

REUSABLE FRAMEWORK FOR WEB APPLICATION DEVELOPMENT

MOHD RAZAK BIN SAMINGAN

UNIVERSITI TEKNOLOGI MALAYSIA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199242495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

REUSABLE FRAMEWORK FOR WEB APPLICATION DEVELOPMENT

MOHO RAZAK BIN SAMINGAN

A thesis submitted in fulfilment of the

requirements for the awa rd of the degree of

Doctor of Philosoph y (Co mpu ter Science)

Faculty of Computing

Universiti Teknologi Malays ia

JUNE 20 17

iii

 ABSTRACT

Web application (WA) is among the mainstream enterprise-level software
solutions. One of the reasons for this trend was due to the presence of Web
application framework (WAF) that in many ways has helped web developer to
implement WA as an enterprise system. However, there are complexity issues faced
by the developers when using existing WAFs as reported by the developers
themselves. This study is proposed to find a solution to this particular issue by
investigating generic issues that arise when developers utilize Web as a platform to
deliver enterprise-level application. The investigation involves the identification of
problems and challenges imposed by the architecture and technology of the Web
itself, study of software engineering (SE) knowledge adaptation for WA
development, determination of factors that contribute to the complexity of WAF
implementation, and study of existing solutions for WA development proposed by
previous works. To better understand the real issues faced by the developers, hands-
on experiment was conducted through development testing performed on selected
WAFs. A new highly reusable WAF is proposed, which is derived from the
experience of developing several WAs case studies guided by the theoretical and
technical knowledge previously established in the study. The proposed WAF was
quantitatively and statistically evaluated in terms of its reusability and usability to
gain insight into the complexity of the development approach proposed by the WAF.
Reuse analysis results demonstrated that the proposed WAF has exceeded the
minimum target of 75% reuse at both the component and system levels while the
usability study results showed that almost all (15 out of 16) of the questionnaire
items used to measure users’ attitudes towards the WAF were rated at least
moderately by the respondents.

iv

ABSTRAK

Aplikasi Web (WA) telah menjadi salah satu pilihan utama bagi penyelesaian
masalah dalam industri pada masa kini. Kewujudan rangka-kerja aplikasi Web
(WAF) yang dapat memudahkan pembangunan WA telah menjadi pemangkin utama
kepada perkara ini. Namun, seperti yang telah dilaporkan oleh pembangun, terdapat
masalah bagi penggunaan WAF sedia ada iaitu tahap kerumitannya yang tinggi.
Kajian ini dilaksanakan bagi menyelesaikan masalah tersebut melalui penyiasatan
terhadap isu-isu generik yang telah dikenal pasti sebelum ini apabila pembangun
cuba membangunkan aplikasi pada tahap industri menggunakan teknologi Web.
Penyiasatan melibatkan pengenalpastian masalah dari segi cabaran dan kekangan
oleh seni bina dan teknologi Web itu sendiri, kajian terhadap kesesuaian disiplin
kejuruteraan perisian (SE) sedia ada bagi pembangunan WA, penentuan faktor utama
yang menyebabkan kerumitan dalam pelaksanaan sebenar WAF, dan kajian terhadap
penyelesaian dalam pembangunan WA yang telah dicadangkan oleh penyelidik
terdahulu. Untuk memahami isu sebenar dialami pembangun, eksperimen praktikal
telah dibuat melalui kajian pembangunan terhadap beberapa WAF terpilih.
Pelaksanaan WAF dengan kadar boleh guna semula komponen yang tinggi telah
dicadangkan berdasarkan pengalaman pembangunan beberapa siri aplikasi kajian kes
yang dipandu teori dan pengetahuan teknikal yang diperolehi sebelum ini.
Pelaksanaan WAF tersebut telah diuji dan dinilai secara kuantitatif dan statistikal
untuk menentukan tahap kerumitannya. Ia melibatkan analisis kadar boleh guna
semula komponen WAF dan kebolehgunaan WAF oleh pihak pembangun. Hasil
analisis menunjukkan kadar boleh guna semula komponen WAF melebihi tahap
minimum yang disasarkan iaitu 75%. Analisis soal selidik kebolehgunaan WAF pula
menunjukkan hampir semua (15 daripada 16) item soal selidik telah mendapat
maklum balas yang sekurang-kurangnya sederhana daripada pihak responden.

v

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii
 ABSTRACT iii
 ABSTRAK iv
 TABLE OF CONTENTS v
 LIST OF TABLES xi
 LIST OF FIGURES xiii
 LIST OF ABBREVIATIONS xvii
 LIST OF APPENDICES xx

1 INTRODUCTION 1
 1.1 Background of Problem

1.2 Statement of Problem
1.3 Objectives
1.4 Scope of Study
1.5 Significance of Study
1.6 Organization of Thesis

1
3
4
4
6
7

2 LITERATURE REVIEW 8
 2.1 Introduction

2.2 Introduction to Web Application
 2.2.1 Web Application Types and Features

8
9
9

vi

 2.2.2 Issues in Web Application Development
2.3 Web Application Architecture
 2.3.1 Conventional Web Application
 2.3.2 Java-based Web Application
2.4 Software Engineering Disciplines for Web
 Application Development
 2.4.1 Object-Oriented Paradigm
 2.4.2 Software Design Pattern
 2.4.3 Architecture Design Pattern
 2.4.4 Class Design Pattern
 2.4.5 Component-Based Design
 2.4.5.1 Software Component Motivation
 2.4.5.2 Component Specification
 2.4.5.3 Development Strategies
 2.4.6 MVC Architecture
 2.4.6.1 Separation of Concern Design
 Principle
 2.4.6.2 MVC and Design Pattern
2.5 Application Framework
 2.5.1 Software Engineering Aspects in
 Application Framework
 2.5.1.1 Framework Architecture Design
 2.5.1.2 Object-oriented Paradigm
 Implementations
 2.5.2 White-Box versus Black-Box
 2.5.3 Web Application Framework
 2.5.3.1 Types of Web Application
 Framework
 2.5.3.2 Comparison of Web Application
 Framework by Other Researchers
 2.5.3.3 Best of Breed
 2.5.3.4 Monolithic

10
11
12
13

15
15
16
17
18
19
20
21
22
23

23
24
26

26
27

27
28
29

30

31
32
33

vii

 2.5.3.5 Best of Breeds versus Monolithic
 Approaches
2.6 Development Testing of Existing Web
 Application Framework
 2.6.1 Case Study Application Used in
 Performing WAF Development Testing
 2.6.2 Development Testing Experience
2.7 Other Related Works on Web Application
 Development Solutions
 2.7.1 Architecture and Design
 2.7.2 View Template System
 2.7.3 Security
 2.7.4 Tools
 2.7.5 State-of-the-art Web Application
 Development Solutions
2.8 Software Reuse Metrics
 2.8.1 Reuse Concepts and Measurement
 Techniques
 2.8.2 Implementation Issues and
 Recommended Practices
 2.8.3 Web Application Framework Reusability
 Measurement
 2.8.4 Reuse Performance Classifications
2.9 Software Usability
 2.9.1 Usability Testing Elements
 2.9.2 Test Respondents
 2.9.3 Testing Methods and Instruments
 2.9.4 Web Application Framework Usability
 Testing
2.10 Summary

34

35

36
36

38
39
42
43
45

47
49

49

50

52
55
56
56
57
58

60
60

viii

3 RESEARCH METHODOLOGY 62
 3.1 Introduction

3.2 Research Design and Procedures
 3.2.1 Study on Issues Related to Web
 Application Implementation
 3.2.2 Development Testing of Existing Web
 Application Framework
 3.2.3 Reverse Engineering Task
 3.2.4 Development of the Proposed Web
 Application Framework
 3.2.5 Development Testing and Evaluation of
 the Proposed Web Application
 Framework
3.3 Theoretical Framework
3.4 Summary

62
63

64

65
66

67

67
68
71

4 THE DESIGN OF REUSABLE WEB

APPLICATION FRAMEWORK (ReWAF)

72
 4.1 Introduction

4.2 Web Application Framework Architecture and
 Design Extraction
 4.2.1 Application Class Design
 4.2.2 Link Structure, Path, and References
 4.2.3 Dynamic and Static Module Instantiation
 4.2.4 Application Controller and View-
 template Interaction
 4.2.5 Overall Architecture and Design
 Implementation
4.3 Web Application Framework Design and
 Architecture Generalization
 4.3.1 Class Design

72

72
74
79
82

85

92

95
96

ix

 4.3.2 Reusable Web Application Framework
 (ReWAF) Architecture
4.4 Controller-View-Controller Architecture
 Classification
4.5 Comparison with Similar Architectures
4.6 Summary

99

105
106
108

5 EVALUATION 109
 5.1 Introduction

5.2 Web Application Framework Reusability
 Analysis
 5.2.1 Web Applications Case Studies
 5.2.1.1 Timetable Management System
 5.2.1.2 Question Bank System
 5.2.1.3 Johor State Investment Centre
 Web
 5.2.1.4 Collaborative Water Treatment
 Plant Monitoring System
 5.2.2 Reuse Measurement and Analysis
 5.2.2.1 Reused Module Structure
 5.2.2.2 Physical and Logical Source
 Lines of Code Functions
 5.2.2.3 Measurement and Analysis
 Implementation
 5.2.3 Reuse Analysis Results
 5.2.3.1 System Level Reuse Analysis
 5.2.3.2 Component Level Reuse Analysis
 5.2.4 Reuse Analysis Results Summary
5.3 Web Application Framework Usability Testing
 5.3.1 Respondents and Questionnaire
 5.3.2 Usability Analysis Results
 5.3.3 Usability Analysis Results Summary

109

110
111
112
112

114

115
116
117

119

123
130
130
137
141
142
143
147
156

x

5.4 Comparison with Existing Web Application
 Frameworks
 5.4.1 Design Pattern Integration
 5.4.2 Component-based Specifications
 5.4.3 Database-oriented Approach
5.5 Summary

156
158
158
159
161

6 CONCLUSION AND FUTURE WORKS 162
 6.1 Introduction

6.2 Research Objective Achievement
6.3 Major Contributions
6.4 Future Works
6.5 Summary

162
162
163
164
166

REFERENCES

Appendices A - C

168

190-195

xi

LIST OF TABLES

TABLE NO. TITLE PAGE
2.1 Comparison of development features of selected WAFs 35
2.2 WA development solution aspects to be incorporated

inside the WAF to be proposed in the research

48
2.3 WAF’s reuse concepts and measurement contexts 53
3.1 Initial comparison of the new WAF with existing WAFs 71
4.1 ReWAF component’s main functions and their task

specifications

76
5.1 Reuse types of top, middle, and bottom layer module

associations

119
5.2 Different SLOCs functions implementations on Use Case

1 and Use Case #2

122
5.3 Measurement parameters and equations for the ReWAF’s

reuse performance analysis

124
5.4 SQL statements to measure the SLOC value of PSCLT(S) and LSRDSVR(S) parameters

127

5.5 Type, number, and size (SLOC) of case study
applications modules

132

5.6 Physical, logical, and direct logical reuse size of the case
study applications

132

5.7 Physical, logical, and direct logical reuse percent of the
case study applications

132

5.8 Descriptive statistics of RPDL(mc) distribution across the
four case-study applications

138

xii

5.9 Items in the first section of the questionnaire 144
5.10 Items in the second section of the questionnaire and their

corresponding usability characteristics

145
5.11 Analysis status of the selected questionnaire items 155
5.12 Comparison of ReWAF with other existing WAFs 157

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE
2.1 Performance and complexity comparisons matrix of

different WA types 10
2.2 Conventional WA architecture runs on 1st, 2nd, and

3rd models described in Cho et al. (1997) 12
2.3 A general view of J2EE architecture in 3-tier

environment (Oracle9i, 2002) 14
2.4 Component interaction in MVC architecture 23
2.5 Realization of MVC architecture 25
2.6 Software engineering elements for WAF

implementation 28
3.1 Overall research framework and methodology 63
4.1 Link structure, link node reference, and controller’s

parameter settings of WA through database-oriented
approach of ReWAF 73

4.2 The class design of guestbook-entry function inside
“mygb” application 75

4.3 A part of the link tree structure of “mygb” application 80
4.4 Constructed link path and corresponding controllers on

each link-node when “Sign Guestbook” end-child link
node is selected 80

4.5 Example of parameter settings of link-node references
controlled and viewed under ADT’s “Link
Structure/Reference” main link 81

xiv

4.6 The generic component-type modules implementations
inside the main-controller

84

4.7 Database table relationships to support ReWAF’s
database-oriented implementations on link structure,
reference, and controller’s parameter-setting 85

4.8 The content of main view-template file
“template_main.html” assigned to the main-controller 87

4.9 Link-node reference to “webman_component_selector”
is made as DYNAMIC_MODULE type of reference
assigned to DYNAMIC template-element named
“content_main” 88

4.10 The implementation of process_DYNAMIC() hook
function inside the main-controller 89

4.11 Sequence diagram describes the flow of controllers’
function calls for displaying guestbook entry form page
in “mygb” application 91

4.12 Overall content view generated by “Sign Guestbook”
main link 92

4.13 Overall architecture and design implementation of the
ReWAF 94

4.14 Pseudo-code of the main algorithm implemented in the
main-controller of the ReWAF 95

4.15 Logical view of TM pattern applied in the class
diagram shown in Figure 4.2 97

4.16 Logical view of Composite pattern applied in the class
diagram shown in Figure 4.2 98

4.17 Physical existence and interconnections of “Controller”
and “View” elements for the sequence diagram shown
in Figure 4.11 100

4.18 General interconnection sequences of “Controller” and
“View” elements inside the WAF 101

4.19 General structure of CVC architecture 102
4.20 Hierarchical structure of “Controller” and “View”

triads of class diagram structure shown in Figure 4.2 107

xv

5.1 Associations among modules at top, middle, and
bottom layers of application module structure 118

5.2 Module T associated with other modules E, G, and P 119
5.3 Two different possible use cases of module T

implementations 121
5.4 Relational database tables to model the module’s

information structure for WAF’s reuse performance
analysis 125

5.5 Relationship between physical reuse percent (RPP(S)) and size of the case study application (PSCLT(S)) 133
5.6 Relationship between direct logical reuse percent

(RPDL(S)) and size of the case study application
(PSCLT(S)) 134

5.7 Relationship between RPDL(S) and RPP(S) of the case
study applications 135

5.8 Proportions of direct logical reuse percent by
association types of modules (In: inheritance, Co:
composition, and Ag: aggregation) 136

5.9 Distribution frequency of RPDL(mc) of each case study
application

139

5.10 Relationship between RPDL(mc) and SLOC(mc) of the
case study applications 140

5.11 Developers responses to WAD Experience 148
5.12 Developers responses to SE knowledge level 148
5.13 Developers responses to their roles in WA

development 149
5.14 Distribution of responses for WAF’s attributes 150
5.15 Distribution of responses for WAF’s support tools 150
5.16 Distribution of responses for scripting language used

(Perl) 151
5.17 Distribution of responses for respondents’ specific

opinions 151

xvi

5.18 Percentage of responses for WAF’s attributes 152
5.19 Percentage of responses for WAF’s support tools 152
5.20 Percentage of responses for scripting language used

(Perl) 152
5.21 Percentage of responses for user’s specific opinions 153
5.22 Database table design of the database-oriented

approach implemented in IWTP case study application 160

xvii

LIST OF ABBREVIATIONS

AAT - Application Administration Tool
ADT - Application Development Tool
AJAX - Asynchronous JavaScript and XML
ALM - Access Log Management
API - Application Programming Interface
ASP - Active Server Pages
CBD - Component-based Development
CBS - Component-based System
CGI - Common Gateway Interface
CMS - Content Management System
CoC - Convention over Configuration
CoR - Chain of Responsibility
CORBA - Common Object Request Broker Architecture
CRP - Component’s Runtime Parameter
CVC - Controller View Controller
DAC - Discretionary Access Control
DCOM - Distributed Component Object Model
DFD - Data-Flow Diagram
DI - Dependency Injection
EJB - Enterprise JavaBeans
ERD - Entity-Relationship Diagram

xviii

GUI - Graphical User Interface
HDM - Hypermedia Design Method
HLD - Hyperlink Diagram
HTML - Hypertext Markup Language
IoC - Inversion of Control
J2EE - Java 2 Platform, Enterprise Edition
JDBC - Java Database Connectivity
JSON - JavaScript Simple Object Notation
JSP - Java Server Pages
JVM - Java Virtual Machine
LDAP - Lightweight Directory Access Protocol
LLOC - Logical Lines of Code
LOC - Lines of Code
LSL - Link Structure Logic
MAC - Mandatory Access Control
MIS - Management Information System
MVC - Model View Controller
OO - Object-oriented
OOD - Object-oriented Design
OOHDM - Object Oriented Hypermedia Design Method
OOP - Object-oriented Programming
ORM - Object Relational Mapping
PAC - Presentation Abstraction Control
PHP - PHP: Hypertext Preprocessor
RBAC - Role-based Access Control
RDBMS Relational Database Management System

xix

REST - Representational State Transfer
RMM - Relationship Management Methodology
SAC - Security and Access Control
SE - Software Engineering
SLOC - Source Lines of Code
SoC - Separation of Concern
SQL - Structured Query Language
TM - Template Method
URL - Uniform Resource Locator
WA - Web Application
WAD - Web Application Development
WAF - Web Application Framework
XML - Extensible Markup Language
XSL - Extensible Stylesheet Language
XSLT - Extensible Stylesheet Language Transformations

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE
A ReWAF’s standard module functions and types 190
B Example of responses to the questionnaire 192
C Publications 195

CHAPTER 1

INTRODUCTION

1.1 Background of Problem

As the Web evolves from a simple content delivery system to a platform for
complex online applications, its trend in terms of research also shifted from
concentrating on technology, service, and performance to application development
activities requiring intensive use of software engineering (SE) disciplines. According
to the basic steps of software development in SE, the general software development
process normally involves analysis, design, implementation, testing, and
maintenance. Directly adapting the concepts, principles, and techniques of
conventional SE disciplines to be used in Web application (WA) especially for WA
architecture tend to lead to design flaws. This is based on the fact that WA is
different from conventional SE disciplines and can be far more complex from
conventional client-server application since it heavily relies on hyperlinks and runs in
stateless environment. Due to the stateless nature of Web, keeping track of user
session in Web application is more challenging than previously experienced in
traditional client/server application and is fully under developers’ responsibility (Du
et al., 2011). Thus, there is an interest in this type of research as demonstrated by
Schwabe et al. (1999) and Isakowitz et al. (1995) that emphasizes on Web
development methodologies. However, these studies only provide solutions at the
highest level of design and conceptual view of Web application, and are only suitable
to be used to model information structure that embodied Web application.

2

Through a quick review of previous related works, there are various solutions
that have been proposed with regard to unique problems that need to be solved in
WA. However, majority of the studies solved the problems separately, not as an
integrated system that covers all aspect of solutions required in WA development. At
the implementation stage of a large-scale problem, most developers normally turn to
Web application framework (WAF) that can cover all possible solution aspects
including architecture and design, security control, view-template system facility,
and tools. WAF has the obligation to incorporate all aspects of WA solutions in its
development environment.

There are many new WAFs that have been proposed by Web developer

community as a solution for WA development. Most developers use these WAFs
with the intention to speed up the development process and to simplify the coding
task. However, through a quick survey from several Web developer forums and
blogs (Eckel, 2006; O'Brien, 2006; Regebro, 2009; Abid, 2011), it is often stated that
despite offering full-stack solutions, many of these WAFs are considered too
complex and have high learning curve from novice developers’ or even more
experienced developers’ points of view. Developers might face complicated WAF
tasks starting from the initial set-up and installation process up to the development
and maintenance phases. In Java world, the Struts framework (Struts, 2000), a decent
and among the oldest WAF, is a good example where its complexity is well known
and agreed by its own expert community (Grobmeier, 2011; Grashel, 2014).

There are also arguments that some of the WAFs have been over engineered

(Lapide et al., 2010), for example by introducing complex XML-based set-up files
and new coding syntax that slightly or even totally different from the programming
language that the WAF itself is based on. In general, from the developers’
perspective, the main issue to be solved by WAF is it must be specifically oriented to
be used by developers, so that they are able to implement the best development
practices through the use of view-template system, object orientation paradigm, and
database-centric approach in a simpler way. Complexity issues that can be either
directly or indirectly related with WAF implementation have also been discussed by
the academia (Schmidt and Fayad, 1997; Uhler, 2001; Zhang et al., 2004; Silva and

3

Moreira, 2005; Vuksanovic and Sudarevic, 2011). Majority of the problems
associated with WAF’s complexities stated by the academia were also in-line with
those mentioned by the practitioners or developers. Therefore, it is crucial to find the
solutions that solve both the development aspects of WA as well as the complexity of
WAF itself.

1.2 Statement of Problem

 As briefly discussed in previous section, existing WAFs were in some way
able to provide solutions in many WA development aspects. However, WAF itself
may become an issue due to its complex nature. Thus, it is crucial to address the
research problem as stated below:

“Why is the WA development through the use of WAF too challenging (time-
consuming, complex, and not cost-effective) although there are a lot of approaches,
techniques, and design patterns being introduced to the WAF implementation?”

Several research questions need to be answered by WAF designers and
developers before they try to solve the research problem stated above. The list of the
research questions is as follows:

(i) What are the challenges faced by developers in using existing WAFs for
WA development?

(ii) Why is the process of developing WA using existing WAFs challenging?
Are the challenges due to the following reasons?

- approaches, techniques, and architecture and design embodied inside
WAF,

- the implementation of WAF and the way it was presented to the
developers,

4

- the complexity of WAF that is used to build a complex system.

(iii) What are the important aspects that should be emphasized in a WAF to
make it easier to be used by developers?

(iv) How should these important aspects be incorporated in a WAF and
presented to the developers?

(v) How can these important WAF aspects be exploited to reduce the
complexity of WAF?

1.3 Objectives

 The objectives of this study are as the following:

(i) To propose a reusable software framework as a solution to the problems
and challenges encountered in WA development.

(ii) To implement the proposed reusable software framework in the form of
WAF.

(iii) To evaluate the reusability and usability aspects of the WAF through a
series of development tests of selected case study applications.

1.4 Scope of Study

The scope of the study will be mainly focused on architecture and design of
WA. As described in Bourque and Fairley (2014), software architecture and design
has become one of the sub elements of body of knowledge (BoK) in SE discipline
categorized under “Software Design” knowledge area (KA). Specific to this

5

particular sub element of SE’s BoK, the concentration will be more on object-
oriented design (OOD), component-based design (CBD), architecture styles, and
design patterns. All these will become the major focus of the study.

The study is also scoped by the type of WAF to be proposed that is mainly
targeted to be used to develop WA that heavily relies on database. Thus, the study
tries to explore on how to extent the role of the database to not only act as a content
feeder to the application but also to provide control on some logical parts of the
application. Other possible aspects of WA such as application links management,
users’ authentication, session handling, and access control on application’s resources
will also be considered to be controlled through the use of database technology.

Within the WA domain itself, the study will not take these issues into
consideration:

(i) Support for client-side business solutions that requires integration with
client script technology (JavaScript or AJAX). The new WAF will apply
thin-client architecture with all core business solutions to be allocated at the
server side. This is one of the strategies to make the WAF less complicated
by avoiding application logic from being scattered to both the client and the
server sides.

(ii) WA performance (speed and reliability) as the research only emphasizes on
architecture to ease WA development process (implementation). This is
based on the fact that not all WA require high computing resources such as
amazon.com. There are many requests from small organizations to develop
WAs that are able to solve complex business tasks but only cater small
number of users.

(iii) Persistency and transactional operations on data as it can usually be
handled by add-in module inside the Web server (mod_perl or
mod_python) and standard functions that can be provided by the database

6

application server through the implementation of Relational Database
Management System (RDBMS).

(iv) Web development methodologies as the WAF will be used as a collection
of tools, regardless of any methodology used prior to the implementation
phase. However, a quick review of existing Web development
methodologies such as Hypertext Design Model (HDM), Object-Oriented
Hypertext Design Model (OOHDM), and Relationship Management
Methodology (RMM) is performed in order to understand the common
issues arising in WA development.

1.5 Significance of Study

The study is intended to benefit both the industry and academia. In WA
industry, Web developers benefited from the productivity and ease of development
through the use of WAFs that are able to realize the implementation of reusable
component-based architecture. Component-based software has a significant positive
impact in software industry in terms of quality, productivity, and cost improvement
(Bose, 2010). This is based on the fact that component-based architecture facilitated
by productive development tools help to reduce development effort and simplify the
overall application development process (Jha et al., 2014; Vale et al., 2016). For the
academic research community, the study can lead to a better understanding of how
software architecture and design should be incorporated in WA through the
implementation of WAF. This is important as the search for better WA architecture
and design is still being investigated by other researchers until these recent years
(Huiyao et al., 2014; Villamizar et al., 2015; Cheng et al., 2016).

7

1.6 Organization of Thesis

 This chapter provides background of the problems, research questions to be
addressed, and objectives of the research. The rest of the chapters in this thesis are
organized as follows. Chapter 2 reviews the theoretical foundation of SE to be
applied in the research. Generally, the review provides the basis for the
implementation of Object-Oriented Design (OOD), Component-Based Development
(CBD), and application framework concepts in WA development. Previous works
related to WA development solutions, software metric models, and software usability
testing techniques are also discussed in Chapter 2. The theories and methods of
software metric and software usability will be used to empirically and statistically
evaluate the WAF proposed in this research.

The overall research framework is presented in Chapter 3. The major phases
and iterative process of research designs and procedures are outlined in this
particular chapter. Chapter 4 describes the proposed reusable component-based
architecture that has been realized in the form of a WAF. It also explains on how the
architecture is extracted and established based on the SE knowledge gained from the
review presented in Chapter 2.

The reusability and usability analyses of the proposed WAF are discussed in

detail in Chapter 5. The reusability analysis technique proposed will be mainly
derived from the software metric models described in Chapter 2. The usability
analysis will be performed by conducting WAF development test to selected
developers. The results for both reusability and usability analyses will be discussed
in the same chapter. Finally, Chapter 6 summarizes the overall conclusions of the
research.

167

proposed WAF (ReWAF) does not require it since they have been defined as a built-
in feature of the ReWAF through the component-based specifications derived from
the implementation of CBD approach.

REFERENCES

Abid, U. (2011). Why is Zend Framework so complicated? (Stack Exchange Inc.)

Retrieved 6 March, 2015, from Programmers Stack Exchange:
http://programmers.stackexchange.com/questions/123495/why-is-zend-
framework-so-complicated

ActiveRecord. (2014). RubyGems.org. Retrieved 9 July, 2014, from ActiveRecord:
https://rubygems.org/gems/activerecord

Appleton, B. (1997). Patterns and Software: Essential Concepts and Terminology.
Object Magazine Online, 3(5), pp. 20-25.

Arndt, C. (2009). Best of Breed: TG’s job is hard. Here’s why. Retrieved 13 May,
2015, from Percious.com:
http://web.archive.org/web/20140118052005/http://percious.com/blog/archiv
es/31

Arthur, J., & Azadegan, S. (2005). Spring Framework for rapid open source J2EE
Web Application Development - A case study. 6th International Conference
on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD 2005), pp. 90-95. IEEE.

ASF. (2010). Common Chain. Retrieved from Apache Commons:
http://commons.apache.org/proper/commons-chain/

Ates, M., Schneider, J., & Dauvergne, B. (2012). An architecture for Web
application session switching in virtual organizations. 7th International
Conference on Digital Information Management (ICDIM), pp. 232-238.
IEEE.

Atwood, J. (2005). Are Design Patterns How Languages Evolve? Retrieved 9 July,
2014, from Coding Horror: http://blog.codinghorror.com/are-design-patterns-
how-languages-evolve/

169

Avraam N., C., & George A., P. (2007). Implementing a generic component-based
framework for telecontrol applications. Software: Practice and Experience,
37(10), pp. 1087–1132.

Barb, A. S., Neill, C. J., Sangwan, R. S., & Piovoso, M. J. (2014). A Statistical Study
of the Relevance of Lines of Code Measures in Software Projects.
Innovations in Systems and Software Engineering, 10(4), pp. 243-260.

Barkley, J. F., Cincotta, A. V., Ferraiolo, D. F., Gavrilla, S., & Kuhn, D. R. (1997).
Role Based Access Control for the World Wide Web. 20th National
Information System Security Conference. NIST/NSA.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). How Reuse Influences
Productivity in Object-Oriented Systems. Communications of the ACM,
39(10), pp. 104-116.

Bevan, N., Carter, J., & Harker, S. (2015). ISO 9241-11 revised: What have we
learnt about usability since 1998? International Conference on Human-
Computer Interaction, pp. 143-151. Springer.

Bieman, J. M. (1992). Deriving Measures of Software Reuse in Object Oriented
Systems. Formal Aspects of Measurement, pp. 79-82.

Bose, D. (2010). Component Based Development. Indian Statistical Institute.
Bourque, P., & Fairley, R. E. (2014). Guide to the Software Engineering Body of

Knowledge, Version 3.0. IEEE Computer Society.
Bozzon, A., Fraternali, P., Comai, S., & Carughi, G. T. (2006). Conceptual Modeling

and Code Generation for Rich Internet Applications. 6th International
Conference on Web Engineering. ICWE'06, pp. 353-360. ACM.

Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability Evaluation in
Industry, 189(194), pp. 4-7.

Bytes. (2008). Bytes: A community for Developers and IT Professionals. Retrieved
27 Jun, 2016, from https://bytes.com

Cai, J., Kapila, R., & Pal, G. (2000). HMVC: The layered pattern for developing
strong client tiers. Retrieved from http://www.javaworld.com/javaworld/jw-
07-2000/jw-0721-hmvc.html

CakePHP. (2005). Cake Software Foundation. (Cake Software Foundation, Inc.)
Retrieved 1 July, 2016, from http://cakephp.org/

170

Capretz, L. F. (2003). A Brief History of the Object-Oriented Approach. ACM
SIGSOFT Software Engineering Notes, 28(2).

Carromeu, C., Paiva, D. M., Cagnin, M. I., Rubinsztejn, H. K., & Turine, M. A.
(2010). Component-based Architecture for e-Gov Web Systems
Development. 17th IEEE International Conference and Workshops on
Engineering of Computer Based System. ECBS, pp. 379-385. IEEE.

Cassim, H. (2013). Using Frameworks to Build Websites and Web Applications.
Retrieved 27 Jun, 2016, from OSTraining:
https://www.ostraining.com/blog/webdesign/frameworks/

Catalyst. (2012). Perl MVC framework. (Catalyst Foundation) Retrieved 1 July,
2016, from http://www.catalystframework.org/

Ceri, S., Fraternali, P., & Paraboschi, S. (1999). Data-Driven One-to-One Web Site
Generation for Data-Intensive Applications. VLDB, 99(200), pp. 7-10.

Chae, J.-H., Yoo, C.-J., Kim, Y.-S., & Chang, O.-B. (2003). XSLT Template Design
for Generating the Web Presentation Layer. Tenth Asia-Pacific Software
Engineering Conference (ASPEC 2003), pp. 396-404. IEEE.

Cheng, R., William, S., Ellenbogen, P., Howell, J., Roesner, F., Krishnamurthy, A.,
& Anderson, T. (2016). Radiatus: a Shared-Nothing Server-Side Web
Architecture. Proceedings of the Seventh ACM Symposium on Cloud
Computing, pp. 237-250. ACM.

Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for Object Oriented
Design. IEEE Transactions on Software Engineering, 20(6), pp. 476-493.

Chimaris, A. N., & Papadopoulos, G. A. (2007). Implementing a generic component-
based framework for telecontrol applications. Software: Practice and
Experience, 37(10), pp. 1087-1132.

Cho, E. S., Kim, M. S., & Kim, S. D. (2001). Component Metrics to Measure
Component Quality. Eighth Asia-Pacific Software Engineering Conference
(APSEC 2001), pp. 419-426. IEEE.

Cho, E. S., Kim, S. D., Rhew, S. Y., Lee, S. D., & Kim, C. G. (1997). Object-
Oriented Web Application Architectures and Development Strategies. Asia
Pacific Software Engineering Conference and International Computer
Science Conference (APSEC/ICSC '97), pp. 322-331. IEE.

171

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web Services
Description Language (WSDL) 1.1. (W3C) Retrieved 30 August, 2016, from
W3C Note: http://www.w3.org/TR/wsdl

Christiansson, B., & Christiansson, M.-T. (2003). The Missing Approach for
Component Specification. In S. Assar, F. Semmak, & R. Barkhi (Ed.),
Proceedings of 1st International Workshop on Component-Based Business
Information Systems Engineering. CBBISE'03. Geneva.

Codehaus. (2003). PicoContainer. (PicoContainer Committers) Retrieved 9 July,
2014, from http://picocontainer.codehaus.org/

CodeIgniter. (2006). CodeIgniter. (British Columbia Institute of Technology)
Retrieved 1 July, 2016, from https://www.codeigniter.com/

Coutaz, J. (1987). PAC, an Object Oriented Model for Dialog Design. In H.-J.
Bullinger, & B. Shackel (Ed.), INTERACT 87 - 2nd IFIP International
Conference on Human-Computer Interaction, pp. 431-436. Stuttgart
Germany.

Crnkovic, I. (2001). Component-based Software Engineering - New Challenges in
Software Development. Software Focus, 2(4), pp. 127–133.

Crnkovic, I., Vulgarakis, A., & Chaudron, M. R. (2011). A Classification Framework
for Software Component Model. IEEE Transactions on Software
Engineering, 37(5), pp. 593-615.

Dallal, J. A., & Morasca, S. (2014). Predicting Object-oriented Class Reuse-
proneness Using Internal Quality Attributes. Empirical Software Engineering,
19(4), pp. 775-821.

Dancer. (2009). Dancer Perl web framework. Retrieved 1 July, 2016, from
http://www.perldancer.org/

Davis, F. D. (1993). User Acceptance of Information Technology: System
Characteristics, User Perceptions and Behavioral Impacts. International
Journal of Man-Machine Studies, 38, pp. 475-487.

DBI. (2002). Perl DBI. (Perl.org) Retrieved from Perl's Database Interface:
http://dbi.perl.org/

DBIx::Class. (2005). CPAN. Retrieved from DBIx::Class - Extensible and flexible
object <-> relational mapper: http://search.cpan.org/~ribasushi/DBIx-Class-
0.08270/lib/DBIx/Class.pm

172

Devanbu, P., Karstu, S., Melo, W., & Thomas, W. (1996). Analytical and Empirical
Evaluation of Software Reuse Metrics. 18th International Conference on
Software Engineering, pp. 189-199. Berlin, Germany: IEEE Computer
Society.

Distante, D., Pedone, P., Rossi, G., & Canfora, G. (2007). Model-Driven
Development of Web Applications with UWA, MVC and JavaServer Faces.
Web Engineering: 7th International Conference (ICWE 2007), pp. 457-472.
Springer.

Django. (2005). Django Software Foundation. (Django Software Foundation)
Retrieved 1 July, 2016, from https://www.djangoproject.com/

Dolbec, J., & Shepard, T. (1995). A component based software reliability model.
1995 conference of the Centre for Advanced Studies on Collaborative
research, p. 19. IBM Press.

Driscoll, J. (2005). Servlet History. (Oracle) Retrieved 25 March, 2015, from
java.net:
https://weblogs.java.net/blog/driscoll/archive/2005/12/servlet_history_1.html

Du, W., Jayaraman, K., Tan, X., Luo, T., & Chapin, S. (2011). Position Paper: Why
Are There So Many Vulnerabilities in Web Applications? 2011 workshop on
New security paradigms workshop, pp. 83-94. ACM.

Durham, J. (2001). History-making components: Tracing the roots of components
from OOP through WS. Retrieved 8 July, 2014, from
http://archive.today/hD88t

Dworak, H. (2009). A Concept of a Web Application Blending Thin and Fat Client
Architectures. Fourth International Conference on Dependability of
Computer Systems (DepCos-RELCOMEX), pp. 84-90. IEEE.

Eckel, B. (2006). Python Directions and the Web Framework Problem. Retrieved 10
September, 2014, from artima developer:
http://www.artima.com/weblogs/viewpost.jsp?thread=150834

Evans, B. (2013). The small, medium, and large of Ruby Frameworks. (CBS
Interactive) Retrieved 29 April, 2015, from TechRepublic:
http://www.techrepublic.com/blog/australian-technology/the-small-medium-
and-large-of-ruby-frameworks/

173

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample
sizes in usability testing. Behavior Research Methods, Instruments, and
Computers, 35(3), pp. 379-383.

Favaro, J. A. (1996). Comparison of Approaches to Reuse Investment Analysis.
Fourth International Conference on Software Reuse, pp. 136-145. Orlando,
FL, USA: IEEE.

Fernandez-Villamor, J. I., Diaz-Casillas, L., & Iglesias, C. A. (2008). A Comparison
Model for Agile Web Frameworks. 2008 Euro American Conference on
Telematics and Information Systems (EATIS '08), p. 14. New York, NY,
USA: ACM.

Flask. (2010). Flask web development, one drop at a time. Retrieved 1 July, 2016,
from http://flask.pocoo.org/

Florenzano, E. (2007). Cheetah and Django. (eflorenzano.com) Retrieved January,
2016, from Eric Florenzano’s Blog:
http://eflorenzano.com/blog/2007/08/04/cheetah-and-django/

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection
pattern. Retrieved from http://martinfowler.com/articles/injection.html

Fowler, M. (2012). Martin Fowler on ORM Hate. (DZone, Inc.) Retrieved 23
September, 2014, from http://java.dzone.com/articles/martin-fowler-orm-hate

Frakes, W. B., & Succi, G. (2001). An Industrial Study of Reuse, Quality, and
Productivity. Journal of Systems and Software, 57(2), pp. 99-106.

Frakes, W., & Terry, C. (1994). Reuse Level Metrics. Third International
Conference on Software Reuse: Advances in Software Reusability, pp. 139-
148. IEEE.

Frakes, W., & Terry, C. (1996). Software Reuse: Metrics and Models. ACM
Computing Surveys, 8(2), pp. 415-435.

Frankel, D. (2004). Model-Driven Software Development. MDA Journal.
Fraternali, P. (1999). Tools and Approaches for Developing Data-Intensive Web

Applications: A Survey. 31(3), pp. 227-263.
Gabriel, R. P. (1996). Patterns of Software: Tales From The Software Community.

(Oxford University Press) Retrieved from
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf

174

Gallidabino, A., & Pautasso, C. (2016). The Liquid. js Framework for Migrating and
Cloning Stateful Web Components across Multiple Devices. 25th
International Conference Companion on World Wide Web, pp. 183-186.
ACM.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA: Addison-
Wesley Longman.

Garcia, F. J., Castanedo, R. I., & Fuente, A. A. (2007). A Double-Model Approach to
Achieve Effective Model-View Separation in Template Based Web
Applications. International Conference on Web Engineering. ICWE 2007, pp.
442-456. Springer.

Garn, B., Kapsalis, I., & Simos, D. E. (2014). On the Applicability of Combinatorial
Testing to Web Application Security Testing: A Case Study. Workshop on
Joining AcadeMiA and Industry Contributions to Test Automation and
Model-Based Testing, pp. 16-21. ACM.

Gill, N. S. (2003). Reusability Issues in Component-Based Development. ACM
SIGSOFT Software Engineering Notes, 28(4), pp. 4-4.

Gitzel, R., & Aleksy, M. (2004). Implementation of a Model-Centric Web
Application Framework with J2EE. 3rd International Symposium on
Principles and Practice of Programming in Java, pp. 148-153. Trinity
College Dublin.

GlassFish. (2014). GlassFish - World's first Java EE 7 Application Server. Retrieved
25 March, 2015, from https://glassfish.java.net/

Gonzalez, R., & Torres, M. (2006). Issues in Component-Based Development:
Towards Specification with ADLs . Journal of Systemics, Cybernetics, and
Informatics, 4(5), pp. 49-54.

Goschka, K. M., & Riedling, E. (1997). Development of an Object Oriented
Framework for Design and Implementation of Database Powered Distributed
Web Applications with the DEMETER Project as a Real-Life Example. 23rd
Euromicro Conference. 'New Frontiers of Information Technology'.
EUROMICRO 97, pp. 132-137. IEEE.

Grails. (2005). A powerful Groovy-based web application framework for the JVM.
Retrieved 1 July, 2016, from https://grails.org/

175

Grashel, R. (2014). Stripes Wiki. Retrieved 29 March, 2016, from
https://stripesframework.atlassian.net/wiki/display/STRIPES/Stripes+vs.+Str
uts

Gravelle, R. (2009). Introduction to Server-side JavaScript. (QuinStreet, Inc.)
Retrieved 29 June, 2015, from WebReference:
http://www.webreference.com/programming/javascript/rg37/index.html

Grobmeier, C. (2011). APACHE WICKET VERSUS APACHE STRUTS 2. Retrieved
29 March, 2016, from https://www.grobmeier.de/apache-wicket-versus-
apache-struts-2-04052011.html

GuangChun, L., Lu, W., & Hanhong, X. (2003). A Novel Web Application Frame
Developed by MVC. ACM SIGSOFT Software Engineering Notes, 28(2), p.
7.

Gui, G., & Scott, P. D. (2009). Measuring Software Component Reusability by
Coupling and Cohesion Metrics. Journal of Computers, 4(9), pp. 797-805.

Halstead, M. H. (1977). Elements of Software Science (Operating and programming
systems series). New York, NY, USA: Elsevier Science Inc.

Hamlet, D., Mason, D., & Woit, D. (2001). Theory of software reliability based on
components. 23rd international conference on Software engineering, pp. 361-
370. IEEE Computer Society.

Harper, B. D., & Norman, K. L. (1993). Improving User Satisfaction: The
Questionnaire for User Interaction Satisfaction Version 5.5. 1st Annual Mid-
Atlantic Human Factors Conference, pp. 224-228.

Heer, J., & Agrawala, M. (2006). Software Design Patterns for Information
Visualization. IEEE Transaction on Visualization and Computer Graphics,
12(5), pp. 853-860.

Henry, E., & Faller, B. (1995). Large-Scale Industrial Reuse to Reduce Cost and
Cycle Time. IEEE Software, 12(5), pp. 47-53.

Hibernate. (2014). Hibernate ORM. (Red Hat) Retrieved 9 July, 2014, from Red Hat
JBoss Middleware: http://hibernate.org/orm/

Holzinger, A. (2005). Usability Engineering Methods for Software Developers.
Communication of the ACM, 48(1), pp. 71-74.

Hsu, C.-L., Liao, H.-C., Chen, J.-L., & Wang, F.-J. (1999). A Web Database
Application Model for Software Maintenance. The Fourth International

176

Symposium on Autonomous Decentralized Systems. ISADS 1999, pp. 338-
344. IEEE.

Huiyao, A., Yang, S., Tao, Y., Hui, L., Peng, Z., & Jun, Z. (2014). A New
Architecture of Ajax Web Application Security Crawler with Finite-State
Machine. International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC), pp. 112-117. IEEE.

Hunter, J. (1998). Introducing the new Servlet API 2.1. (JavaWorld, Inc.) Retrieved
25 March, 2015, from JavaWorld:
http://www.javaworld.com/article/2076838/java-web-
development/introducing-the-new-servlet-api-2-1.html

Huston, V. (2006). GoF Structure Similarities. Retrieved 9 July, 2014, from
http://www.vincehuston.org/dp/index.html#similarities

IEEE. (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries, 610. IEEE.

Isakowitz, T., Stohr, E., & Balasubramanian, P. (1995). RMM: A Methodology for
Structured Hypermedia Design. Communications of the ACM, 38(8), pp. 34-
44.

Izquierdo, R., Juan, A., Lopez, B., Devis, R., Cueva, J. M., & Acebal, C. F. (2003).
Experiences in Web Site Development with Multidisciplinary Teams. From
XML to JST. International Conference on Web Engineering (ICWE 2003),
pp. 459-462. Springer.

Jabangwe, R., Borstler, J., Smite, D., & Wohlin, C. (2015). Empirical evidence on
the link between object-oriented measures and external quality attributes: a
systematic literature review. Empirical Software Engineering, 20(3), pp. 640-
693.

Jang, Y.-S., & Choi, J.-Y. (2014). Detecting SQL injection attacks using query result
size. Computer & Security, 14, pp. 104-118.

Java. (1995). Java Software. Retrieved 1 July, 2016, from
https://www.oracle.com/java/index.html

Jazayeri, M. (2007). Some Trends in Web Application Development. Future of
Software Engineering. FOSE '07, pp. 199-213. IEEE.

JDX. (1997). J-Database Exchange. (Software Tree, LLC) Retrieved 22 July, 2015,
from http://www.softwaretree.com/products/jdx/Jdx1.htm

177

Jha, P. C., Bali, V., Narula, S., & Kalra, M. (2014). Optimal component selection
based on cohesion & coupling for component based software system under
build-or-buy scheme. Journal of Computational Science, 5(2), pp. 233-242.

Jin, Y. (2005). International Conference on Information Reuse and Integration.
International Conference on Information Reuse and Integration, pp. 536-541.
IEEE.

Johnson, R. E. (1997). Frameworks=(Components+Patterns). Communications of the
ACM, 40(10), pp. 39-42.

Jones, C. (2013). A Short History of the Lines of Code (LOC) Metric. Retrieved 11
October, 2015, from NAMCOOK ANALYTICS:
http://namcookanalytics.com/wp-
content/uploads/2013/07/LinesofCode2013.pdf

Joshi, J. B., Aref, W. G., Ghafoor, A., & Spafford, E. H. (2001). SECURITY
MODELS FOR WEB-BASED APPLICATIONS. Communications of the
ACM, 44(2), pp. 38-44.

Kirakowski, J., & Corbett, M. (1993). SUMI: The Software Usability Measurement
Inventory. British Journal of Educational Technology, 24(3), pp. 210-212.

Koirala, S. (2008). Design pattern – Inversion of control and Dependency injection.
(CodeProject) Retrieved 2 July, 2015, from CODE PROJECT:
http://www.codeproject.com/Articles/29271/Design-pattern-Inversion-of-
control-and-Dependency

Krishnamurthy, S., & Aditya, P. M. (1997). On the estimation of reliability of a
software system using reliabilities of its components. The Eighth
International Symposium on Software Reliability Engineering, pp. 146-155.
IEEE.

Krug, S. (2006). Don't Make Me Think: A Common Sense Approach to Web
Usability (2nd ed.). Berkeley, CA: New Riders.

Kumar, V., Sharma, A., Kumar, R., & Grover, P. S. (2012). Quality aspects for
component-based systems: A metrics based approach. Software: Practice and
Experience, 42(12), pp. 1531-1548.

Laravel. (2011). (TAYLOR OTWELL) Retrieved 2017, from Laravel:
https://laravel.com/

178

Laskowski, J. (2003). OpenEJB: EJB for Tomcat. (O’Reilly Media, Inc.) Retrieved
25 March, 2015, from ONJava:
http://www.onjava.com/pub/a/onjava/2003/02/12/ejb_tomcat.html

Lea, D. (1994). Christopher Alexander: An Introduction for Object-Oriented
Designers. SIGSOFT Software Engineering Notes, 19(1), pp. 39-46.

Leach, R. J. (2012). Software Reuse: Methods, Models, Costs (2nd ed.). Aftermath.
Lee, W.-M. (2005). What is ASP.NET. Retrieved 19 March, 2015, from

http://www.windowsdevcenter.com/pub/a/dotnet/2005/09/19/what-is-asp-
net.html

Lewis, J. R. (1995). IBM Computer Usability Satisfaction Questionnaires:
Psychometric Evaluation and Instructions for Use. International Journal of
Human-Computer Interaction, 7(1), pp. 57-78.

Li, J., & Chusho, T. (2012). A Web Application Framework for End-User-Initiative
Development with a Visual Tool. Proceedings of the International
MultiConference ofEngineers and Computer Scientists. 1, pp. 816-822. Hong
Kong: IAENG.

Li, J., Han, J., Li, Z., & Zhao, Y. (2011). SCENE Admin: A Component-based
Integrated Management Framework for Web Service Platforms. International
Symposium on IT in Medicine and Education. ITME, pp. 77-81. IEEE.

Lim, W. C. (1994). Effects of Reuse on Quality, Productivity, and Economics. IEEE
Software, 11(5), pp. 23-30.

Lindquist, T. E., Gary, K. A., Koehnemann, H. E., & Naccache, H. (1999).
Component Framework for Web-Based Learning Environments. 29th Annual
Frontiers in Education Conference. FIE '99, pp. 23-28. IEEE.

Luders, F., & Lau, K. K. (2002). Specification of Software Components. In I.
Crnkovic, & M. Larsson (Eds.), Building Reliable Component-Based
Software Systems. Artech House.

Mahoney, M. S. (2004). Finding a History for Software Engineering. IEEE Annals of
the History of Computing, 26(1), pp. 8-19.

Mak, G., & Guruzu, S. (2010). Hibernate Recipes: A Problem-Solution Approach.
Apress.

Mao-Shan, S., Yi-Hai, C., Sheng-Bo, C., & Jia, M. (2010). A model checking
approach to Web application navigation model with session mechanism.

179

International Conference on Computer Application and System Modeling
(ICCASM), pp. V5-398. IEEE.

Marston, T. (2004). A Role-Based Access Control (RBAC) system for PHP. Retrieved
15 July, 2015, from http://www.tonymarston.net/php-mysql/role-based-
access-control.html

Martin, R. C. (2000). Design Principles and Design Patterns. Retrieved 9 July, 2014,
from Object Mentor:
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

Mascena, J. C., Almeida, E. S., & Meira, S. R. (2005). A Comparative Study on
Software Reuse Metrics and Economic Models from a Traceability
Perspective. IEEE International Conference on Information Reuse and
Integration. IRI-2005, pp. 72-77. IEEE.

May, J. (2002). Component-Based software reliability analysis. Department of
Computer Science, University of Bristol. CSTR.

McKendrick, J. (2006). Another view: XML not meant to be 'human readable'. (CBS
Interactive) Retrieved 11 July, 2015, from ZDNet:
http://www.zdnet.com/blog/service-oriented/another-view-xml-not-meant-to-
be-human-readable/758

Milosavljevid, B., Vidakovid, M., & Konjovid, Z. (2002). Automatic Code
Generation for Database-Oriented Web Applications. Inaugural Conference
on the Principles and Practice of Programming. PPPJ '02 , pp. 59-64.
National University of Ireland.

Mockus, A., Zhang, P., & Li, P. L. (2005). Predictors of Customer Perceived
Software Quality. 27th International Conference on Software Engineering,
pp. 225-233. St. Louis, Missouri, USA: ACM.

mod_perl. (2014). mod_perl. Retrieved 18 March, 2015, from http://perl.apache.org/
Mohagheghi, P., & Conradi, R. (2007). Quality, productivity and economic benefits

of software reuse: a review of industrial studies. Empirical Software
Engineering, 12(5), pp. 471-516.

Mohagheghi, P., & Conradi, R. (2008). An Empirical Investigation of Software
Reuse Benefits in a Large Telecom Product. ACM Transactions on Software
Engineering and Methodology (TOSEM), 17(3), p. 13.

180

Mohagheghi, P., Conradi, R., Killi, O. M., & Schwarz, H. (2004). An Empirical
Study of Software Reuse vs. Defect-Density and Stability. 26th International
Conference on Software Engineering (ICSE 2004), pp. 282-291. IEEE.

Mojolicious. (2008). Mojolicious. Retrieved 1 July, 2016, from
http://mojolicious.org/

moodledev. (2016). Data Manipuation API. Retrieved 25 June, 2016, from Moodle
Doc: https://docs.moodle.org/dev/Data_manipulation_API

Moreno-Ger, P., Torrente, J., Hsieh, Y. G., & Lester, W. T. (2012). Usability Testing
for Serious Games: Making Informed Design Decisions with User Data.
Advances in Human-Computer Interaction, 2012, pp. 1-13.

Mosher, B. (2007). Specs and Version History of Microsoft Active Server Pages.
Retrieved 19 March, 2015, from suite101:
http://web.archive.org/web/20071107074935/http://web-
programming.suite101.com/article.cfm/from_classic_asp_to_aspnet_20

Mozilla. (2014). Mozilla Developer Network. Retrieved 18 March, 2015, from
https://developer.mozilla.org/en-US/docs/AJAX

Murk, O., & Kabanov, J. (2006). Aranea - Web Framework Construction and
Integration Kit. 4th International Symposium on Principles and Practice of
Programming in Java (PPPJ '06), pp. 163-172. ACM Press.

Nelson, M. L. (1999). A Design Pattern for Autonomous Vehicle Software Control
Architectures. 23rd Annual International Computer Software and
Applications Conference. COMPSAC '99, pp. 172-177. IEEE.

Nguyen, V., Deeds-Rubin, S., Tan, T., & Boehm, B. (2007). A SLOC Counting
Standard. University of Southern California. California, USA: Center for
Systems and Software Engineering.

Nidiffer, K. E. (2007). Addressing the Software Engineering Challenges over the
Years and into the Future. Journal of Software Technologies: Future
Directions in Software Engineering, 10(3).

Nielsen, J. (1996). Usability Metrics: Tracking Interface Improvements. IEEE
Software, 13(6), pp. 12-13.

Nielsen, J. (2000). Why You Only Need to Test with 5 Users. Retrieved 27 July, 2016,
from https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-
users/

181

Nielsen, J. (2010). Testing Expert Users. Retrieved 17 May, 2016, from
https://www.nngroup.com/articles/testing-expert-users/

Nielsen, J. (2012). Usability 101: Introduction to Usability. Retrieved 26 July, 2016,
from https://www.nngroup.com/articles/usability-101-introduction-to-
usability/

Nielsen, J., & Landauer, T. K. (1993). A mathematical model of the finding of
usability problems. Proceedings of the INTERACT'93 and CHI'93 conference
on Human Factors in Computing Systems, pp. 206-213. ACM.

O'Brien, T. (2006). What Web Application framework should you use? (O'Reilly
Media Inc.) Retrieved 6 March, 2015, from O'REILLY:
http://archive.oreilly.com/pub/post/isnt_rails_supposed_to_change.html

Offutt, J. (2002). Quality Attributes of Web Software Applications. IEEE Software,
9(2), pp. 25-32.

OJB. (2012). Retrieved from Apache ObjectRelationalBridge:
http://db.apache.org/ojb/index.html

Okanović, V., & Mateljan, T. (2011). Designing a new web application framework.
MIPRO, 2011 proceedings of the 34th international convention, pp. 1315-
1318. IEEE.

Oracle9i. (2002). Oracle9i Application Server Migrating From WebSphere Release 2
(9.0.2). Retrieved from Oracle9i Application Server:
https://docs.oracle.com/cd/B10570_07/migrate.902/a95110/overview.htm

Padrino. (2010). Padrino Ruby web framework. Retrieved 1 July, 2016, from
http://padrinorb.com/

Palviainen, M., Evesti, A., & Ovaska, E. (2011). The reliability estimation,
prediction and measuring of component-based software. Journal of Systems
and Software, 84(6), pp. 1054-1070.

Park, R. E. (1992). Software Size Measurement: A Framework for Counting Source
Statements. Software Engineering Institute, Carnegie Mellon University.

Parmanto, B., Lewis, A. N., Graham, K. M., & Bertolet, M. H. (2016). Development
of the Telehealth Usability Questionnaire (TUQ). International Journal of
Telerehabilitation, 8(1), pp. 3-10.

Parr, T. (2004). Enforcing Strict ModelView Separation in Template Engines. 13th
International Conference on World Wide Web, pp. 224-233. ACM.

182

Parr, T. (2013). String Template. Retrieved 14 July, 2015, from
http://www.stringtemplate.org/

Perl. (1987). The Perl Programming Language. Retrieved 1 July, 2016, from
https://www.perl.org/

Pesot, J., Hancock, S., & Meyers, C. (2002). Simplifying the development of
enterprise-scale e-business applications. A WebSphere Studio Enterprise
Developer solution. New York: IBM Software Group.

PHP. (1995). The PHP Group. Retrieved 1 July, 2016, from http://php.net/
Poulin, J. (2002). An agenda for software Reuse Economics. International

Conference on Software Reuse, 15.
Poulin, J. S. (1994). Measuring Software Reuse. Third International Conference on

Software Reuse: Advances in Software Reusability, pp. 126-138. Rio de
Janeiro: IEEE.

Poulin, J. S. (1996). The Search for a General Reusability Metric. Proceeding of the
Workshop on Reuse and the NASA Software Strategic Plan. Fairfax, VA.

Poulin, J. s., & Caruso, J. M. (1993). A Reuse Metrics and Return on Investment
Model. 2nd Workshop on Software Reuse: Advances in Software Reusability,
pp. 152-166. IEEE.

Prieto-Diaz, R. (1993). STATUS REPORT: SOFTWARE REUSABILITY. IEEE
Software, 10(3), pp. 61-66.

PSE. (2016). Programmers Stack Exchange. (Stack Exchange Inc.) Retrieved 27 Jun,
2016, from http://programmers.stackexchange.com/

Python. (1994). Python Software Foundation. Retrieved 1 July, 2016, from
https://www.python.org/

Qiao-ming, Z., Lei, Z., & Pei-de, Q. (2004). A Simplified Database Oriented Web
Framework. Wuhan University Journal of Natural Sciences, 9(5), 706-710.

Radosevic, D., & Magdalenic, a. I. (2011). Python Implementation of Source Code
Generator Based on Dynamic Frames. Proceedings of the 34th International
Convention. MIPRO, pp. 969-974. IEEE.

Radosevic, D., Orehovacki, T., & Magdalenic, I. (2012). Towards Software
Autogeneration. Proceedings of the 35th International Convention. MIPRO,
pp. 1076-1081. IEEE.

183

Rajapakse, D. C., & Jarzabek, S. (2009). Towards generic representation of web
applications: solutions and trade-off. Software: Practice and Experience,
39(5), pp. 501-530.

Ramm, M. (2008). “Site Components” in Django and TG2. (Compound Thinking)
Retrieved 24 May, 2015, from
http://compoundthinking.com/blog/index.php/2008/02/13/site-components-
in-django-and-tg2/

Ramm, M. (2009). Coupling Django Style. (Compound Thinking) Retrieved 24 May,
2015, from Compound Thinking:
http://web.archive.org/web/20140118153633/http://compoundthinking.com/b
log/index.php/2008/02/13/site-components-in-django-and-tg2/

Regebro, L. (2009). Comments on Django's design decisions. (WordPress.com)
Retrieved 10 September, 2014, from Lennart Regebro: Python, Plone, Web
All your Python needs: http://regebro.wordpress.com/2009/04/11/comments-
on-djangos-design-decisions/

Regebro, L. (2009). Comments on Django's design decisions. (Wordpress) Retrieved
6 March, 2015, from Lennart Regebro: Python, Plone, Web:
https://regebro.wordpress.com/2009/04/11/comments-on-djangos-design-
decisions/

Richardson, M. (1999). Larry Wall, the Guru of Perl. Retrieved 26 May, 2015, from
Linux Journal: http://www.linuxjournal.com/article/3394

Ridjanovic, D., & Okanovic, V. (2004). Using Database Framework in Web
Applications. 12th IEEE Mediterranean Electrotechnical Conference.
MELECON 2004, pp. 697-700. IEEE.

Riehle, D., & Zullighoven, H. (1996). Understanding and Using Patterns in Software
Development. 2(1), pp. 3-13.

Rine, D. C., & Nada, N. (2000). Three Empirical Studies of a Software Reuse
Reference Model. Software: Practice and Experience, 30(6), 685-722.

Roberts, D., & Johnson, R. (1996). Evolving Frameworks: A Pattern Language for
Developing Object-Oriented Frameworks. Pattern Languages of Programs.
PLoP '96.

Rode, J. (2004). Nonprogrammer Web Application Development. Human Factors in
Computing Systems 2004 (CHI '04), pp. 1055-1056. ACM.

184

Roichman, A., & Gudes, E. (2007). Fine-grained Access Control to Web Databases.
ACM Symposium on Access Control Models and Technologies. SACMAT '07,
pp. 31-40. ACM.

Roma. (2006). Roma Framework. Retrieved 1 July, 2016, from
https://sourceforge.net/projects/romaframework/

RoR. (2003). Ruby on Rails. (Basecamp) Retrieved 11 July, 2014, from
http://rubyonrails.org/

Roshandel, R., Banerjee, S., Cheung, L., Medvidovic, N., & Golubchik, L. (2006).
Estimating software component reliability by leveraging architectural models.
28th international conference on Software engineering, pp. 853-856. ACM.

Rubin, J., & Chisnel, D. (2008). In Handbook of Usability Testing: Howto Plan,
Design and Conduct Effective Tests (2nd ed.), pp. 22-25. Wiley Publishing,
Inc.

Ruby. (1995). Ruby A PROGRAMMER'S BEST FRIEND. Retrieved 1 July, 2016,
from https://www.ruby-lang.org

Ryck, P. D., Nikiforakis, N., Desmet, L., Piessens, F., & Joosen, W. (2012). Serene:
Self-Reliant Client-Side Protection against Session Fixation. 12th IFIP WG
6.1 International Conference on Distributed Applications and Interoperable
Systems (DAIS 2012), pp. 59-72. Springer.

Saccoccio, R. (1996). FastCGI. (Open Market) Retrieved 19 March, 2015, from
http://www.fastcgi.com/

Santos, M. E., Polvi, J., Taketomi, T., Yamamoto, G., Sandor, C., & Kato, H. (2015).
Toward Standard Usability Questionnaires for Handheld Augmented Reality.
IEEE Computer Graphics and Applications, 35(5), pp. 66-75.

Sanz, D., Diaz, P., & Aedo, I. (2002). Implementing RBAC Policies in a Web
Server. 6th International ICCC/IFIP Conference on Electronic Publishing.
Karlovy Vary, Czech Republic: VWF Berlin via ELPUB.

Schmidt, D. C. (1995). Using Design Patterns to Develop Reusable Object-Oriented
Communication Software. Communications of the ACM, 38(10), pp. 65-74.

Schmidt, D. C. (2000). Developing Flexible and High-performance Web Servers
with Frameworks and Patterns. ACM Computing Surveys (CSUR), 32(1), p.
39.

185

Schmidt, D. C. (2012). Why Software Reuse has Failed and How to Make It Work for
You. Retrieved from Distributed Object Computing (DOC) Group:
http://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html

Schmidt, D. C., & Fayad, M. (1997). Object-Oriented Application Frameworks.
Communications of the ACM, Special Issue on Object-Oriented Application
Frameworks, 40(10), pp. 32-38.

Schmientendorf, A., Dimitrov, E., Dumke, R., Foltin, E., & Wipprecht, M. (1999).
Conception and Experience of Metrics-Based Software Reuse in Practice.
International Workshop on Software Measurement (IWSM'99), pp. 178-189.
Lac Superieur, Canada.

Schwabe, D., Pontes, R. d., & Moura, I. (1999). OOHDM-Web: An Environment for
Implementation of Hypermedia Applications in the WWW. SIGWEB
Newsletter, 8(2), pp. 18-34.

Schwartz, B. (2004). The Paradox of Choice: Why More Is Less (1st ed.). New York,
USA: HarperCollins.

Selby, R. W. (2005). Enabling Reuse-based Software Development of Large-scale
Systems. Transactions on Software Engineering, 31(6), pp. 495-510.

Selfa, D. M., Carrillo, M., & Boone, M. d. (2006). A Database and Web Application
Based on MVC Architecture. Electronics, Communications and Computers.
CONIELECOMP 2006, pp. 48-53. IEEE.

Seshadri, G. (1999). Understanding JavaServer Pages Model 2 architecture.
(JavaWorld, Inc.) Retrieved 25 March, 2015, from JavaWorld:
http://www.javaworld.com/article/2076557/java-web-
development/understanding-javaserver-pages-model-2-architecture.html

Shaik, A. S., Hossain, G., & Yeasin, M. (2010). Design, Development and
Performance Evaluation of Reconfigured Mobile Android Phone for People
Who are Blind or Visually Impaired. 28th ACM International Conference on
Design of Communication, pp. 159-166. ACM.

Siggelkow, B. (2005). A Look at Commons Chain, Part 1. Retrieved 22 September,
2016, from ONJava:
http://www.onjava.com/pub/a/onjava/2005/03/02/commonchains.html

186

Silber, D. H. (1998). Java CGI HOWTO. (Advameg, Inc.) Retrieved 19 March, 2015,
from Internet FAQ Archives: http://www.faqs.org/docs/Linux-HOWTO/Java-
CGI-HOWTO.html

Silva, E. Q., & Moreira, D. d. (2005). Developing Customizable Web-based
Educational Applications through a Component-based Framework.
International Conference on Next Generation Web Services Practices.
NWeSP 2005. pp. 6-pp. IEEE.

Simons, P. (28 October, 2002). FastCGI Application Framework. Retrieved 18
March, 2015, from Savannah: http://www.nongnu.org/fastcgi/#framework

Sinatra. (2007). Sinatra . Retrieved 1 July, 2016, from http://www.sinatrarb.com/
Smarty. (2002). Smarty Template Engine. (New Digital Group, Inc.) Retrieved 14

July, 2015, from http://www.smarty.net/
Souer, J., & Mierloo, M. v. (2008). A Component Based Architecture forWeb

Content Management: Runtime Deployable WebManager Component
Bundles. Eighth International Conference on Web Engineering. ICWE '08,
pp. 366-369. IEEE.

Sova, D. H., & Nielsen, J. (2003). How to Recruit Participants for Usability Studies.
Retrieved 31 July, 2016, from https://www.nngroup.com/reports/how-to-
recruit-participants-usability-studies/

Spring. (2014). Spring Framework. (GoPivotal Inc.) Retrieved 10 July, 2014, from
Spring: http://projects.spring.io/spring-framework

SQLAlchemy. (2014). The Python SQL Toolkit and Object Relational Mapper.
Retrieved 9 July, 2014, from SQLAlchemy: http://www.sqlalchemy.org/

stackoverflow. (2016). Stack Overflow. (Stack Exchange Inc.) Retrieved 27 Jun,
2016, from http://stackoverflow.com/

Stella, L. F., Jarzabek, S., & Wadhwa, B. (2008). A Comparative Study of
Maintainability of Web Applications on J2EE, .NET and Ruby on Rails. 10th
International Symposium on Web Site Evolution (WSE2008), pp. 93-99.
IEEE.

Struts, A. (2000). (Apache Software Foundation) Retrieved 9 July, 2014, from
Apache Struts: http://struts.apache.org/

187

Succi, G., Benedicenti, L., & Vernazza, T. (2001). Analysis of the Effects of
Software Reuse on Customer Satisfaction in an RPG Environment.
Transactions on Software Engineering, 27(5), pp. 473-479.

Sun. (2004). Web Application Framework Overview. Sun Java (TM) Studio
Enterprise 7 2004Q4. Sun Microsystems, Inc.

Sun, D., Wong, K., & Moise, D. (2003). Lessons Learned in Web Site Architectures
for Public Utilities. Fifth IEEE International Workshop on Web Site
Evolution (WSE 2003), pp. 93-100. IEEE.

Sutter, H. (2000). GotW Archive, Issue #70. Retrieved from Guru of the Week:
http://www.gotw.ca/gotw/070.htm

Symfony. (2005). Symfony. (SensioLabs) Retrieved 1 July, 2016, from
https://symfony.com/

Szyperski, C., Gruntz, D., & Murer, S. (1998). Component Software - Beyond
Object-Oriented Programming. New York: Addison-Wesley.

Taguchi, M., Suzuki, T., & Tokuda, T. (2003). A Visual Approach for Generating
Server Page Type Web Applications Based on Template Method. Human
Centric Computing Languages and Environments (HCC 2003), pp. 248-250.
IEEE.

Tate, B. (2006). Pain. In From Java to Ruby (pp. 14-33). Pragmatic Bookshelf.
Thomas, W. M., Delis, A., & Basili, V. R. (1997). An Analysis of Errors in a Reuse-

oriented Development Environment. Journal of Systems and Software, 38(3),
pp. 211–224.

Tilley, S., & Huang, S. (2001). Evaluating the Reverse Engineering Capabilities of
Web Tools for Understanding Site Content and Structure: A Case Study. 23rd
International Conference on Software Engineering (ICSE 2001), pp. 514-523.
IEEE.

Trails. (2006). Trails Framework. Retrieved 1 July, 2016, from
https://www.openhub.net/p/trails

Trung, Thanh, P., & Thang, H. Q. (2009). Building the reliability prediction model of
component-based software architectures. Int'l Journal of Information
Technology, 5(1), pp. 18-25.

TurboGears. (2005). TurboGears: The Web Framework that scales with you.
Retrieved 10 July, 2014, from http://turbogears.org/

188

u1db. (2011). u1db 0.1.4 Documentation. Retrieved 25 June, 2016, from
https://pythonhosted.org/u1db/high-level-api.html

Uhler, S. A. (2001). Design and Architecture of the Brazil Web Application
Framework. Sun Microsystems, Inc.

USDA. (2014). USDA Enterprise Architecture Program. Retrieved 9 July, 2014,
from Office of the Chief Information Officer, USDA:
http://www.ocio.usda.gov/about-ocio/governance-and-strategic-investment-
gsi/enterprise-architecture

Vale, T., Crnkovic, I., de Almeida, E. S., Neto, P. A., Cavalcanti, Y. C., & Romero,
S. (2016). Twenty-eight years of component-based software engineering.
Journal of Systems and Software, 111, pp. 128-148.

Ventuneac, M., Coffey, T., & Salomie, I. (2003). A POLICY-BASED SECURITY
FRAMEWORK FOR WEB-ENABLED APPLICATION. 1st International
Symposium on Information and Communication Technologies (ISICT '03),
pp. 487-492. Trinity College Dublin.

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., &
Gil, S. (2015). Evaluating the monolithic and the microservice architecture
pattern to deploy web applications in the cloud. Computing Colombian
Conference (10CCC), pp. 583-590. IEEE.

Vuksanovic, I. P., & Sudarevic, B. (2011). Use of Web Application Framework in
the Development of Small Applications. 34th International Convention on
Information and Communication Technology, Electronics and
Microelectronics, MIPRO 2011, pp. 458-462. Opatija, Croatia: IEEE.

Washizaki, H., Yamamoto, H., & Fukazawa, Y. (2003). A Metrics Suite for
Measuring Reusability of Software Components. 9th International
Symposium on Software Metric, pp. 211-223. Sydney, NSW, Australia.

Weisfeld, M. (2005). The Evolution of Object-Oriented Languages. Retrieved from
Developer.com:
http://www.developer.com/java/other/article.php/3493761/The-Evolution-of-
Object-Oriented-Languages.htm

West, A. (2009). NASA study on flight software complexity. NASA. Retrieved 11
August, 2015, from
http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf

189

Yii. (2006). (Yii Software LLC) Retrieved 2017, from Yii Framework:
http://www.yiiframework.com/

Zaharias, P., & Angeliki, P. (2009). Developing a usability evaluation method for e-
learning applications: Beyond functional usability. International Journal of
Human–Computer Interaction, 25(1), pp. 75-98.

Zeiger, S. (1999). Servlet Essential. Retrieved 25 March, 2015, from Novocode.com:
http://www.novocode.com/doc/servlet-essentials/

Zhang, F., Zhou, X., Chen, J., & Dong, Y. (2008). A novel model for component-
based software reliability analysis. 11th IEEE High Assurance Systems
Engineering Symposium, pp. 303-309. IEEE.

Zhang, J., & Buy, U. (2003). A Framework for the Efficient Production of Web
Applications. Eighth IEEE International Symposium on Computers and
Communications. ISCC '03, pp. 419-424. IEEE.

Zhang, J., Chung, J.-Y., & Chang, C. K. (2004). Towards Increasing Web
Application Productivity. ACM Symposium on Applied Computing (SAC '04),
pp. 1677-1681. ACM Press.

Zhang, W., & Jarzabek, S. (2005). Reuse without Compromising Performance:
Industrial Experience from RPG Software Product Line for Mobile Devices.
In H. Obbink, & K. Pohl (Ed.), 9th International Software Product Lines
Conference (SPLC 2005), pp. 57-69. Rennes, France: Springer.

Zhang, W., & Kim, M. (2005). Application Frameworks Technology in Theory and
Practice. The Fifth International Conference on Electronic Business, pp. 769-
776. Hong Kong.

Zope. (2009). The Zope Framework. Retrieved 25 May, 2015, from
http://zope2.zope.org/

