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 ABSTRACT 
 
 
 

Web application (WA) is among the mainstream enterprise-level software 
solutions. One of the reasons for this trend was due to the presence of Web 
application framework (WAF) that in many ways has helped web developer to 
implement WA as an enterprise system. However, there are complexity issues faced 
by the developers when using existing WAFs as reported by the developers 
themselves. This study is proposed to find a solution to this particular issue by 
investigating generic issues that arise when developers utilize Web as a platform to 
deliver enterprise-level application. The investigation involves the identification of 
problems and challenges imposed by the architecture and technology of the Web 
itself, study of software engineering (SE) knowledge adaptation for WA 
development, determination of factors that contribute to the complexity of WAF 
implementation, and study of existing solutions for WA development proposed by 
previous works. To better understand the real issues faced by the developers, hands-
on experiment was conducted through development testing performed on selected 
WAFs. A new highly reusable WAF is proposed, which is derived from the 
experience of developing several WAs case studies guided by the theoretical and 
technical knowledge previously established in the study. The proposed WAF was 
quantitatively and statistically evaluated in terms of its reusability and usability to 
gain insight into the complexity of the development approach proposed by the WAF. 
Reuse analysis results demonstrated that the proposed WAF has exceeded the 
minimum target of 75% reuse at both the component and system levels while the 
usability study results showed that almost all (15 out of 16) of the questionnaire 
items used to measure users’ attitudes towards the WAF were rated at least 
moderately by the respondents. 
  



iv 
 

 
 
 

 
 
 

ABSTRAK 
 
 
 

Aplikasi Web (WA) telah menjadi salah satu pilihan utama bagi penyelesaian 
masalah dalam industri pada masa kini. Kewujudan rangka-kerja aplikasi Web 
(WAF) yang dapat memudahkan pembangunan WA telah menjadi pemangkin utama 
kepada perkara ini. Namun, seperti yang telah dilaporkan oleh pembangun, terdapat 
masalah bagi penggunaan WAF sedia ada iaitu tahap kerumitannya yang tinggi. 
Kajian ini dilaksanakan bagi menyelesaikan masalah tersebut melalui penyiasatan 
terhadap isu-isu generik yang telah dikenal pasti sebelum ini apabila pembangun 
cuba membangunkan aplikasi pada tahap industri menggunakan teknologi Web. 
Penyiasatan melibatkan pengenalpastian masalah dari segi cabaran dan kekangan 
oleh seni bina dan teknologi Web itu sendiri, kajian terhadap kesesuaian disiplin 
kejuruteraan perisian (SE) sedia ada bagi pembangunan WA, penentuan faktor utama 
yang menyebabkan kerumitan dalam pelaksanaan sebenar WAF, dan kajian terhadap 
penyelesaian dalam pembangunan WA yang telah dicadangkan oleh penyelidik 
terdahulu. Untuk memahami isu sebenar dialami pembangun, eksperimen praktikal 
telah dibuat melalui kajian pembangunan terhadap beberapa WAF terpilih. 
Pelaksanaan WAF dengan kadar boleh guna semula komponen yang tinggi telah 
dicadangkan berdasarkan pengalaman pembangunan beberapa siri aplikasi kajian kes 
yang dipandu teori dan pengetahuan teknikal yang diperolehi sebelum ini. 
Pelaksanaan WAF tersebut telah diuji dan dinilai secara kuantitatif dan statistikal 
untuk menentukan tahap kerumitannya. Ia melibatkan analisis kadar boleh guna 
semula komponen WAF dan kebolehgunaan WAF oleh pihak pembangun. Hasil 
analisis menunjukkan kadar boleh guna semula komponen WAF melebihi tahap 
minimum yang disasarkan iaitu 75%. Analisis soal selidik kebolehgunaan WAF pula 
menunjukkan hampir semua (15 daripada 16) item soal selidik telah mendapat 
maklum balas yang sekurang-kurangnya sederhana daripada pihak responden.  
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
1.1 Background of Problem 
 

As the Web evolves from a simple content delivery system to a platform for 
complex online applications, its trend in terms of research also shifted from 
concentrating on technology, service, and performance to application development 
activities requiring intensive use of software engineering (SE) disciplines. According 
to the basic steps of software development in SE, the general software development 
process normally involves analysis, design, implementation, testing, and 
maintenance. Directly adapting the concepts, principles, and techniques of 
conventional SE disciplines to be used in Web application (WA) especially for WA 
architecture tend to lead to design flaws. This is based on the fact that WA is 
different from conventional SE disciplines and can be far more complex from 
conventional client-server application since it heavily relies on hyperlinks and runs in 
stateless environment. Due to the stateless nature of Web, keeping track of user 
session in Web application is more challenging than previously experienced in 
traditional client/server application and is fully under developers’ responsibility (Du 
et al., 2011). Thus, there is an interest in this type of research as demonstrated by 
Schwabe et al. (1999) and Isakowitz et al. (1995) that emphasizes on Web 
development methodologies. However, these studies only provide solutions at the 
highest level of design and conceptual view of Web application, and are only suitable 
to be used to model information structure that embodied Web application. 
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Through a quick review of previous related works, there are various solutions 
that have been proposed with regard to unique problems that need to be solved in 
WA. However, majority of the studies solved the problems separately, not as an 
integrated system that covers all aspect of solutions required in WA development. At 
the implementation stage of a large-scale problem, most developers normally turn to 
Web application framework (WAF) that can cover all possible solution aspects 
including architecture and design, security control, view-template system facility, 
and tools. WAF has the obligation to incorporate all aspects of WA solutions in its 
development environment.  

 
There are many new WAFs that have been proposed by Web developer 

community as a solution for WA development. Most developers use these WAFs 
with the intention to speed up the development process and to simplify the coding 
task. However, through a quick survey from several Web developer forums and 
blogs (Eckel, 2006; O'Brien, 2006; Regebro, 2009; Abid, 2011), it is often stated that 
despite offering full-stack solutions, many of these WAFs are considered too 
complex and have high learning curve from novice developers’ or even more 
experienced developers’ points of view. Developers might face complicated WAF 
tasks starting from the initial set-up and installation process up to the development 
and maintenance phases. In Java world, the Struts framework (Struts, 2000), a decent 
and among the oldest WAF, is a good example where its complexity is well known 
and agreed by its own expert community (Grobmeier, 2011; Grashel, 2014).  

 
There are also arguments that some of the WAFs have been over engineered 

(Lapide et al., 2010), for example by introducing complex XML-based set-up files 
and new coding syntax that slightly or even totally different from the programming 
language that the WAF itself is based on. In general, from the developers’ 
perspective, the main issue to be solved by WAF is it must be specifically oriented to 
be used by developers, so that they are able to implement the best development 
practices through the use of view-template system, object orientation paradigm, and 
database-centric approach in a simpler way. Complexity issues that can be either 
directly or indirectly related with WAF implementation have also been discussed by 
the academia (Schmidt and Fayad, 1997; Uhler, 2001; Zhang et al., 2004; Silva and 
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Moreira, 2005; Vuksanovic and Sudarevic, 2011). Majority of the problems 
associated with WAF’s complexities stated by the academia were also in-line with 
those mentioned by the practitioners or developers. Therefore, it is crucial to find the 
solutions that solve both the development aspects of WA as well as the complexity of 
WAF itself. 
 
 
1.2 Statement of Problem 
 
 As briefly discussed in previous section, existing WAFs were in some way 
able to provide solutions in many WA development aspects. However, WAF itself 
may become an issue due to its complex nature. Thus, it is crucial to address the 
research problem as stated below: 
 
“Why is the WA development through the use of WAF too challenging (time-
consuming, complex, and not cost-effective) although there are a lot of approaches, 
techniques, and design patterns being introduced to the WAF implementation?” 
 

Several research questions need to be answered by WAF designers and 
developers before they try to solve the research problem stated above. The list of the 
research questions is as follows: 
 

(i) What are the challenges faced by developers in using existing WAFs for 
WA development? 
 

(ii) Why is the process of developing WA using existing WAFs challenging? 
Are the challenges due to the following reasons?  

- approaches, techniques, and architecture and design embodied inside 
WAF, 

- the implementation of WAF and the way it was presented to the 
developers, 
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- the complexity of WAF that is used to build a complex system. 
 

(iii) What are the important aspects that should be emphasized in a WAF to 
make it easier to be used by developers? 
  

(iv) How should these important aspects be incorporated in a WAF and 
presented to the developers? 
 

(v) How can these important WAF aspects be exploited to reduce the 
complexity of WAF? 

 
 

1.3  Objectives 
 

 The objectives of this study are as the following: 
 

(i) To propose a reusable software framework as a solution to the problems 
and challenges encountered in WA development. 

(ii) To implement the proposed reusable software framework in the form of 
WAF. 

(iii) To evaluate the reusability and usability aspects of the WAF through a 
series of development tests of selected case study applications. 

 
 
1.4 Scope of Study 
 

The scope of the study will be mainly focused on architecture and design of 
WA. As described in Bourque and Fairley (2014), software architecture and design 
has become one of the sub elements of body of knowledge (BoK) in SE discipline 
categorized under “Software Design” knowledge area (KA). Specific to this 
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particular sub element of SE’s BoK, the concentration will be more on object-
oriented design (OOD), component-based design (CBD), architecture styles, and 
design patterns. All these will become the major focus of the study. 
 

The study is also scoped by the type of WAF to be proposed that is mainly 
targeted to be used to develop WA that heavily relies on database. Thus, the study 
tries to explore on how to extent the role of the database to not only act as a content 
feeder to the application but also to provide control on some logical parts of the 
application. Other possible aspects of WA such as application links management, 
users’ authentication, session handling, and access control on application’s resources 
will also be considered to be controlled through the use of database technology.  
 

Within the WA domain itself, the study will not take these issues into 
consideration: 
 

(i) Support for client-side business solutions that requires integration with 
client script technology (JavaScript or AJAX). The new WAF will apply 
thin-client architecture with all core business solutions to be allocated at the 
server side. This is one of the strategies to make the WAF less complicated 
by avoiding application logic from being scattered to both the client and the 
server sides. 

(ii) WA performance (speed and reliability) as the research only emphasizes on 
architecture to ease WA development process (implementation). This is 
based on the fact that not all WA require high computing resources such as 
amazon.com. There are many requests from small organizations to develop 
WAs that are able to solve complex business tasks but only cater small 
number of users.  

(iii) Persistency and transactional operations on data as it can usually be 
handled by add-in module inside the Web server (mod_perl or 
mod_python) and standard functions that can be provided by the database 
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application server through the implementation of Relational Database 
Management System (RDBMS). 

(iv) Web development methodologies as the WAF will be used as a collection 
of tools, regardless of any methodology used prior to the implementation 
phase. However, a quick review of existing Web development 
methodologies such as Hypertext Design Model (HDM), Object-Oriented 
Hypertext Design Model (OOHDM), and Relationship Management 
Methodology (RMM) is performed in order to understand the common 
issues arising in WA development. 

 
1.5 Significance of Study 
 

The study is intended to benefit both the industry and academia. In WA 
industry, Web developers benefited from the productivity and ease of development 
through the use of WAFs that are able to realize the implementation of reusable 
component-based architecture. Component-based software has a significant positive 
impact in software industry in terms of quality, productivity, and cost improvement 
(Bose, 2010). This is based on the fact that component-based architecture facilitated 
by productive development tools help to reduce development effort and simplify the 
overall application development process (Jha et al., 2014; Vale et al., 2016). For the 
academic research community, the study can lead to a better understanding of how 
software architecture and design should be incorporated in WA through the 
implementation of WAF. This is important as the search for better WA architecture 
and design is still being investigated by other researchers until these recent years 
(Huiyao et al., 2014; Villamizar et al., 2015; Cheng et al., 2016). 
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1.6 Organization of Thesis 
 
 This chapter provides background of the problems, research questions to be 
addressed, and objectives of the research. The rest of the chapters in this thesis are 
organized as follows. Chapter 2 reviews the theoretical foundation of SE to be 
applied in the research. Generally, the review provides the basis for the 
implementation of Object-Oriented Design (OOD), Component-Based Development 
(CBD), and application framework concepts in WA development. Previous works 
related to WA development solutions, software metric models, and software usability 
testing techniques are also discussed in Chapter 2. The theories and methods of 
software metric and software usability will be used to empirically and statistically 
evaluate the WAF proposed in this research.  
 

The overall research framework is presented in Chapter 3. The major phases 
and iterative process of research designs and procedures are outlined in this 
particular chapter. Chapter 4 describes the proposed reusable component-based 
architecture that has been realized in the form of a WAF. It also explains on how the 
architecture is extracted and established based on the SE knowledge gained from the 
review presented in Chapter 2.  

 
The reusability and usability analyses of the proposed WAF are discussed in 

detail in Chapter 5. The reusability analysis technique proposed will be mainly 
derived from the software metric models described in Chapter 2. The usability 
analysis will be performed by conducting WAF development test to selected 
developers. The results for both reusability and usability analyses will be discussed 
in the same chapter. Finally, Chapter 6 summarizes the overall conclusions of the 
research. 
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proposed WAF (ReWAF) does not require it since they have been defined as a built-
in feature of the ReWAF through the component-based specifications derived from 
the implementation of CBD approach. 
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