and Michael L.O., Ultrasonic Assessment of Thermal Therapy 
in rat liver. Electrical and Computer Engineering, 2012. 38: 2130 -2137.

163. Xu. T., Ye, Z.Q., Cai, W.M., Texture analysis methods used in B scan liver 
images. Foreign Med Sci Fascicle Biomed Eng, 2006. 29:228-230.

164. Udomchai, T., Quan, C., Varghese, T., Ultrasonic noninvasive temperature
estimation using echo shift gradient maps: simulation results. Ultrason
Imaging, 2005. 27:166-180.

165. Pousek, L., Jelinek, M., Storkova, B., et al., Noninvasive temperature 
monitoring using ultrasound tissue characterization method. In: Proceedings o f  
the 2006 Information Technology Interfaces Conference. Piscataway, NJ: 
Institute o f Electrical and Electronics Engineers, 2006. 219-224.

166. Ren, X.Y., Wu, S.C., Zeng, Y., Experimental study for noninvasive
monitoring of hyperthermia based on B-mode ultrasonic tissue
characterization. J  Beijing Univ Technol, 2008. 34: 90-96.

167. Wu, X., Qian, S.Y., Sun, F.C., et al., Study of noninvasive temperature 
measurement based on B-mode ultrasonic image processing. Comput Eng 
Appl, 2007. 43:178-179.

168. Wu, N., Yang, W., Chen, L., et al., Texture analysis of B-mode ultrasound 
images on tissue in radiofrequency ablation. Chin J  Med Imaging Technol, 
2007. 23:140-143.

169. Ren X., Wu S., Zeng Y., Noninvasive Monitoring for Hyperthermia Based on 
Ultrasonic Tissue Characterization of B-mode. IEEE, 2007. 1173-1176

170. S. Siebers., M. Schwabe., U. Scheipers., C. Welp., J. Werner., H. Ermert., 
Evaluation of Ultrasonic Texture and Spectral Parameters for Coagulated 
Tissue Characterization. IEEE International Ultrasonics, Ferroelectrics, and 
Frequency Control Joint 50th Anniversary Conference, 2004. 1804-1807

http://web.eecs.umich.edu/


117

171. T. Douglas Mast., Daniel, P., Pucke, Swetha, E., Subramanian, William J. 
Bowlus, Steven M. Rudich, Joseph F. Buell. Ultrasound Monitoring of In 
Vitro Radio Frequency Ablation by Echo Decorrelation Imaging. J  Ultrasound 
Med, 2008. 27:1685-1697.

172. Woo Kyung Moon., Chiun-Sheng Huang., Wei-Chih Shen., Etsuo Takada., 
Ruey-Feng Chang., Juliwati Joe, Michiko Nakajima, and Masayuki Kobayashi, 
Analysis of Elastographic and B-mode Ffeatures at Sonoelastography for 
Breast Tumor Classification. Ultrasound in Med. & Biol, 2009. 35:1794-1802.

173. Haralick, R. M., Shanmugam, K. and Dinstein, I., Textural features for image 
classification, IEEE Trans. Syst. Man Cyber, 1973. 3:610-621.

174. Basset, O., Sun, Z., Mestas, J. L., and Gimenez, G., Texture analysis of 
ultrasonic images of the prostate by means of co-occurrence matrices, 
Ultrasonic Imaging, 1993. 15:218-237.

175. Nicholas, D., Nassiri, D., Garbutt, P. and Hill, C., Tissue characterization from 
ultrasound B-scan data, Ultrasound Med. Biol, 1986. 12:135-143.

176. Morris, D. T., An evaluation of the use of texture measurements for the tissue 
characterization of ultrasonic images of in vivo human placentae, Ultrasound 
Med. Biol, 1988. 14:387-395.

177. McPherson, D., Aylward, P., Knosp, B., et al., Ultrasound characterization of 
acute myocardial ischemia by quantitative texture analysis, Ultrasonic 
Imaging, 1986. 8:227-240.

178. Wu, C., Chen, Y. and Hsieh, K., Texture features for classifications of 
ultrasonic liver images, IEEE Trans. Med. Imag, 1992. 11:141-152.

179. Layer, G., Zuna, I., Lorentz, A., et al., Computerized ultrasound B-scan texture 
analysis of experimental fatty liver disease: influence of total lipid content and 
fat deposit distribution, Ultrasonic Imaging, 1990. 12:171-188.

180. Haberkorn, U., Zuna, I., Lorentz, A., et al., Echographic tissue characterization 
in diffuse parenchymal liver disease: correlation of image structure with 
histology, Ultrasonic Imaging, 1990. 12:155-170 (1990).

181. Parkkinen, J., and Oja, E., Detecting texture periodicity from the co-occurrence 
matrix, Patt. Recog. Letts, 1990. 11:43-50.



118

182. Konstantina Kourou , Themis P. Exarchos , Konstantinos P. Exarchos , 
Michalis V. Karamouzis, Dimitrios I. Fotiadis, Machine learning applications 
in cancer prognosis and prediction. Computational and Structural 
Biotechnology Journal, 2015. 13:8-17.

183. Ahmad Taher Azar., Shaimaa Ahmed El-Said., Performance analysis of 
support vector machines classifiers in breast cancer mammography 
recognition. Neural Comput & Applic, 2014. 24:1163-1177.

184. Blanz, V., Scholkopf, B., Bulthoff, H., et al., Comparison of view based object 
recognition algorithms using realistic 3d models. In: von der Malsburg, C., von 
Seelen, W., Vorbruggen, J.C., Sendhoff, B., (eds) Artificial Neural Networks- 
ICANN’96, Springer Lecture Notes in Computer Science, Berlin, 1996. 1112: 
251-256

185. Joachims, T., Nedellec, C., Rouveirol, C., Text categorization with support 
vector machines: learning with many relevant. Springer, Springer-Verlag 
GmbH, Berlin, 1998.

186. Osuna, E., Freund, R., Girosit, F., Training support vector machines: an 
application to face detection. Proceedings o f IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, June 17-19, 1997. 
130-136.

187. Burges, C.J.C, Scholkopf, B., Improving the accuracy and speed of support 
vector learning machines. In: Mozer, M., Jordan, M., Petsche, T., (eds) 
Advances in neural information processing systems 9. MIT Press, Cambridge, 
1997. 375-381

188. Schmidt., Identifying speaker with support vector networks. Interface’96 
Proceedings, Sydney, 1996.

189. Cortes, C., Vapnik, V., Support vector network. Mach Learn, 1995. 20:273
297.

190. Scholkopf, B., Burges, C., Vapnik, V., Extracting support data for a given task. 
In: Fayyad, U.M., Uthurusamy, R., (eds) Proceedings, first international 
conference on knowledge discovery & data mining. AAAI Press, Menlo Park, 
1995.

191. Scholkopf, B., Burges, C., Vapnik, V., (1996) Incorporating invariances in 
support vector learning machines. In: von der Malsburg, C., von Seelen, W.,



119

Vorbruggen, J.C., Sendhoff, B., (eds) Artificial neural networks- ICANN’96. 
Springer Lecture Notes in Computer Science, Berlin, 1996. 1112:47-52.

192. Vapnik, V., Golowich, S., Smola, A., Support vector method for function 
approximation, regression estimation, and signal processing. In: Mozer M, 
Jordan M, Petsche T (eds) Advances in neural information processing systems
9. MIT Press, Cambridge,1997. 281-287.

193. Mangasarian, O.L., Generalized support vector machines. In: Smola, A., 
Bartlett, P., Scholkopf, B., Schuurmans, D., Advances in large margin 
classifiers. MIT Press, Cambridge, 2000. 135-146.

194. Vapnik, V.N., The nature of statistical learning theory, 2nd edn. New York, 
Springer, 1999.

195. Fung, G., Mangasarian, O.L., Proximal support vector machine classifiers. 
International Conference on Knowledge Discovery and Data Mining, San 
Francisco, 2001. 77-86.

196. Fung, G., Mangasarian, O.L., Finite Newton method for Lagrangian support
vector machine classification. Neuro computing, 2003. 55(1 -2):39-55.

197. Fung, G., Mangasarian, O.L., A feature selection Newton method for support
vector machine classification. Comput Optim Appl, 2004. 28(2):185-202.

198. Lee, Y.J., Mangasarian, O.L., SSVM : a smooth support vector machine. 
Comput Optim Appl, 2001. 20:5-22.

199. Gunn, S.R., Support vector machines for classification and regression. 
Technical Report, Faculty o f Engineering, University o f Southampton, 1998.

200. Bishop, C., Neural networks for pattern recognition. Clarendon Press, Oxford,
1997.

201. Burges, C.J.C., A tutorial on support vector machines for pattern recognition. 
Data Min Knowl Discov,1998. 2(2):121-167

202. Chang, R.F., Wu, W.J., Moon, W.K., et al., Support vector machines for 
diagnosis of breast tumors on US images. Acad Radiol, 2003. 10(2):189-197



120

203. Liu, H.X., Zhang, R.S., Luan, F., et al., Diagnosing breast cancer based on 
support vector machines. J  Chem In f Comput Sci, 2003. 43(3):900-907.

204. Vapnik, V.N., The nature of statistical learning theory. Springer, New York, 
1995

205. Chen, H.L., Yang, B., Wang, G., et al., Support vector machine based 
diagnostic system for breast cancer using swarm intelligence. J Med Syst, 
2012. 36(4):2505-2519

206. Cristianini, N., Taylor, J.S., An introduction to support Vector Machines: and 
other kernel-based learning methods. Cambridge University Press, 
Cambridge, 2000.

207. Taylor, J.S., Cristianini, N., Kernel methods for pattern analysis. Cambridge 
University Press, Cambridge, 2004.

208. Ng, E.Y.K., Ung, L.N., Ng, F.C., Sim, L.S.J., Statistical analysis of healthy and 
malignant breast thermography. J. Med. Eng. Technol, 2001. 25:253-263.

209. Jiang, J., Trundle, P., Ren, J., Medical image analysis with artificial neural 
networks. Comput. Med. Imaging Graph, 2010. 34:617-631.

210. Al-Shayea, Q., Artificial Neural Networks in Medical Diagnosis. J. Comput. 
Sci. Issues, 2011. 8:150-154.

211. Whitley, D., Starkweather, T., Bogart, C., Genetic algorithms and neural 
networks: optimizing connections and connectivity. Parallel Comput, 1990. 
14:347-361.

212. Lisboa, P.J., Taktak, A.F.G., The use of artificial neural networks in decision 
support in cancer: a systematic review. NeuralNetw, 2006. 19:408-415.

213. Amato, F., Lopez, A., Pena-Mendez, E.M., Vanhara, P., et al., Artificial neural 
networks in medical diagnosis. J. Appl. Biomed, 2013. 11:47-58.

214. Ibrahim, F., Faisal, T., Salim, M.I., Taib, M.N., Non-invasive diagnosis of risk 
in dengue patients using bioelectrical impedance analysis and artificial neural 
network. Med Biol Eng Comput, 2010. 48:1141-1148.



121

215. U Beyli, D.E., Implementing Automated Diagnostic System for Breast Cancer 
Detection. Expert System with Application, 2007. 33:1054-1062.

216. Kubat, M., Neural networks: a comprehensive foundation by Simon Haykin, 
Macmillan, 1994. Knowl. Eng. Rev, 1999. 13:409-412.

217. Wei, J.T., Zhang, Z., Barnhill, S.D., Madyastha, K.R., et al., Understanding 
artificial neural networks and exploring their potential applications for the 
practicing urologist. Urology, 1998. 52:161-172.

218. Haykin, S.S., Neural Networks: A Comprehensive Foundation, New York; 
Prentice Hall, 1999.

219. Sun, M., and Sclabasi, R.J., The Forward EEG Solutions can be compared 
using Artificial Neural Networks. IEEE Transactions on Biomedical 
Engineering, 2000. 47: 1044-1050.

220. Lisboa, P.J.G., A review of evidence of health benefit from artificial neural 
networks in medical intervention. Neural Networks, 2002. 15:11-39.

221. Salim, M.I., Ahmad, A.H., Ariffin, I., Rosidi, B., Supriyanto, E., Development 
of breast cancer diagnosis tool using hybrid magnetoacoustic method and 
artificial neural network. Int J  Biol Biomed Eng, 2012. 6:61-68.

222. Matlab. Matlab ANN Toolbox, 2010.

223. Boreham, D.R., Gasmann, H.C., Mitchel, R.E., Water bath hyperthermia is a 
simple therapy for psoriasis and also stimulates skin tanning in response to 
sunlight. Int J  Hyperthermia, 1995. 11(6):745-54.

224. Gao, F., Ye, Y., Yang, J., Water bath hyperthermia reduces stemness of colon 
cancer cells. Clin Biochem, Nov 2013. 46(16-17): 1747-54.

225. R.B. Gear., M. Yan., J. Schneider., P. Succop., S.C. Heffelfinger., and D.J. 

Clegg., Charles River Sprague Dawley Rats Lack Early Age-Dependent 

Susceptibility to DMBA-Induced Mammary Carcinogenesis. International 

Journal o f Biological Sciences, 2007. 3(7):408-416.



122

226. Russo, I.H., Russo, J.. Developmental stage of the rat mammary gland as 

determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J  Natl 

Cancer Inst, 1978. 61:1439-1442.

227. Russo, I., Russo, J., Mammary gland neoplasia in long-term rodent studies. 

Environmental Health Perspectives, 1996. 104:938-966.

228. Isaacs, J., Genetic control of resistance to chemically induced mammary adeno 

carcinogenesis in the rat. Cancer Res, 1986. 46:3958-3963.

229. Miyata, M., Furukawa, M., Takahashi, K., Gonzalez, F.J., Yamazoe, Y., 

Mechanism of 7,12-Dimethylbenz[a]anthracene Induced Immuno-toxicity : 

Role of Metabolic Activation at the Target Organ. Jpn J  Pharmacol, 2001. 

86:302-309.

230. M. F. Dias., E. Sousa., S. Cabrita., J. Patricio., and C. F. Oliveira., 

Chemoprevention of DMBA-induced mammary tumors in rats by a combined 

regimen of alpha-tocopherol, selenium, and ascorbic acid, Breast Journal, 

2000. 6(1):14-19.

231. Muggins, C., Briziarelli, G., and Button, H., Jr. Rapid induction of mammary 
carcinoma in the rat and the influence of hormones on the tumors. J. Exp. Med, 
1959. 709:25-42.

232. Landini, L., Sarnelli, R., Evaluation of the attenuation coefficients in normal 

and pathological breast tissue. Med. Biol. Eng. Comput, 1986. 24:243-247.

233. Mortensen, C.L., Edmonds, P.D., Gorfu, Y., Hill, J.R., et al., Ultrasound tissue 

characterization of breast biopsy specimens: expanded study. Ultrason. 

Imaging, 1996. 18:215-3011.

234. Chen, X., Phillips, D., Schwarz, K.Q., Mottley, J.G., Parker, K.J., The 

measurement of backscatter coefficient from a broadband pulse-echo system: A



123

new formulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1997. 

44:515-525.

235. F. Leymarie., and M. D. Levine., Tracking deformable objects in the plane using 

an active contour model. IEEE Trans. Pattern Anal. Machine Intell, 1993. 

15:617-634.

236. R. Durikovic., K. Kaneda., and H. Yamashita., Dynamic contour: A texture 

approach and contour operations. Vis. Comput, 1995. 11: 277-289.

237. M. Kass., A. Witkin., and D. Terzopoulos., Snakes: Active contour models. Int. 

J. Comput. Vis, 1987. 1:321-331.

238. D. Terzopoulos., and R. Szeliski., Tracking with Kalman snakes in Active 

Vision, A. Blake., and A. Yuille., Eds. Cambridge, MA: MIT Press, 1992. 3-20.

239. D. Terzopoulos., and K. Fleischer., Deformable models. Vis. Comput, 1988. 

4:306-331.

240. T. McInerney., and D. Terzopoulos., A dynamic finite element surface model 

for segmentation and tracking in multidimensional medical images with 

application to cardiac 4D image analysis. Comput. Med. Imag. Graph, 1995. 

19:69-83.

241. L. D. Cohen., On active contour models and balloons. CVGIP: Image 

Understand, Mar 1991. 53:211-218.

242. C. Davatzikos., and J. L. Prince., An active contour model for mapping the 

cortex. IEEE Trans. Med. Image, Mar 1995. 14:65-80.



124

243. A.J. Abrantes., and J.S. Marques., A class of constrained clustering algorithms 

for object boundary extraction. IEEE Trans. Image Processing, Nov 1996. 

5:1507-1521.

244. J. L. Prince., and C. Xu., A new external force model for snakes. Proceeding 

Image and Multidimensional Signal Processing Workshop, 1996. 30-31.

245. C. Davatzikos., and J. L. Prince., Convexity analysis of active contour models. 

Proc. Conf. Information Science and Systems, 1994. 581-587.

246. L. D. Cohen., and I. Cohen., Finite-element methods for active contour models 

and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine 

Intell, Nov 1993. 15:1131-1147.

247. B. Leroy., I. Herlin., and L. D. Cohen., Multi-resolution algorithms for active 

contour models. 12th Int. Conf. Analysis and Optimization o f Systems, 1996. 

58-65.

248. Abdul Kadir Jumaat et al., Segmentation of Masses from Breast Ultrasound 

Images using Parametric Active Contour Algorithm. Procedia Social and 

Behavioral Sciences, 2010. 8:640-647.

249. Xu, C., & Prince, J.L., Gradient Vector Flow: A New External Force for Snakes. 

Proc. IEE Conf. on Computer Vision, 1997. 66-71.

250. Uppu, S.K., A Study of Parametric Active Contours for the Application of MR 

Axial Abdominal Images. Madurai Kamaraj University, Madurai, India, 

August 2006.

251. Tabrizi, J.H., Using Active Contours for Segmentation of Middle-Ear Images. 

McGill University, Quebee, Jan 2003.



125

252. John, O., Rawlings., Sastry G. Pentula., David A., Dickey., Applied regression

analysis: a research tool, Springer-Verlag, 2nd edition, 1998.

253. Ballabio, D., Vasighi, M., A MATLAB toolbox for Self-Organizing Maps and 

supervised neural network learning strategies. Chemom. Intell. Lab. Syst, 2012. 

118:24-32.

254. Demuth, H., Neural Network Toolbox. Networks 2002. 24:1-8.

255. Li, C., Duric, N., Huang, L., Breast imaging using transmission ultrasound: 
reconstructing tissue parameters of sound speed and attenuation. In: Peng, Y., 
Zhang, Y., (eds) international conference on biomedical engineering and 
informatics. Piscataway. IEEE; Sanya, China, May 27-30, 2008. 708-712.

256. Hunt, J.W., Arditi, M., Foster, F.S., Ultrasound Transducers for Pulse-Echo 
Medical Imaging. IEEE Trans Biomed Eng, 1983. 30:453-481.

257. Parmar, N., Kolios M.C., An Investigation of the use of Transmission 
Ultrasound to Measure Acoustic Attenuation Changes in Thermal Therapy. 
Med Biol Eng Comput, 2006. 44(7):583-591.

258. C. R. Hill, J. C. Bamber, G. R. ter Haar., Physical Principles of Medical 
Ultrasonics. John Wiley & Son, Ltd, 2nd edition, 1981.

259. Liang, X.G., Ge, X.S., Zhang, Y.P., Wang, G,J., A convenient method of 
measuring the thermal conductivity of biological tissue. Phys Med Biol, 1991. 
36(12):1599-605.

260. Bhavaraju, N.C., Valvano, J.W., Thermophysical properties of swine 
myocardium. International Journal o f Thermophysics, 1999. 20(2):665-76.

261. Guntur, S.R., Lee, K.I., Paeng, D.G., Coleman, A.J., Choi, M.J., Temperature- 
dependent thermal properties of ex vivo liver undergoing thermal ablation. 
Ultrasound Med Biol, 2013. 39(10):1771-84.

262. Choi, J., Morrissey, M., Bischof, J.C., Thermal Processing of Biological Tissue 
at High Temperatures: Impact of Protein Denaturation and Water Loss on the 
Thermal Properties of Human and Porcine Liver in the Range 25-80 °C. 
Journal o f Heat Transfer, 2013. 135(6):061302.




